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Abstract—250 words max40

As a component of the Earth’s hydrologic cycle, and especially at higher latitudes, falling snow 41

creates snowpack accumulation that in turn provides a large proportion of the fresh water 42

resources required by many communities throughout the world. To assess the relationships 43

between remotely sensed snow measurements with in situ measurements, a winter field project, 44

termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation 45

Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal 46

was to provide information on the precipitation microphysics and processes associated with cold 47

season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-48

frequency precipitation radar and a passive microwave imager onboard the GPM core satellite, 49

and radiometers on constellation member satellites. Multi-parameter methods are required to be 50

able to relate changes in the microphysical character of the snow to measureable parameters from 51

which precipitation detection and estimation can be based. The data collection strategy was 52

coordinated, stacked, high-altitude and in situ cloud aircraft missions with three research aircraft 53

sampling within a broader surface network of five ground sites taking in-situ and volumetric 54

observations. During the field campaign 25 events were identified and classified according to 55

their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx 56

field campaign is described and three illustrative cases detailed.57

58

Capsule: 20-30 words: In-situ and remotely-sensed observations of falling snow with 59
coordinated ground and aircraft measurements reveal the microphysical and radiative parameters 60

of snow.61
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Background and Motivation62

63

   Precipitation falling in the form of snow is critically important for society, climate, 64

geology, agriculture, and ecosystems. Falling snow can exert tremendous socio-economic 65

impacts and disrupt transportation systems. Snowpacks store freshwater and reflect incoming 66

radiant energy. Indeed, in some parts of the world including the U.S., snow is the dominant 67

precipitation type and relied upon year round for freshwater. Despite the importance to human 68

activity and understanding of the Earth’s system, measuring falling and fallen snow remains a69

challenge (e.g., Kulie et al. 2010, Lohnert et al. 2011, Derksen et al. 2012, Foster et al. 2012).70

It is difficult to obtain global and fully representative measurements of both rain and snow 71

with ground based instruments. Ground instruments are sparse (especially over water bodies), 72

require automated data logging 24 hours a day/7 days a week, and are beset with challenges due 73

to the inherent spatial and temporal variability of precipitation (Nitu et al. 2012, Rasmussen et al. 74

2003, Rasmussen et al. 2012). For falling snow, ground instrument measurements (e.g., Joe et al. 75

2014, Huang et al. 2009, Battaglia et al. 2010, Saavedra et al. 2011, Sheppard and Joe 2008) can 76

be very problematic because snowflakes have many shapes and densities that affect their fall 77

speed, fall trajectories, and volume-to-melted water ratios. 78

Ice-phase precipitation detection and retrieval algorithms using satellite passive radiometer 79

observations have been reported and shown to be useful in studying near-surface falling snow 80

(Skofronick-Jackson et al. 2004; Ferraro et al. 2005; Chen and Staelin 2003; Noh et al. 2009). 81

The passive millimeter-wave and sub-millimeter-wave frequencies are especially sensitive both 82

to the scattering and absorption/emission properties of atmospheric ice particles and these 83

channels have been exploited in the above approaches. In addition to passive radiometer 84

retrievals of snow from space, Wood (2011), Liu 2008, and Kulie and Bennartz (2009) have 85
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developed algorithms to retrieve snowfall properties and their uncertainties using the W-band 86

reflectivity measurements and ancillary data from CloudSat. It is reasonable to suggest that a 87

combined active-passive approach should reduce the uncertainties in snow estimation. 88

Accordingly, the Global Precipitation Measurement (GPM) mission, with its core satellite 89

launched February 27, 2014, has been designed to provide calibrated and uniform active and 90

passive precipitation (rain and falling snow) measurements over the majority of the globe at a 91

temporal resolution of 2-4 h (Hou et al. 2014).  The GPM core observatory satellite is92

specifically designed to estimate rain rates from 0.2 to 110 mm/h and to detect falling snow (Hou 93

et al., 2014). Other theoretical studies have shown that GPM can be expected to be able to detect 94

and estimate falling snow liquid water equivalents above ~0.5 mm/hr melted (Skofronick-95

Jackson et al., 2013, Munchak and Skofronick-Jackson 2013).   96

PLACE SIDEBAR 1 HERE97

While early results from the GPM spacecraft indicate that the retrieval algorithms are 98

obtaining falling snow estimates, physically-based snowfall retrieval algorithms for GPM are in 99

an active phase of development. Further refinement and testing of these emerging algorithms 100

requires the collection of targeted high-quality ground-validation datasets in snowing 101

environments. The GPM Cold Season Precipitation Experiment (GCPEx), a collaboration 102

between the NASA GPM Ground Validation (GV) program and its international partner 103

Environment Canada (EC) provided both new datasets and physical insights related to the 104

snowfall process to ultimately improve falling snow retrievals. 105

The GCPEx field campaign occurred in Ontario, Canada (Fig. 1) from January 15, 2012 to106

March 3, 2012. GCPEx collected microphysical properties, associated remote sensing 107

observations, and coordinated model simulations of precipitating snow (hereafter “falling snow” 108
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and/or “snowfall” will be used interchangeably in reference to precipitating snow). GCPEx 109

expands upon the successful Canadian CloudSat/CALIPSO Validation Programme (C3VP) held 110

the winter of 2006-2007 (Hudak et al. 2006, Barker et al. 2008). While successful, C3VP lacked 111

additional surface stations to examine subgrid variability, did not include the high altitude 112

satellite remote sensing proxy for GPM, nor did it have such a carefully orchestrated set of 113

measurements.  114

The primary objective of GCPEx was to conduct a complete study of snowfall physical 115

properties and radiative properties from the ground through the atmospheric column as would be 116

measured by GPM spacecraft. GCPEx measurements addressed significant areas of weakness or 117

knowledge gaps in snowfall detection and estimation algorithms including: (1) lack of realistic 118

representation of snow particles, their bulk density, size and shape distributions, and their 119

associated radiative properties in forward radiative transfer models that convert physical 120

properties to radiative properties; (2) limited physically-based means to assess the behavior and 121

mitigation of highly variable surface emissivities on satellite passive microwave (PMW) 122

measurements over multiple temporal scales and surface types, (3) the low sensitivity to 123

light/moderate falling snow events by passive sensors, and (4) ambiguities in reflectivity-snow 124

rate (Ze-S) and brightness temperature-ice water path (TB-IWP) relationships. GCPEx provided 125

information used to characterize the ability of multi-frequency active and passive microwave 126

sensors to detect and estimate falling snow. It also addresses the capability of validating the 127

relationships between snow’s physical properties and its radiative properties.128

129

PLACE SIDEBAR 2 HERE130
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The “Design of the Experiment” section provides information on the field campaign 131

measurements, locations, instruments and sampling strategies. In the “Measured Cases” section a 132

summary of the field campaign observations is supplied from beginning to end. The section on 133

“Experimental Highlights” details the aircraft and ground based falling snow measurements for 134

three interesting cases for GCPEx. The “Data Management” section provides data access 135

information while “Summary and Outlook” is a look forward toward GCPEx data usage.136

137

Design of Experiment138

The coordinated measurement strategy used stacked high-altitude GPM airborne remote 139

sensing simulator instrumentation and in-situ cloud aircraft flights with three research aircraft 140

sampling within a broader network of five ground sites taking surface in-situ and volumetric 141

observations (Fig. 1). The observing framework used a combination of multi-frequency radar, 142

particle imaging and water equivalent-measuring surface instrumentation in conjunction with 143

airborne dual-frequency radar, high frequency radiometer and in situ microphysics observations 144

to provide the most complete coupled 3D sampling of surface and in-cloud microphysical 145

properties possible. To focus instruments on high impact observations that can be used pre- and 146

post-launch for retrievals, the GPM algorithm developers identified key measurements needed to 147

constrain algorithm assumptions (Table 1 and sidebar 2). These parameters link to instruments 148

and sensors at the ground, in situ, and remotely sensed by high altitude aircraft (Table 2).  149

150

Ground Measurement Instrumentation and Strategy151

Ground sampling was focused about a densely-instrumented central location, the 152

Environment Canada (EC) Centre for Atmospheric Research Experiments (CARE) at 44° 13’ 153

57" N / 79° 46’ 53" W.  CARE is well situated within both mid-latitude synoptic and lake-effect 154
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snowfall regimes and under the coverage of the EC C-band dual polarization scanning radar 155

located at King City (green circles in Fig. 1).  All ground instrumentation (Table 3) was designed 156

to operate 24/7 or be switched on during snow events. The active remote sensing instrumentation 157

suite at CARE included multi-frequency, dual polarized Doppler radars, lidars, and wind 158

profilers. The passive remote sensing suite included multiple several channel radiometers. In-159

situ measurements at CARE included a multiple disdrometers, various video and photographic 160

devices and a number of other technologies that estimate instantaneous precipitation rate. In 161

addition, a wind blocking Double Fence International Reference (Nitu et al., 2012) liquid 162

equivalent precipitation measurement was done manually at regular intervals (Table 3). 163

Measurements conducted at four secondary ground sites (yellow triangles in Fig. 1 and Table 164

4) represented a slightly reduced observational capability to that available at the CARE site.  165

These secondary site measurements provided a means to extend and calibrate volumetric radar 166

products over the broader domain sampled by the King City radar (more appropriate to the scale 167

of satellite footprints of 5-25 km). They also allow opportunities to connect airborne 168

measurements to locations at the ground other than the CARE Facility and to sample lake effect 169

events that tend to be localized and spatially fine-scale in nature. Table 3 provides references and 170

a summary of the ground-based equipment deployment at the primary CARE site and at the 171

secondary sites. 172

173

Aircraft Measurement, Instrumentation and Strategy174

For airborne sampling the DC-8 aircraft served as a GPM satellite simulator, carrying the 175

Conically-Scanning Millimeter-wave Imaging Radiometer (CoSMIR) with passive channels 176
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spanning 501-183 GHz and the Airborne Second Generation Precipitation Radar (APR-2), with a 177

Ku and Ka-band radar. The University of North Dakota (UND) Citation and the National 178

Research Council (NRC) Convair-580 hosted in situ microphysics sensors and provided 179

information on the vertical distribution of cloud and snow microphysical properties. Details on 180

the aircraft instrumentation and references are found in Table 5. Flight legs were aligned along a  181

range height indictor (RHI) scan axis of the King City radar and/or in coordinated stacked 182

profiling spirals (Citation, Convair), or in orbiting patterns (DC-8) above the heavily 183

instrumented primary/secondary ground sites.  Aircraft flights occurred during precipitation 184

events, with the exception of two DC-8 missions designed to measure brightness temperatures185

associated with land surface emission during intervening cloud-free periods.186

The DC-8 aircraft was selected for the GCPEx due to its compatibility with the desired 187

instrument payload, its altitude ceiling (~12.5 km) and its ability to fly long duration missions 188

(e.g., 10 h based the GCPEx payload).  The DC-8 was based out of Bangor, Maine with an 189

approximate flight time to the CARE site of one hour. The Citation and Convair aircraft sampled 190

the column of snow/ice from ~800 m AGL to 7000 m AGL.  The Citation and Convair were 191

based out of Muskoka and Ottawa, respectively (Fig. 1) and were flown consecutively during the 192

longer duration DC-8 flights. Convair participation in the experiment was limited to February 193

2012.194

The weather forecasting process was an integral part of the planning for aircraft missions. 195

The lead time required to deploy the DC-8 from its staging location in Maine required 196

significance advanced planning. The forecasting duties were divided between students from the 197

                                                          
1 The 50 GHz channels on COSMIR are not on the GPM spacecraft but remain as part of heritage channels of 

CoSMIR. 
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U. of Illinois and McGill University. The forecasting teams had access to Numerical Weather 198

Prediction (NWP) model output from both EC and the US National Weather Service (NWS). To 199

leverage local forecasting expertise, the forecasting teams also consulted on a daily basis with 200

EC operational forecasters. 201

202

Measured Cases203

The totality of the surface, ground based remote sensing, aircraft and satellite data resulted in 204

a comprehensive 3D volume/column of data providing a description of snowfall physics at the 205

ground and through the atmospheric column, and also a database of scenes for evaluating and 206

developing satellite snowfall retrieval algorithms. Data collected during this field campaign 207

exceeded all expectations, with measurements of heavy (>50 mm hr-1 fluffy, non-melted, rate), 208

moderate (25 – 50 mm h-1), and light falling snow rates, along with mixed phase and rain cases. 209

These heavy through light snow cases are ideal for testing the thresholds of detection for falling 210

snow rates using GPM-like sensors. 211

The project was conducted from January 15, 2012 until March 3, 2012. However, much of 212

the ground instrumentation was installed during November 2011. As a result, many sensors 213

obtained additional data from the early part of the winter. In total, 25 events were identified 214

(Table 6). An event was determined subjectively as a period of contiguous or nearly contiguous 215

precipitation that corresponded to a specific synoptic triggering mechanism.  The event total 216

SWE amounts were the manual measurements taken by the Tretyakov gauge inside the Double 217

Fence International Reference (DFIR) wind shield at CARE. The precipitation type was 218

characterized as rain (R), snow (S), or mixed precipitation that could include ice pellets (R/S).  219

The synoptic context was determined from the daily synopsis produced by the project weather 220

forecasters. The final categories were frontal disturbances (F), low pressure passages but without 221



10

a surface frontal passage (C), an upper air feature not reflected in a distinct surface low (U), a 222

lake effect event from flows off either Lake Huron or Georgian Bay (L), or a ridge (Ri).  The 223

final columns identify which events had specific aircraft involvement. 224

The precipitation measurements at CARE were made using a Pluvio 400 precipitation 225

weighing gauge, a Pluvio 200 weighing gauge (heated rim), and the manual DFIR reference 226

measurement (Nitu et al. 2012). The data are either liquid precipitation amount when raining or 227

snow water equivalent (SWE) amounts when snowing. The manual measurements have a coarser 228

time resolution, typically 12 h, compared to the Pluvio gauge that has a resolution of one minute.229

On an event basis (falling snow water equivalent amounts > 1 mm), the correlation between the 230

Pluvio 400 and the manual reference gauge is 0.96 with ~ -1% mean bias. This is in keeping with 231

Rasmussen et al. (2012) and lends confidence to the use of the Pluvio 400 gauge as the reference 232

precipitation amount at the 5 surface sites. The time series of precipitation accumulation at the 233

CARE site is shown in Figure 2a. There was a total of 103 mm of liquid equivalent precipitation 234

during the six-week project, 100 mm of which fell during organized events.  Event periods with 235

aircraft sampling are superimposed on Fig. 2a with vertical color bars. The research aircraft were 236

involved in 18 of the 25 events. Fig. 2b gives the measured distribution of precipitation rates 237

averaged over 10 min during the project. Approximately 70% of the measured rates were < 2.0 238

mm h-1.239

As an example of the variability of precipitation structure, Fig. 3a gives the area-wide 240

precipitation accumulation for the 30 January event based on radar reflectivity using the C-band 241

King City radar. The coefficients in the Ze-S algorithm were derived from an analysis of the 242

2DVD measurements at all the ground sites as outlined in Huang et al. (2014). The pattern 243

illustrates the complexity of the precipitation and the influence of the open water to the 244
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northwest on lake-enhancement of the precipitation.  Fig. 3b shows the time history of 245

accumulation for the radar and the Pluvio 400 measurements at Huronia to the north. At the246

range of Huronia the radar beam is at an altitude of ~ 1 km. For the first 8 h, the correspondence 247

of the radar derived amounts and the Pluvio gauge was excellent, allowing for a 15 min temporal 248

offset due to the low fall velocity of snow.  Thereafter the radar derived amount was 249

considerably less than the measured amount. This was during a period when the lake-250

enhancement was the most significant and low-level echo growth below 1 km in altitude was 251

typical. A comparison of the radar reflectivity with the POSS, a small bistatic X-band radar 252

measuring precipitation close to the ground (Sheppard and Joe 2008) confirmed this increase in 253

reflectivity below 1 km.  254

While the focus of DC-8 airborne operations was primarily oriented to sampling falling 255

snow, an effort was also made to collect measurements of land surface emission characteristics 256

during cloud-free days of the experiment (events 9 and 18 in Table 6).  Here the focus was on 257

collection of CoSMIR radiometer views of the land surface under the influence of varying snow 258

and vegetation conditions in order to understand and possibly mitigate the influence of land-259

surface emission properties on passive radiometer snowfall retrieval algorithms. In at least one 260

case, clear air and snowing cases were sampled along the same flight line on two adjacent days.  261

Accompanying observations from excavated snow pits and ground-based downward looking 262

radiometer observations of the snowpack were conducted at the CARE site in support of this 263

activity.264

Precipitation in general, and snowfall in particular, were below normal during the winter of 265

2011-12. Early in the project, any significant precipitation amounts invariably involved either 266

rain or mixed precipitation. The middle part of the experiment had generally light snowfall 267
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events or lake effect events captured by aircraft but not directly over the main measurement site 268

at CARE.  However, the latter part of the experiment saw a number of significant snowfall 269

events with liquid equivalent rates up to 5 mm h-1 as measured at the CARE site.270

271

Experiment Highlights272

273

Three of the important and diverse systems sampled during the GCPEx field campaign 274

were events 6, 8, and 21. Event 6 occurred on 27 January 2012 and was a mixed phase event that 275

produced 14.2 mm of liquid equivalent precipitation.  This event produced freezing rain and 276

snow near CARE within a wraparound region of a cyclone that tracked through the eastern Great 277

Lakes. Event 8 on 30-31 January 2012 was a light snow system with measurements of 3.5 mm of 278

Snow Water Equivalent (SWE) at the CARE site and was driven by an upper air feature. Event 279

20 on 24 February 2012 was a major cyclone giving a snowfall total of 8.3 mm SWE at CARE. 280

Event 6: 27 January 2012 281

Event 6 (27 January 2012) featured near-surface radar reflectivities exceeding 30 dBZ 282

over the southern part of the experimental domain associated with near-surface mixed phase and 283

liquid precipitation near 2:30 UTC (Fig 4a).  A radiosonde launched at CARE at 2353 UTC  26 284

January 2012 (not shown) indicated a layer above freezing between 780 and 895 hPa, with a 285

layer as cold as –4°C below this warm layer indicating the possibility of mixed surface 286

precipitation.  Ice pellets, snow, and freezing rain were observed, and icing was severe enough to 287

cause hazardous road conditions near the CARE site. The DC-8 and Citation sampled these 288

bands of moderate precipitation in excellent coordination with flight legs parallel to radar Range 289

Height Indicator (RHI) scans along a line from the King City 331° azimuth through and beyond 290

CARE.  All radar data indicates a strong melting layer near 1.5 km with radar echoes extending 291
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to above 5 km on both the ground based King City and D3R (Dual-frequency, Dual-polarimetric 292

Doppler Radar) radars (not shown) as well as the APR-2 aboard the DC-8 (Fig. 4b), and the echo 293

structure above the melting level had the appearance of upright convection.  Above the melting 294

layer, D3R (not shown) and APR-2 (Fig. 4c) observed Ku-Ka dual frequency ratio (DFR) values 295

exceeding 7 dB indicating non-Rayleigh scattering. Within the melting layer, the D3R indicated 296

higher DFR values (> 14 dB), which suggests particle orientation and differential path 297

attenuation were likely playing a role in the differing DFR values based on viewing angle (not 298

shown).  In the rain, DFR values were lower than aloft, but still non-zero (values of 2-3 dB from 299

APR-2) indicating the presence of rain drops with median mass diameters of 1.5-2 mm.  Within 300

this event, it is likely that the GPM Dual-frequency Precipitation Radar (DPR) would capture a 301

large portion of the surface precipitation with both its Ku and Ka band radar (nominal minimum 302

detectable signals of 17 and 12 dBZ, respectively). 303

Within this mixed phase precipitation event, CoSMIR nadir-viewing passive microwave 304

signatures (Fig. 4d) were complex, and appeared to respond to the vertical structure of the 305

sampled system in the channels with frequencies < 183 GHz.  The background surface brightness 306

temperature contribution was low due to pre-existing snow cover and cold surface temperatures 307

(the microwave surface emissivity of snow is 0.6 to 0.7), and increases in brightness temperature 308

associated with heavier precipitation at 89 GHz may be associated with supercooled water 309

emission in the column. The 166 GHz channel responded to a mixture of ice scattering and 310

emission at mid-cloud layers. The 183 GHz channels only respond to relatively deep (tall) clouds 311

in the presence of significant water vapor, and in this case the lack of response showed that the 312

signal is only due to water vapor emission. The CoSMIR 89 GHz conically scanning polarization 313



14

difference (see Wang et al. 2013 for the polarization difference formula) was nearly 8 K between 314

the two cores, indicating the presence of oriented ice crystals in this region. 315

The UND Citation spiral (Figure 5) occurred between 2:28 and 3:43 UTC measured in316

situ properties between 1 and 4.4 km MSL.  It sampled one of the convective elements displayed 317

in Figure 4.  The Nevzorov total water probe (Fig. 5a) sampled total water contents in excess of 318

0.3 g m-3 near 5 km MSL, and the King liquid water probe (Fig. 5b) sampled supercooled water 319

in excess of 0.25 g m-3 at these altitudes.  As the aircraft descended on a 10 km diameter spiral, 320

Fig. 5c shows the plane periodically entered and exited a region with high concentrations of large 321

particles > 1 cm according to the 2D probes, where the median volume diameter (D0) was in 322

excess of 2-4 mm. Intermittently above the freezing level (located at 1.5 km MSL), the 2D 323

probes sampled regions of small D0 that were collocated with regions of measurable supercooled 324

liquid water content according to the King probe.  Below the melting level, small D0 is again 325

noted with the collapse of particle sizes associated with melting.  The University of Manitoba 326

particle study indicated rain and melting particles on the ground that melted too quickly to 327

photograph. 328

Event 8: 30-31 January 2012 329

To contrast the mixed precipitation Event 6, a nearly identical data sampling strategy was 330

employed in Event 8 (30-31 January 2012), and a similar analysis of data is shown from the 30-331

31 January snow event in Figure 6.  As mentioned above, this event produced light snowfall 332

accumulations (< 3.5 mm in 8 hours) over the sampled region, and the King City C-Band radar 333

reflectivity image near 0:31 UTC (Fig. 6a) shows that reflectivities were generally in the 10-20 334

dBZ range, which would be marginally detectable by the GPM DPR.  The vertical cross section  335

(Fig. 6b) from the APR-2 radar shows very consistent reflectivity values, and an echo top 336
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between 7 and 8 km MSL. Values measured by APR-2 on the DC8 (Fig. 6c), show near zero 337

values of DFR in most of the region except within the highest measured reflectivities where DFR 338

approaches 4-5 dB. These low DFR values indicate that snow particle median diameters are 339

small (~1-3 mm). 340

In Fig. 6d, CoSMIR brightness temperature observations for the 30-31 January light snow 341

case reveal distinct contrasts to the 27 January freezing rain case.  First, 89V brightness 342

temperatures are more dominated by strong scattering by snow particles, with minimum values 343

near 220 K.  However, there are interesting deviations where the scattering signature is reduced 344

and brightness temperatures increase notably at 89H, and 165 GHz.  At 183 GHz, both channels 345

do not detect any precipitation signal.  Polarization differences at 89 GHz also show variability, 346

with a peak in polarization difference of only 4.5 K near the minimum in 89 GHz brightness 347

temperatures, indicating a possibility of oriented ice particles. Results discussed in Skofronick-348

Jackson et al. (2013) and Munchak and Skofronick-Jackson (2013), suggest that this event would 349

not be easily detected by the GPM radiometer. 350

In Figure 7, a microphysical analysis is shown for the 30-31 January case near 23:30 351

UTC 30 January.  Here, the precipitation was more horizontally uniform than for the 27 January 352

case, so the values are more consistent along the spiral flight track.  Note that despite lower total 353

water contents (~0.15 g m-3 maximum) as measured by the Nevzorov probe (Fig. 7a), there was 354

also significant liquid water content observed below 2.5 km MSL by the King probe (Fig. 7b,355

nearly ~0.15 g m-3 maximum).  The vertical profile of particle size distributions (Fig. 7c) 356

displayed consistent values of D0 near 1.5-2 mm, with maximum values just below the region of 357

supercooled water indicating possible particle growth by riming and/or vapor deposition.  Also 358

evident is a bimodal size distribution with a high concentration of particles < 0.5 mm as well as a 359
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second peak near the values of D0 extending to maximum sizes of about 8 mm.  Overall, the size 360

distribution parameters measured with the aircraft at the minimum operating altitude and with 361

the Parsivel-2 disdrometer on the surface at the CARE site agreed remarkably well (not shown),362

which demonstrates the relatively slow vertical evolution and small horizontal inhomogeneity of 363

the particle size distribution.  For this case, generally small particles were observed at the 364

surface, and the University of Manitoba particle study indicated relatively small dendritic 365

particles (with some aggregates) as well as irregular particles (Figure 8).366

Event 20: 24 February 2012 367

In contrast to the January 30-31 event, a stronger, longer-duration event was observed on 368

February 24, 2012 (event 20).  Sampling during this event ranged from multi-aircraft in-situ369

microphysical data collections (back-to-back Citation, Convair, Citation flights) coordinated 370

with the DC-8 in light to heavy snow, to single aircraft DC-8 sampling of both heavy snow and 371

mixed phase precipitation along, over, and to the north of Lake Ontario. Collectively, the 372

February 24 event will provide a case study to examine GPM algorithm detectability thresholds 373

across a spectrum of snowfall intensities (i.e., light, moderate and heavy snow events).   374

Figure 9 shows the NOAA National Mosaic Quantitative precipitation estimates (NMQ) 375

ground radar composite along with DC-8 aircraft measurements from the APR-2’s Ku-Band 376

radar reflectivity, dual-frequency ratio at Ku-Ka band, and CoSMIR TB and polarization 377

differences. The radar images show intense Z values near 25 dBZ indicating heavy snow up to 378

altitudes of 5-6 km. The CoSMIR cross-tracked scans report TB depressions of nearly 100 K for 379

all channels except 183+/-3 due to the scattering of snow in the profile. Indeed, GMI data to date 380

has shown 100K depressions in areas of deep convection even with the larger footprints as 381

compared to CoSMIR. In contrast to the prior two cases, here the convection was deep enough to 382
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allow appreciable signals from ice scattering in the 183+/-3 and 183+/-7 GHz channels, with a 383

stronger signal in the latter channel that extends further from the water vapor absorption line.  In 384

particular, the convective element sampled near hour 16.63 and 16.70 UTC, which had APR-2 385

Ku-Band reflectivity > 15 dBZ over 5-6 km MSL elicits a scattering response in all channels, 386

including 183+/-3 GHz.  Polarization differences (Wang et al, 2013) were not necessarily 387

correlated with the reflectivities implying that the frozen particles may have been more spherical 388

and/or randomly oriented instead of preferentially oriented. Further analysis of the Citation and 389

Convair microphysical measurements during these cases will provide an excellent variety of 390

snowfall intensities to understand the variations of microwave properties of snowfall.391

392

Data Management393

394

Data quality control and archiving of the GCPEX dataset has been completed.  These data 395

are most easily accessed on the GPM Ground Validation Data Portal for GCPEX 396

http://gpm.nsstc.nasa.gov/gcpex/.  This web site contains links to the datasets, instrument tables 397

and other miscellaneous information.   398

From the “Data” tab off the GCPEx data portal, access to a table of case dates and quick look 399

images from the Precipitation Video Imager(s) is provided and can be perused to assist in 400

selection of datasets for download. From the GCPEX data site, individual components of the 401

GCPEx dataset can be searched using the Global Hydrology Resource Center (GHRC) HyDRO 402

tool, or the user can download an entire dataset type (radar, gauge, disdrometer etc.) directly 403

from the data site using file transfer protocol (ftp).  Documentation of daily forecasts and mission 404

operations summaries provided by campaign Mission Scientists are available via the GCPEx 405
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Operations Portal. Access to the Operations portal and GPCEx logs contained therein, requires a406

username and password obtained through the GCPEx Operations Portal. 407

408

Summary and Outlook409

The GCPEx collected a unique and valuable data set. The dataset consists of 25 events 410

during the 6 week field project consisting of 3 mixed precipitation events; 2 rain events; 18 snow 411

events and 2 clear air calibration events. Aircraft sampling coordination during the experiment 412

was excellent. There were 6 events sampled with 2 aircraft, and 3 events with 3 aircraft.  In all, 413

the DC-8 flew fourteen, UND Citation ten, and the Convair-580 six missions, respectively. The 414

data collection strategy was designed to sample the column above a typical satellite pixel. Data 415

to address shortcomings in GPM precipitation algorithms have been collected. Also, the 416

information serves as a testbed for the development of ground radar dual polarization-based 417

precipitation type and rate algorithms (Schuur et al. 2012). The United States NEXRAD radar 418

network is completely dual polarized and the Canadian radar network has its dual polarization 419

upgrade well underway. These radars are essential in network validation that is part of the GPM 420

GV program. 421

Events 6, 8, and 20 detailed herein illustrate the challenges in snowfall estimation by 422

radar, be it ground-based or space-based. Not surprisingly, the relationship between radar 423

reflectivity and snowfall rate is non-unique as shown in Figs 4, 6, 9 where reflectivities and TBs 424

are under constrained for different snow cases. Multi-parameter (dual frequency, dual 425

polarization, etc.) methods are required to be able to relate changes in the microphysical 426

character of the snow to measureable parameters from which precipitation estimates can be 427

based. For GPM, these include algorithms that rely on dual frequency radar measurements, 428

multi-frequency passive radiometer observations, or a combination of radar and radiometer 429
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measurements. The analysis of GCPEx data is to be carried out in way that allows developers to 430

test the assumptions inherent in the algorithms. The data are also portrayed in a manner that 431

allows for uncertainty estimates in the algorithm to be meaningfully derived.  432

It is anticipated that the GCPEX dataset will satisfy the majority of GPM falling snow 433

retrieval algorithm validation objectives originally set forward for the experiment. These 3D 434

datasets are suitable for conducting observational and modeling-based studies of bulk/particle 435

scale snow microphysical and scattering properties observed at the ground, through the 436

atmospheric column, and at high altitudes as observed from the vantage point of remote sensing 437

instrumentation deployed on the GPM Core Observatory.  Collectively a strong emphasis is 438

placed on characterizing GPM falling snow algorithm detectability limits for both the GPM DPR 439

and GPM Microwave Imager (GMI) instruments as related to cloud physical processes, 440

intervening cloud environment parameters, and land surface properties. Since GPM wasn’t in 441

orbit at the time of this field campaign one cannot directly compare GPM snow retrievals to the 442

measurements made during GCPEx. However, the field campaign did establish the usefulness of 443

the Pluvio gauges as a validating tool and future comparisons against the satellite products over a 444

range of falling snow rates using these gauges is now possible. The signatures of light snow rates 445

in reflectivities and brightness temperature in events 6 and 20 (27 January 2012 and 24 February 446

2012) were favorably evaluated against snow rate thresholds of detection as compared to 447

theoretical studies (Skofronick-Jackson et al, 2013, Munchak and Skofronick-Jackson, 2013).  448

Post-launch GPM algorithm refinement and snowfall validation work is currently underway; just 449

months after GPM’s launch. In addition, during the winter of 2015-2016 GPM will conduct a 450

field campaign in the Olympic Mountain range to measure both rain and snow.451

452
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471
472

Sidebar 1: Passive-active measurements of precipitation.   473

Spaceborne precipitation retrievals typically take the form of passive microwave 474

radiometer retrievals (using brightness temperatures and polarizations at various frequencies), 475

radar (active) retrievals, or combined retrievals, which use both radiometer and radar data.  In the 476
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passive microwave, liquid hydrometeors (rain, cloud water) emit microwave radiation into the 477

field of view, particularly at low frequencies (<40 GHz), whereas ice (snow, cloud, graupel, hail)478

scatters the Earth’s microwave radiation out of the downlooking sensor’s field of view, 479

especially at high frequencies (>40 GHz).  The amount of scattering and the polarization of the 480

wave as viewed by the radiometer depend on the number, size, shape, and degree of melting of 481

the hydrometeors. In addition, the emission of microwave radiation by the surface, which is 482

highly variable over land, depends on the surface type (and surface snow can appear similar to 483

falling snow at several passive microwave channels).  These hydrometeor and surface passive 484

microwave characteristics are strongly wavelength- and polarization-dependent.  At radar 485

wavelengths available to satellite-based radars, attenuation (absorption) and non-Rayleigh 486

scattering by relatively large particles (compared to the wavelength), complex-shaped ice 487

hydrometeors and snow aggregates, and melting particles are not well-characterized at present. 488

The combination of the Rayleigh scattering at Ku-band and non-Rayleigh scattering at Ka-band 489

leads to a difference in reflectivity termed dual frequency ratio (DFR).  DFR from radars such as 490

the GPM DPR can be exploited to retrieve characteristics of the particle size distribution if the 491

scattering properties of the precipitation are known. Radar and radiometer data collected by 492

satellite simulator aircraft in GPM field campaigns, in concert with in situ bulk water and ice as 493

well as particle imaging measurements on the ground and on microphysics aircraft, will help 494

characterize the microwave properties of hydrometeors and the surface for the validation of 495

falling snow retrievals. 496

497
Sidebar 2: GCPEx field campaign measurements can help answer:  498

What is the minimum snow rate that can be detected from spaceborne instruments under 499

various snow and surface characteristics? 500
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How well can these sensors discriminate falling snow from rain or clear air? 501

Can the relationships between the physical properties of falling snow and its radiative 502

properties be parameterized? 503

What are the sources of variability and error in falling snow in situ measurements and 504

remotely sensed retrievals?505

506
507

Acronym List 508
509

ADMIRARI  Advanced Microwave Radiometer for Rain Identification 510
AGL   Above Ground Level 511
AMSR-E   Advanced Microwave Scanning Radiometer for Earth Observing System 512
APR-2   Airborne Second Generation Precipitation Radar 513
C   Surface frontal passage events 514
CALIPSO  Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 515
CARE   Centre for Atmospheric Research Experiments 516
C/CIP   Cloud Imaging Probe 517
CCN   Cloud Condensation Nuclei 518
CCP   Cloud Combination Probe 519
CDP   Cloud Droplet spectra 520
CN   Condensation Nuclei 521
CORALNET  The Canadian Observational Research Aerosol Lidar Network 522
CoReH2O  Cold Regions Hydrology high-resolution Observatory 523
CPI   Cloud Particle Imager 524
CPSD   Cloud Particle Spectrometer with Depolarization 525
CRM/LSM  Cloud Resolving Model/Land Surface Model 526
CoSMIR   Conically-Scanning Millimeterwave Imaging Radiometer 527
CSA   Canadian Space Agency 528
CW   Cloud Water Content 529
C3VP   Canadian CloudSat/CALIPSO Validation Programme 530
2DC   2 Dimensional optical array probe 531
dB   Decibels 532
dBZ   Radar reflectivity in units of dB 533
DFIR   Double Fence International Reference  534
DFR   Dual Frequency Ratio 535
DPR   Dual-frequency Precipitation Radar 536
DSD   Drop Size Distribution 537
D3R   Dual-frequency dual-polarized Doppler Radar 538
EC   Environment Canada 539
/ sfc   Surface emission and/or backscatter cross section 540

F   Frontal low disturbance events 541



23

FSSP   Forward Scattering Spectrometer Probe 542
4D   Four-dimensional 543
GCPEx   Global Precipitation Measurement mission Cold Season Precipitation 544

Experiment 545
GHRC   Global Hydrology Resource Center 546
GHz   Gigahertz 547
GMI   GPM Microwave Imager 548
GPM   Global Precipitation Measurement 549
GV   Ground Validation 550
HVPS   High-Volume Particle Spectrometer 551
HyDRO  Hydrology 552
IW   Ice Water Content 553
JCET   Joint Center for Earth Systems Technology 554
L   Lake Huron/Georgian Bay events 555
LDR   Linear Depolarization Ratio 556
LWE   Liquid Water Equivalent 557
MHz   Megahertz 558
MRR   Micro Rain Radar 559
MSL   Mean Sea Level 560
NASA   National Aeronautics and Space Administration 561
NAWX   NRC Airborne W and X-band radar 562
NCAR   National Center for Atmospheric Research 563
NEXRAD  Next-Generation Radar 564
NMQ   National Mosaic Quantitative precipitation estimates 565
NOAA   National Oceanic and Atmospheric Administration 566
NRC   National Research Council 567
NWS   National Weather Service 568
NWP   Numerical Weather Prediction 569
OAP-2G-P  Optical Array Probe 2 Dimensional Gray scale Precipitation 570
OTT   Parsivel manufacturer (www.ott.com) 571

DP   Differential Propagation phase 572
PARSIVEL  Particle Size and Velocity [OTT Laser optical disdrometer] 573
PID   Particle IDentification 574
PMS   Particle Measurement Systems (company) 575
PMW   Passive MicroWave measurements 576
POSS   Precipitation Occurrence Sensor System 577
PPI   Plan Position Indicator 578
PSD   Particle Size Distribution measured at the surface (SFC) or column (col) 579
PVI   Precipitation Video Imager 580

   Density (b: bulk) or (p: particle) 581
Qsoil   Soil Moisture 582
Qv   Water Vapor 583
R   Rain 584
RH   Relative Humidity 585
RHI   Range Height Indicator 586
Ri   Ridge events 587



24

RUC   Rapid Update Cycle 588
S   Snow 589
SAR   Synthetic Aperture Radar 590
SWE   Snow Water Equivalent 591
TB   Microwave Brightness Temperature  592
TB-IWP   Brightness Temperature - Ice Water Path 593
TECO   Technical Conference on Meteorological and Environmental Instruments 594

and Methods of Observations 595
TPS   Total Precipitation Sensor [TPS-3100 Hot Plate] 596
TWc   Total Water Content in Cloud 597
U   Distinct surface low events 598
UND   University of North Dakota 599
UTC   Coordinated Universal Time 600
V-H   Vertical – Horizontal 601
Vr   Radial Velocity 602
W   Spectral Width 603
WMO   World Meteorological Organization 604
Ze   Equivalent Radar Reflectivity 605
ZDFR   Dual Frequency Ratio [dB] (also ZDR) 606
Ze-SR   Reflectivity – Snow Rate 607

608
609
610
611
612
613
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Table 1:   Retrieval components, assumptions, or issues (leftmost column) along with needed GV 787

measurements to be used to develop and improve falling snow detection and estimation. 788

789

790

791
792

Algorithm component,
assumptions, or issue
addressed for GCPEx

Applicable Measured and/or Diagnosed Parameters

Z Z 
DFR S PSD 

sfc 
PSD 
col PID �b �p T Qv Qsoil 

CN 
CCN TWc CW IW ��sfc TB 

Path integrated attenuation approach(es)

Hydrometeor Identification (3D)
Bulk snow particle habit properties

Bulk snow particle size distributions

Detection thresholds for falling snow
Dual-Frequency snow detection
Near surface rain estimate/rain profile
Sub-pixel DSD and snow variability (correlation,
errors, beam filling)
DSD profile
Column/Land surface emission
Rain/snow discrimination
Ice particle vs. volume extinction
Cloud water profiles/ice water profiles
Ice process, scattering, and snowfall
Regime controls on precipitation process
DSD Gamma-Triplet correlations
CRM/LSM Satellite Simulator Physics
Land surface emission
Coupling upper cloud ice processes & surface
snow rates/detection
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Table 2: Instrumentation and measurements for GCPEx. The parameters measured link to the 793

needs of algorithm developers indicated in Table 1.  794

795

796
797

798

799

800

GCPEx GV measurements Applicable Measured and/or Diagnosed Parameters
Instruments Measurable Z Z 

DFR R PSD
sfc 

PSD
col PID �b �p T Qv Qsoil 

CN,
CCN TWc CW IW ��sfc TB 

Ground
Radar and

Profiler

C-band Dual-Pol Z, Vr, W, ZDR, � DP,
�hv

x x x x x

D3R Ka/Ku Dual-Pol Z, Vr, DFR, W, ZDR,
� DP, �hv, LDR x x x x x x

X-band profiling Z, Vr, W x x x

MRR2 profiling Z, Vr, W x x x x x

W-band profiling Spectra (Z, Vr) x x x x x x x

Dual freq. LIDAR � x

Ground
Gauge and
Radiometer

2DVD/Parsivel/POSS DSD, shape, fall spd x x x x
Pluvio2 SWE Gauges SWE Rate x
TPS 3100 Hot Plate SWE Rate, Wind, T x x
Soundings P, T, RH, wind x x
ADMIRARI
Radiometer, MRR

TB 19, 37
Z 24 GHz x x x

EC TP3000 Radiometer TB 23-59 GHz x x x
EC Ground-Staring
Radiometer TB 10-89 GHz x x

EC Surface Met. Inst. P,T,RH, wind x x

Aircraft

APR2 (Ka/Ku Radar) Z, Vr, DFR, W,
LDR x x x x x x

CoSMIR (Radiometer) TB 50, 89,
165.5,183 H/V x x x

CPI/2D-C/CIP, HVPS Precip. Image x x x x x x x x
CDP Cloud Water/Spectra x x
Nevzorov Total water x x x x
King Probe Cloud water bulk x

Rosemount Icing Probe Supercooled water x

Aircraft T/RH/Gust Air T, RH, wind x x
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Table 3: A summary of the ground-based measurements, associated instrumentation and 801
appropriate references. 802

803

Instrument # Purpose and (Site 
Distribution)

Provider; Reference

C-band Dual Pol. Radar 1 4-D Precipitation (King 
City) 

Boodoo et al. (2010); 

D3R Ka/Ku, Dual Pol Radar 1 4-D Precipitation (CARE) NASA; Chandrasekar et al. 
(2012)

W-band vertically pointing 1 Cloud/hydrometeor profiles 
(CARE)

McGill U.; 
http://www.radar.mcgill.ca/f

acilities/vertix.html;

http://www.clouds.mcgill.ca
/facilities.html

X-band vertically pointing 1 Hydrometeor profiles 
(CARE)

McGill U.; 
http://www.radar.mcgill.ca/f

acilities/vertix.html;

http://www.clouds.mcgill.ca
/facilities.html

Micro Rain Radar (24.2 
GHz)

5 PSD and precipitation profile 
(1/site)

NASA/EC; Kneifel et al. 
(2011)

ADMIRARI Radiometer + 
MRR (19-37 GHz)

1 Cloud/liquid water retrievals 
(CARE)

U. Bonn/Leicester; 
Saavedra et al. (2011)

Ground-Stare Radiometer 
(1.4, 19, 37, 89 GHz)

1 SWE snowpack (CARE) Derksen (2012)

Dual Pol. Radiometer (89-
150 GHz)

1 Scanning/profiling water 
content (CARE)

U. Cologne

2D Video Disdrometer 5 PSD/precip rate/variability 
(1/site)

NASA; Huang et al. (2010), 
Newman et al. (2009)

OTT Parsivel Disdrometer 10 PSD/precip Rate/variability 
(2/site)

NASA; Battaglia et al. 
(2010), Tokay et al. (2014)

POSS 5 PSD/precip rate (1/site, 
except Mortons)

Sheppard and Joe (2008)

Precipitation Video Imager 3 PSD/Image (CARE, 
Huronia, Steamshow)

NASA, Newman et al.
(2009)

Snow Camera 1 High res. imagery (CARE) U. Manitoba

Pluvio-2 Weighing Gauge 
(200, 400)

9 SWE accum/rate (~2/site) NASA; Rasmussen et al. 
(2011)

TPS 3100 Hot Plate 5 SWE accum/rate (1/site) NASA; Rasmussen et al. 
(2011)
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Snow LWE system (L-band 
+ sonic)

5 SWE accum/rate (~1/site) NASA (Duke U.)

Rawinsonde (soundings) 1 T/P/RH profiles (CARE) EC; Hudak et al. 2011
Surface Meteorology 5 T/RH/P/Winds (1/site) http://gpm.nsstc.nasa.gov/gc

pex/
High Frequency Radiometer 1 Ice Water Path (CARE) Löhnert et al. (2011)

Dual Channel lidar 1 Cloud and Aerosol 
backscatter profiles (CARE)

Strawbridge et al. (2008)

Snow Particle photography 1 Precipitation particles 
morphology (CARE)

Theriault et al. (2012)

Ground staring radiometers, 
snow course mapping

1 snow depth, density, 
stratigraphy (CARE)

Derksen et al. 2012

Wind Profiler (50 MHz)

Wind Profiler (915 MHz )

1

1

Wind profiles and turbulence

Wind profiles and turbulence
(CARE)

Hocking et al. (2001)

EC

804

805

Table 4: A summary of the secondary site locations.806

Name Location with respect 
to CARE site Latitude Longitude

Steam Show 
Fairgrounds 7.8 km southeast 44°10'48.30"N 79°43'7.78"W

SkyDive Toronto 11.2 km east 44°14'14.20"N 79°38'26.96"W
"Sheltered valley" 

rural residence 
(Morton's)

12.6 km west 44°10'35.29"N 79°55'9.13"W

Huronia Airport 52 km northwest 44°41'24.26"N 79°55'51.94"W
807
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Table 5: A summary of the aircraft platforms, their instrumentation and references.  808

Instrumentation Description Reference

NASA DC-8
APR-2 (Active) 13.4, 35.6 GHz  (H, V) Tanelli et al. (2006)

CoSMIR (Passive) 
H+V

50, 89, 165.5, 183.3+/-1, 183.3+/-3,
183.3+/-7 GHz

Wang et al. (2013)

UND Citation
Optical Array 

Probes: 2DC, CIP, 
HVPS-3, CPI, 

CDP

particle sizes from  2 μm to 2 cm http://cumulus.atmos.und.edu/

State parameters temperature, dewpoint,  pressure, 3D 
winds

http://cumulus.atmos.und.edu/

Bulk 
microphysics:

Nevzorov, King, 
Rosemount Probes

liquid water and total water content http://cumulus.atmos.und.edu/

NRC Convair-580
Optical Array and 
associated Probes:

PMS 2D-C/P, 
FSSP, OAP-2G-P, 

CCP, CPSD

particle sizes from 25 μm to 6 mm Wolde et al. (2010);

http://www.nawx.nrc.gc.ca/convai
r.html

State parameters temperature, dewpoint,  pressure, 3D 
winds

http://www.nawx.nrc.gc.ca/index
2.html

Bulk 
microphysics:

Nevzorov, King, 
Rosemount Probes

liquid water and total water content http://www.nawx.nrc.gc.ca/index
2.html

NAWX radar W and X-band dual polarization radar Wolde and Pazmany, 2005

809

810

811
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Table 6: A summary of the events during the field project. See text for an explanation. Note that 812
the final aircraft flight hours were used during the 25 February 2012 flights and hence no flights 813

occurred after that date. 814

Event 
No.

Start (UTC) End (UTC) SWE 
Amount

(mm)

Pcpn 
Type

Synoptic 
Context

Aircraft

DC-8 UND Convair

1 17/1/2012/12 18/1/2012/13 11.1 R/S F

2 19/1/2012/15 20/1/2012/04 1.4 S F x x

3 21/1/2012/06 21/1/2012/23 0.7 S L x

4 23/1/2012/07 24/1/2012/00 4 R C

5 24/1/2012/04 25/1/2012/03 0.7 S C

6 27/1/2012/01 27/1/2012/20 14.2 R/S C x x

7 28/1/2012/13 29/1/2012/12 1.9 S U x x

8 30/1/2012/20 31/1/2012/04 3.5 S U x x

9 1/2/2012/19 2/2/2012/22 0 None U x

10 4/2/2012/15 4/2/2012/18 0.1 None Ri x

11 7/2/2012/02 7/2/2012/12 0.4 S L x

12 10/2/2012/19 11/2/2012/12 3.2 S F x

13 11/2/2012/21 12/2/2012/14 1.8 S L x x

14 12/2/2012/16 13/2/2012/02 0.9 S L x x x

15 14/2/2012/08 15/2/2012/14 2.8 S U x

16 16/2/2012/10 16/2/2012/22 1.3 R/S F x x x

17 18/2/2012/10 18/2/2012/20 13.9 S C x

18 20/2/2012/15 20/2/2012/17 0 None Ri x

19 21/2/2012/18 22/2/2012/07 0.3 S U x x

20 24/2/2012/11 25/2/2012/00 8.4 S C x x x
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21 25/2/2012/01 25/2/2012/17 12.1 S L x

22 27/2/2012/20 28/2/2012/10 0.4 S U

23 29/2/2012/12 1/3/2012/10 12.7 S C

24 3/3/2012/01 3/3/2012/10 4.7 R F

25 4/3/2012/00 4/3/2012/13 1.5 S F
815

816

817

818

819

820

821

822
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Figure 1: An overview of the experimental setting. Inset: Location in Ontario, Canada near the 823

Great Lakes. The three aircraft (inset) were staged out of Bangor, Maine (DC-8), Muskoka, 824

Ontario (UND Citation), and Ottawa, Ontario (Convair-580). The main ground site was the EC 825

Centre for Atmospheric Research Experiments (CARE) with three additional sites within 15 km 826

(Mortons to the west, Steamshow to the south, and Skydive to the east). A fourth site (Huronia) 827

was located about 90 km to the north close to Georgian Bay.  The EC dual polarization C-band 828

radar (King City radar) is located about 34 km to south-southeast of CARE.  The cities of 829

Toronto and Barrie, Ontario, Canada are noted. 830

831

Figure 2: a) The project-long precipitation accumulation record for the manual DFIR832

measurements (black) and the Pluvio precipitation gauge (solid red). The dashed red line is the 833

accumulation during the 25 events. The vertical shading indicates the events sampled with 834

aircraft instruments (see Table 6); b) The derived 10 min averaged precipitation rates at CARE 835

from the Pluvio gauge at CARE. 836

837

Figure 3: a) The project wide ground radar derived precipitation accumulation for January 30, 838

2012 in snow water equivalent. The numbers indicate the measured amounts of the 5 surface 839

sites. The boxes indicate pre-defined flight zones. b) The time history of the accumulation at 840

Huronia from the radar derived amounts (red) and the Pluvio gauge (black). The vertical shading 841

indicates the project intensive observing events; yellow shading indicates the involvement of the 842

research aircraft. 843
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Figure 4: For the 27 January case: (a) Plan view of 2:32 UTC 0.8 degree King City C-band radar 844

reflectivity PPI scan (dBZ), with the location of the CARE site and the DC-8 flight track 845

overlaid. Panels (b-e) are from the DC-8 instrumentation centered at CARE at 2:30 UTC, 846

matched along the radar cross sections in panels (a): (b) APR-2 Ku-band reflectivity (dBZ), (c)847

APR-2 Ku-Ka dual frequency ratio (DFR, dB), (d) CoSMIR cross-track scan brightness 848

temperatures at the channels indicated in the legend, and (e) CoSMIR conical scan polarization 849

difference at 89 GHz).  In panels (b-e) the horizontal axis is distance in km from the CARE site 850

along the track.851

852

853

Figure 5: January 27 UND Citation aircraft spiral maneuver over CARE.  Plotted including (a) 854

Nevzorov Total Water Content measurement, (b) King probe liquid water content (black dot 855

shows location of CARE facility, 44.23N -79.78W), and (c) Particle size distributions (m-3 mm-1) 856

measured by the combination of CIP and HVPS-3 probes (contoured) with calculation of mean 857

diameter D0 (pink line).  858

859

860

Figure 6: For the 30 January case: (a) Plan view of 0:31 UTC 0.8 degree King City C-band radar 861

reflectivity PPI scan (dBZ), with the location of the CARE site and the DC-8 flight track 862

overlaid. Panels (b-e) are from the DC-8 instrumentation from centered at CARE at 0:32 UTC, 863

matched along the radar cross sections in panels (a): (b) APR-2 Ku-band reflectivity (dBZ), (c)864

APR-2 Ku-Ka dual frequency ratio (DFR, dB), (d) CoSMIR cross track scan brightness 865

temperatures at the channels indicated in the legend, and (e) CoSMIR conical scan polarization 866
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difference at 89 GHz. In panels (b-e) the horizontal axis is distance in km from the CARE site 867

along the track.868

869

870

Figure 7: As in Figure 5, but for the 30 January spiral.  Note that the surface precipitation type is 871

snow. 872

873

874

Figure 8: Crystal photographs taken by the University of Manitoba at 2330 30 January 2012 875

showing small (<3 mm diameter) irregular particles and aggregates at the surface.  Note the scale 876

at lower right; each box is 1 mm2 in area.877

878

879

Figure 9: For the 24 February 2012 case: (a) NMQ composite radar reflectivity, (b) DC-8 APR-2 880

Ku-band reflectivity, (c) Ku-Ka band dual frequency ratio, (d) CoSMIR cross-track brightness 881

temperatures (Tb), and (e) CoSMIR 89 and 165 GHz polarization difference (V-H). 882

883

884
885
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886

Figure 1: An overview of the experimental setting. Inset: Location in Ontario, Canada near the 887
Great Lakes. The three aircraft (inset) were staged out of Bangor, Maine (DC-8), Muskoka, 888
Ontario (UND Citation), and Ottawa, Ontario (Convair-580). The main ground site was the EC 889
Centre for Atmospheric Research Experiments (CARE) with three additional sites within 15 km 890
(Mortons to the west, Steamshow to the south, and Skydive to the east). A fourth site (Huronia) 891
was located about 90 km to the north close to Georgian Bay.  The EC dual polarization C-band 892
radar (King City radar) is located about 34 km to south-southeast of CARE.  The cities of 893
Toronto and Barrie, Ontario, Canada are noted.894
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895

896

Figure 2: a) The project-long precipitation accumulation record for the manual DFIR 897
measurements (black) and the Pluvio precipitation gauge (solid red). The dashed red line is the 898
accumulation during the 25 events. The vertical shading indicates the events sampled with 899
aircraft instruments (see Table 6); b) The derived 10 min averaged precipitation rates at CARE 900
from the Pluvio gauge at CARE. The vertical shading indicates the project intensive observing 901
events; yellow shading indicates the involvement of the research aircraft.902

903

904
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905

906

907

Figure 3: a) The project wide ground radar derived precipitation accumulation for January 30, 908
2012 in snow water equivalent. The numbers indicate the measured amounts of the 5 surface 909
sites. The boxes indicate pre-defined flight zones. b) The time history of the accumulation at 910
Huronia from the radar derived amounts (red) and the Pluvio gauge (black). 911
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912

913

Figure 4: For the 27 January case: (a) Plan view of 2:32 UTC 0.8 degree King City C-band radar 914
reflectivity PPI scan (dBZ), with the location of the CARE site and the DC-8 flight track 915
overlaid. Panels (b-e) are from the DC-8 instrumentation centered at CARE at 2:30 UTC, 916
matched along the radar cross sections in panels (a): (b) APR-2 Ku-band reflectivity (dBZ), (c)917
APR-2 Ku-Ka dual frequency ratio (DFR, dB), (d) CoSMIR cross-track scan brightness 918
temperatures at the channels indicated in the legend, and (e) CoSMIR conical scan polarization 919
difference at 89 GHz).  In panels (b-e) the horizontal axis is distance in km from the CARE site 920
along the track.921

922

923

924

925

926

927
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928
929

Figure 5: January 27 UND Citation aircraft spiral maneuver over CARE.  Plotted including (a) 930
Nevzorov Total Water Content measurement, (b) King probe liquid water content (black dot 931
shows location of CARE facility, 44.23N -79.78W), and (c) Particle size distributions (m-3 mm-1) 932
measured by the combination of CIP and HVPS-3 probes (contoured) with calculation of mean 933
diameter D0 (pink line). 934

935

936
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937

938

939

940

941

Figure 6: For the 30 January case: (a) Plan view of 0:31 UTC 0.8 degree King City C-band radar 942
reflectivity PPI scan (dBZ), with the location of the CARE site and the DC-8 flight track 943
overlaid. Panels (b-e) are from the DC-8 instrumentation from centered at CARE at 0:32 UTC, 944
matched along the radar cross sections in panels (a): (b) APR-2 Ku-band reflectivity (dBZ), (c)945
APR-2 Ku-Ka dual frequency ratio (DFR, dB), (d) CoSMIR cross track scan brightness 946
temperatures at the channels indicated in the legend, and (e) CoSMIR conical scan polarization 947
difference at 89 GHz. In panels (b-e) the horizontal axis is distance in km from the CARE site 948
along the track.949

950
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951

952
953

Figure 7: As in Figure 5, but for the 30 January spiral.  Note that the surface precipitation type is 954

snow. 955

956
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957

958

Figure 8: Crystal photographs taken by the University of Manitoba at 2330 30 January 2012 959

showing small (<3 mm diameter) irregular particles and aggregates at the surface.  Note the scale 960

at lower right; each box is 1 mm2 in area.961

962
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 963
964

Figure 9: For the 24 February 2012 case: (a) NMQ composite radar reflectivity, (b) DC-8 APR-2 965
Ku-band reflectivity, (c) Ku-Ka band dual frequency ratio, (d) CoSMIR cross-track brightness 966
temperatures (Tb), and (de) CoSMIR 89 and 165 GHz polarization difference (V-H). 967
 968


