National Aeronautics and Space Administration

Fabrication of Turbine Disk Materials by Additive Manufacturing

Chantal Sudbrack¹, Quincy Bean², Ken Cooper², Robert Carter¹, S. Lee Semiatin³ and Tim Gabb¹

1. NASA Glenn Research Center, Cleveland, Ohio 2. NASA Marshall Space Flight Center, Huntsville, Alabama 3. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio

Motivation: Powder-bed additive manufacturing may offer geometric flexibility, microstructural control and eliminate legacy tooling

Polycrystalline Ni-based superalloy disks:

- Powder metallurgy (PM) processing develope cost & property advantages to cast-wrought
- · Powder cleanliness is critical to disk life [1]: screened for non-metallic inclusions
- High refractory content (i.e. Mo, Nb, Ta, W): more prone to thermal cracking than In718

e	d:	Layer 2) Melt	3) Lower Platform REPEAT Adapted from [2]							
	Process /parameters	Electron Beam Melting (EBM)	Selective Laser Melting (SLM)							
	Environment	Vacuum / He bleed	Ar or N ₂							
	Pre-heat Beam Passes	~10	None							
	Pre-heat Scan Speed	10 ⁴ mm/s	n/a							
	Melt Scan Speed	10 ² mm/s	10 ³ mm/s							
	Preheat Beam Current	25-30 mA	-							
	Melt Current or Energy	4-8 mA	100-350 W							
	Beam Configuration	Multiple beam	Single beam							
_	Powder Diameters	30–100 μm	10-50 μm							
	Table adapted from [3] <u>EBM</u> : faster build rates, elevated build temperatures, less									

contamination, minimal induced stress → important for disks SLM: Smoother finishes, fewer parameters for easier control

Alloy 10 [4] powder from Homogenous Metals: 10 kg of -170 mesh, sieved by hand to +500 mesh to start EBM trials

LSHR powder from Special Metals: 180 kg of -270 mesh, 24 hours ultrasonic sieve in cleanroom facility to +500 mesh

ICP: 2	Al	Со	Cr	Мо	Nb	Ni	Та	Ti	w	Zr	0	Traco
run avg.	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	ppm	Trace
Alloy 10 Mod N)	3.75	15.02	10.94	2.43	0.87	56.4	0.94	3.77	5.60	0.09	190	Fe, Si, C, B
LSHR	3.50	20.55	12.46	2.67	1.46	49.7	1.54	3.46	4.38	0.05	360	Fe, Si, C, B
o alloys similar in chemistry: LSHR had twice O pickup of Alloy 1												

 LSHR has wider melting Liquidus -°C $\Delta T \gamma$ '-formation DTA in He Solidus -°C range than Alloy 10 °C °C (Cooling) 5 °C/min. (Heating) (Heating) Alloy 10 1257 1339 82 1168 Liquidus temperatures LSHR 1240 1334 94 1127 are within 5 °C

Powder feedstocks show differences

Despite careful sieving, LSHR has more particles with fine-satellites, as well as partials, irregular shaped ones

5 LSHR DOE 1.4 925

DOE 1.5 LSHR

(I SHR Pla

10 30

925 10 30 25000 100

Initial LSHR SLM trials show promise

Varying melt beam energy, 12.7 mm diameter rods were fabricated at 600 mm/s Under melted About Right Over melted

Visually 160 W rod looked the best. Optical examination along the build direction. revealed evidence of thermal cracks for some conditions, but not all (e.g. 160 W).

Major findings and future directions

- LSHR powder, despite similarities, needed a lower EBM pre-heat temp. than Allov 10. Severe smoking was observed for LSHR in EBM trials. Smoking may result from fine satellite particles. New trials underway.
- Hand sieved Alloy 10 powder exhibited poor flow and did not rake well.
- LSHR SLM trials look promising. More characterization & trials are needed to assess thermal cracking and whether it can be averted.

References: [1] Kantzos et al., Superalloys 2004, p. 409. [2] Loeber et al., Proc Solid Freeform Fabrication, Austin TX (2011) p. 8. [3] Murr et al., J Mater Res Tech, 2012, 42. [4] Telesman et al., Superalloys 2004, p. 215. Acknowledgements: The authors would like to acknowledge Zach Jones (NASA MSFC) for SLM builds, Dr. Ryan DeHoff (Oak Ridge National Laboratory) for EBM guidance, Dereck Johnson (NASA GRC) for ICP chemical and DTA analysis, and support of the NASA GRC Center Innovation Fund.

Sinter ok. Smoke immediate

Over sintered bed (plate too hot). Smoke immediately

25000 80/100