

Meter Class Autonomous Telescope

Dr. Sue Lederer

National Aeronautics and Space Administration

Orbital Debris Program Office

NASA's Optical and IR Assets: MCAT, MODEST, and UKIRT

National Aeronautics and Space Administration

NASA/AFRL joint project

NASA

- Principal Investigator: Sue Lederer
- Project Management & Logistics: Lisa Pace
- ODPO Office, Gene Stansbery
- JETS contractor staff: Heather Cowardin, Brent Buckalew, James Frith

Air Force Research Laboratory (AFRL)

- AFRL Maui: Paul Kervin
- Schafer Corp: Hardware integration: Tom Glesne
- Pacific Defense Solutions, Integrity Applications Inc.: Daron Nishimoto, Riki Maeda,
- Air Force Nuclear Weapons Center (AFNWC):
 - Architectural contract

• Air Force 45th Space Wing

- Detachment 2 Ascension Auxiliary Airfield, Ascension Island
- Cape Canaveral Air Force Station, Andy Duce (POC)
 - Construction contract

Aeronautics and Space Administration

MCAT Location on Ascension Improves GEODSS Network Coverage

Ascension: views from ISS & from sea

Location of NASA MCAT

(7° 58' S; 14° 24' W ~350' Elevation; Google Earth Image)

AIII.

MCAT Timeline

onal Aeronautics and Space Administration

MCAT Construction

Nov-19| MCAT| 9

onal Aeronautics and Space Administration

ODPO/MCAT Goals (BIG PICTURE)

MCAT Goals:

Characterize the orbital debris risk to GEO satellites

Characterize the orbital debris environment in under-sampled orbits

Additional (nice to have) goal:

Share serendipitous observations with the Space Situational Awareness (SSA) and Near Earth Object (NEO) communities, or take dedicated observations requested when resources allow

onal Aeronautics and Space Administration

ODPO/MCAT Objectives (BIG PICTURE)

Primary:

Distribution Function (#, size, type) for **GEO-GTO**^{*} debris field Achieved via sweep of inertial volume near GEO altitudes spanning inclinations expanded by solar lunar perturbations (stable plane).

Secondary:

Debris type determination through multi-band (g'r'i'z' or BVRI) photometric or spectroscopic

Rapidly respond to break-up event - time evolution of cloud

Distribution Function (#, size, type) for **LEO-MEO**^{*} debris field extending to 0° inclination – achieved via static or orbit scan survey with subsequent tracking Fast tracking telescope/dome can easily track Low Inclination Leo Objects (LILO)

Tertiary:

SSA Coverage of Unique Longitude as contributing sensor of global sensor network – Supports Space Situational Awareness (SSA) activities

Receive target Hand-offs from other global sensors – better orbit determination

Simultaneous Radar and Optical observations – in depth assessment of debris properties

*GEO = Geosync; HEO = High Earth Orbit; GTO = Geo Transfer Orbit; LEO = Low Earth Orbit; MEO = Middle Earth Orbit

MCAT Performance at GEO

- Limiting magnitude seen by other telescopes around the world is dependent upon a variety of variables
 - Atmospheric stability (seeing)
 - Site conditions (extinction due to e.g. altitude, atmospheric aerosols)
 - Telescope through-put
 - Filter chosen
 - Telescope mirror quality
- Assume MCAT experiences:
 - 1.5" seeing on Ascension Island
 - Telescope encircled EE of 70%
 - → 18.9mag
 - → 13cm at GEO assuming
 0.175 albedo and very good atmospheric conditions

12

UKIRT

United Kingdom Infrared Telescope Mauna Kea, Hawaii

National Aeronautics and Space Administration

Orbital Debris Program Office

UKIRT

• NASA

- Principal Investigator: Sue Lederer
- ODPO Office, Gene Stansbery
- JETS contractor staff: James Frith, Heather Cowardin, Brent Buckalew

• Management

- Lockheed Martin contract
- U Arizona subcontract to manage day-to-day operations

- Thirty years of operations supporting advanced astronomical science.
 - UKIRT Infrared Deep Sky Survey (UKIDSS) Surveyed 7500 deg² of the Northern sky in the JHK bands down to 18.3 Mag in K-band

Orbital Debris

- 35% of observing time guaranteed for NASA's orbital debris studies

United Kingdom Infrared Telescope (UKIRT)

• UKIRT

- 3.8 meter telescope
- 0.4"/pixel, FOV: 0.8 sq. deg
- Optimized for near-mid infrared (0.8 25 μm)

• Location:

- Mauna Kea, Big Island, Hawaii
- 13,800 feet (4200m) above sea level
- Arguably the best ground based infrared observing location in the world

Applications of UKIRT

- Increases spectral and geographical coverage of GEO belt
- Instrumentation
 - Wide Field Camera (<u>WFCAM</u>) photometry, ZYJHK (0.8-2.4 µm)
 - Imager/spectrometers
 - <u>UIST</u> (1-5 μm)
 - <u>Michelle</u>: (8-25 μm)
- IR + Vis photometry + albedo
 - provides insight into material types and sizes
- Spectra
 - characterize surface material of orbital debris and targets of interest

Added photometric coverage of UKIRT

Added Geographical Coverage Provided By UKIRT

National Aeronautics and Space Administration

Targets for WFCAM Observations March, April 2014

MSG spacecraft and Baffle Cover

MSG Cooler Cover

National Aeronautics and Space Administration

MSG Baffle Cover & Cooler Cover

vs SPA

Orbital Debris Program Office

IDCSP Lightcurves & IRTF Spectra

All spectra are scaled to 1.0 at 1.6 microns. Abert?romby et al., 2009 Orbital Debris Program Office

SSN 25126 (AsiaSat) Spectra

- Normalized by solar analog to account for atmospheric lines
- Note the differing wavelength regimes (x-axis)

SSN 25126 (AsiaSat) Spectra

Scaled to 1.0 at 1.6µm Abercromby et al., 2009

- Normalized by solar analog to account for atmospheric lines
- Note the differing wavelength regimes (x-axis)

UKIRT

• Future work

- Full Near-IR 1-5 µm spectra from UIST
 - Similar features to the IRTF spectra are seen in some targets
- Mid-IR photometry and spectroscopy from Michelle (8-25 μm)
- More WFCam photometry
 - Debris from GEO: Titan, Ekran
 - Non-functional satellites
 - Rocket bodies

National Aeronautics and Space Administration

National Aeronautics and Space Administration

Backup Slides

