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PROGNOSTIC ANALYSIS SYSTEM AND 
	

a normalizing module, coupled to the window module, for 
METHODS OF OPERATION 

	
calculating a plurality of normalized sensor data sets from the 
plurality of sensor data sets based on the sensor data point 

CROSS REFERENCE TO RELATED 
	

window; a health level module, coupled to the normalizing 
APPLICATIONS 
	

5  module, for determining a health level for the physical system 
based on the plurality of normalized sensor data sets; and a 

The present application claims priority to U.S. Provisional 
	

prognosis module, coupled to the health level module, for 
Application No. 61/294,778, filed on Jan. 13, 2010, which is 	providing a prognosis for the physical system based on the 
incorporated herein by reference in its entirety. 	 to health level of the physical system. 

STATEMENT OF GOVERNMENT GRANT 
	

BRIEF DESCRIPTION OF DRAWINGS 

The invention described herein was made in the perfor- 	The accompanying drawings, which are incorporated into 
mance of work under a NASA contract, and is subject to the 	and constitute a part of this specification, illustrate one or 
provisions of Public Law 96-517 (35 USC 202) in which the 15  more embodiments of the present disclosure and, together 
Contractor has elected to retain title. 	 with the description of example embodiments, serve to 

explain the principles and implementations of the disclosure. 
FIELD 
	

FIG. 1 shows an exemplary prognostic analysis system 
(100). 

The present disclosure relates to prognostic analysis. In 20 	FIG. 2 shows the health level trend of a system as deter- 
particular, it relates to a prognostic analysis system for the 	mined by an exemplary prognostic analysis system. 
health analysis of physical systems applicable to mechanical, 	FIG. 3 shows the health level trend of two systems as 
electrical, chemical and optical systems. 	 determined by an exemplary prognostic analysis system, 

showing similar end-of-life health levels. 
BACKGROUND 
	

25  FIG. 4 shows the health level trend of three simulated 
systems indicating health level trends for purely random sen- 

Prognostics is the process of predicting system health and 	sor data and random sensor data with known decrease in 
system failure. The word "prognostics" is similar to "diag- 	performance with time trends. 
nostics", in that both refer to identification of a failure mode 	FIG. 5 shows the health level trend of a system wherein the 
or a failed component responsible for abnormal behavior. 30 sensor data is analyzed with time moving forward and 
Diagnostics typically occurs after the failure, or symptoms of 	reverse. FIG. 5 shows that the health level trend is irreversible. 
failure, have already occurred (also sometimes called "fault 

	
FIG. 6 shows the health level trend of a physical system 

isolation"). Prognostics differs from diagnostics at least in 	with simulated repair. 
that prognostics determines what failure mode will likely 	FIG. 7 shows a flow chart of an exemplary method of 
occur in the future, or what component is starting to fail. 	35  prognostic analysis. 

An aspect of prognostics is estimation of a system's life 
cycle and its remaining life. This allows the system user time 

	
APPENDIX 

to prepare and possibly prevent system failures. However, the 
prognosis of the life cycle of a system is difficult. Systems 

	
Appendix 1, an exemplary realization of a possible embodi- 

(e.g., turbofans) of the exact same build (e.g., identical brand/ 40 ment of the steps of the method according to the present 
model), can have different life-cycles. Often, one turbofan 

	
disclosure, is enclosed herewith and forms integral parts of 

can last more than twice as long as another turbofan. This can 	the specification of the present application. 
make life-cycle prediction difficult because the life cycle of a 
physical system is not just a function of time. 	 DETAILED DESCRIPTION 

45 

SUMMARY 
	

Current art in the area of prognostic analysis typically 
require prior knowledge of failure mechanisms typically 

According to a first aspect, a method of prognostic analysis 
	

learned by destructive analysis. The analysis typically con- 
is provided, the method comprising: providing a physical 

	
sists of 1) learning failure mechanism or mode by destructive 

system; providing a plurality of sensors for the physical sys-  5o analysis, 2) simulating the failure mechanism or mode and 
tem for sensing a physical status of the physical system; 	extracting a feature indicating the failure mechanism to gain 
acquiring a sensor data set from each sensor, each sensor data 	a time map of how that feature changes before and during the 
set comprising one or more sensor data points; configuring a 

	
failure, and 3) building a sensor to specifically trace the fea- 

sensor data point window for the plurality of sensor data sets; 	ture to predict the onset of the failure mechanism by compari- 
calculating a plurality of normalized sensor data sets from the 55 son to the time map. 
plurality of sensor data sets based on the sensor data point 

	
For example, for a car braking system, the failure mecha- 

window; determining a health level for the physical system as 	nism can be metal clamp of the brake pad coming in contact 
a function of the plurality of normalized sensor data sets; and 

	
with the rotor due to wear-out of the brake pad and resulting 

providing a prognosis for the physical system based on the 
	

in deep scratches in the rotor and the brake to no longer 
health level of the physical system. 	 60 function within specifications. This would be step 1) where 

According to a second aspect, a prognostic analysis system 	the failure mode or mechanism is identified by examining the 
is provided, the system comprising: a sensor module, com- 	failure of a system (e.g. destructive analysis). Step 2) can be 
prising a plurality of sensors, for sensing a physical status of 

	
a wear test of brake pad to various thicknesses to determine 

a physical system; a data module, coupled to the sensor mod- 	the minimum average thickness of the brake pad present 
ule, for acquiring a sensor data set from each sensor; a win-  65 before damage is expected, and extracting the brake pad 
dow module, coupled to the data module, for configuring a 	thickness as a diagnostic point as a feature to monitor. Step 3) 
sensor data point window for the plurality of sensor data sets; 	would be to install a brake pad thickness monitor, which can 
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be a wire that triggers a warning light when the shoe thickness 
reaches a pre-determined threshold thickness which is greater 
than the minimum average thickness where damage is 
expected. 

In what follows, a prognostic analysis method for systems 
is described in accordance with various embodiments of the 
present disclosure. Specifically, Applicants describe a 
method for prognostic analysis which can result in a measure 
of system health with improved accuracy and repeatability. 
The method for prognostic analysis disclosed in the present 
application utilizes a statistical approach and requires no 
prior destructive analysis of the system. Applicants' approach 
applies information theory techniques to sensor data to deter-
mine when a repair, maintenance or replacement is expected. 
This approach is tested on a benchmark dataset based on 
performance sensors for aircraft turbofans, the turbofanbeing 
a type of aircraft jet engine based around a gas turbine engine. 
However, the approach can be applicable to any physical 
system with mechanical, electrical, chemical or optical com-
ponents. 

Traditionally sensors are typically treated as sources of 
physical operating information for a system (e.g. tempera-
ture, pressure). The method of the present disclosure applies 
information theory techniques to extract underlying informa-
tion in the sets of ergodic (physical) sensor data. The infor-
mation extracted is dependent on how the sensor data points 
vary individually in comparison to the total variance of the 
sensor data set. Thus, the method uses sensor data and 
extracts unexpected information for which they were not 
originally intended. The unexpected information is normal-
ized and shown in the following as a metric of system health 
or health level. 
Use of Information Theory 

Information theory was invented by Claude Shannon. 
Shannon showed that the information in a formal communi-
cation system is: 

H(x) _ — , p(x;)lnp(x;) 

Here, H is the information, p is the probability and x is a 
particular information event. Note that this measure is the 
same measure as the entropy measure of Gibbs and Boltz-
mann. For that reason, Shannon's information measure is 
often referred to as "entropy." 

This entropy measure can be generalized. For example, 
Shannon assumed that the total entropy of a system is equal to 
the expected value of the parts of a system. However, this 
assumption of additivity need not be true. Instead an entropy 
measure can be sub-additive or super-additive. That possibil-
ity is quantified in an entropy measure proposed by the physi-
cist, Constantino Tsallis: 

1 
HT(x) = 	1— EP9 (x;) q-1 

Here, q is a parameter. In the limit that q goes to 1, this 
measure becomes the standard Shannon measure. 

Information theory is a theory designed to describe formal 
communication systems, for example, systems like a com-
puter or Morse code which were specifically engineered to 
transmit information. However, many physical systems 
appear to contain information even though they weren't spe- 

4 
cifically engineered for that purpose. The brain appears to 
process information, but is not a product of human engineer-
ing. Similarly, light reflecting off of an object such as a tree 
contains information but was not engineered for that purpose. 

5  Even things that are engineered, such as the sensor data from 
a turbofan, may contain information which was unintentional 
to their original purpose. 

Traditional information theory was not designed to exam-
ine things with unknown information signals. However, there 

io is a way to measure the information in a single signal (Sned-
don, 2007, PhysicaA, 386(1), pp. 101-118, incorporated in its 
entirety by reference). Sneddon showed that if information in 
an electrical signal is optimally encoded (in terms of energy/ 

15 frequency tradeoff), then the Tsallis entropy (for q=2) of the 
information in the signal is: 

Y ~ ~ WirPon 

se ro.s  
40 	 H=1— 	z 

NT-qdd S,n 

This equation is similar to the earlier equation except that it 
sums over the variance within different sensors, and it is used 

45 to calculate the health factor in the present application. 
Applicants note that the use of the information metric for 

system health leads to an unexpected result in comparison to 
the use of the information metric in the typical contexts. In the 
typical application context of information metric, system 

5o degradation is characterized by a decrease in the information 
metric. For example, as communication systems degrade, the 
signal-to-noise ratio declines, and correspondingly the infor-
mation content of the signal decreases. 

In the context of system health, however, declining system 
55 health can indicate that the information content increases 

rather than decreases. This is an unexpected result, but not a 
contradiction because Applicants are not measuring the sys- 
tem output, as in the communication example above, but 
instead measuring the information in indicators of system 

60 performance. When a physical system is in good working 
order, a momentary shift in sensor data is simply a "glitch", 
and the system returns to normal, remains linear, and does not 
propagate the event into another part of the physical system. 
In other words, when healthy, readings that cause a momen- 

65 tart' shift in sensor data are sporadic and are essentially ran- 
dom noise, containing no information. This type of behavior 
is also know as a "deadband" of a signal where the deadband 

HT (X) = k l — 
20 	 NT ,Toral 

Here, CT  i2 is the variance of the voltage within each informa- 
tion signal (defined by discontinuities and critical points in 

25 the signal), n, is the total number of data points (directly 
proportional to the time) in this variance, C,2

T tai  is the total 
variance of the signal voltage, and N T  is the total amount of 
data points in the signal (also directly proportional to the total 
time). k is an arbitrary positive constant. 

30 	This equation holds true for a single signal. However, 
Applicants wish to measure the information encoded by an 
ensemble of signals (e.g., the data coming from turbofan 
sensors). The applicants hypothesize that a similar equation 

35 holds true for the information encoded in an ensemble of 
signals: 
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6 
is a small range of variation around the average operating 

	
In fact, the sensor data set (124) can be derived results from 

point that does not indicate any actual physical change in the 
	

direct measurements by a sensor (112). For example, time to 
system. 	 reach an operating temperature which can be derived from the 

On the other hand, when the physical system is degraded, 	operating temperature data, or power at first resonance fre- 
faulty indications become more frequent and correlated with 5 quency which can be derived from accelerometer vibration 
other errant measurements since failure physics creates new 

	
data. The sensor data set (124) also does not require fixed time 

mechanisms within the physical system even if no individual 
	

interval between successive data points of the sensor data set 
sensor indicates a significant shift in operating point. In other 

	
(124) to be usable for the prognostic analysis system (100). 

words, when the physical system begins to fail, problem 
	

However, time correlation between the data points in the 
indicators become predictable, and this leads to an increase in io sensor data set (124) from different sensors (112) for the 
the information content of the performance sensors. 	 physical system (102) is useful. For example, data point 1 

Prognostic analysis utilizing information theory disclosed 
	

from each of the sensor data sets (124)1 through n, for n sets 
in the present application does not require a detailed failure 	of sensor data (124) from n sensors (112) can be collected at 
mechanism for the physical system to be known or time 	or about the same time for the prognostic analysis system 
mapped. However, a general failure mode and effects analysis 15 (100) to be effective. 
(FMEA), or failure mode, effect and criticality analysis 

	
In an exemplary embodiment, turbofan data is taken from 

(FMECA) of the system may be useful, where FMEA is a 	the 2008 Prognostics Challenge, which provided a standard 
bottom-up, inductive analytical method which may be per- 	data set for prognostic algorithm evaluation compiled by the 
formed at either the functional or piece-part level. FMECA 

	
IEEE Prognostics Society. These sensor data sets (124) con- 

extends FMEA by including a criticality analysis, which is 20 sist of returns from sensors (112) for 100 different turbofans 
used to chart the probability of failure modes against the 	as they undergo multiple operational cycles before failure. 
severity of their consequences. Applicants note that systems 

	
Each data record or data point is an "average" of sensor values 

which have predominately wear-out types of failure mecha- 	for a given operational cycle (i.e. representative of the oper- 
nisms (also known as incipient faults), which are character- 	ating point of the turbofan rather than a record of dynamic 
ized by a gradual reduction in system performance overtime, 25 sensor data). There are numerous sensors (112) in each record 
are better suited for the prognostic analysis method of the 	of each type, the types of sensors (112) including tempera- 
present disclosure. 	 tures, pressures, and RPM measurements. Each sample thus 

It is noted that the methods and systems described in the 	represents the state of the turbofan during a single operational 
present disclosure may be implemented in hardware, soft- 	cycle, such as a single flight. 
ware, firmware, or combination thereof. Features described 30 	It is noted that although the physical system (102) in this 
as blocks, modules, or components may be implemented 

	
embodiment is each of the turbofans, the physical system 

together (e.g., in a logic device such as an integrated logic 
	

(102) can be any physical system comprising components 
device) or separately (e.g., as separate connected logic 	that are mechanical, electrical, optical, chemical or combina- 
devices). The software portion of the methods of the present 

	
tions thereof. For example, the physical system (102) can be 

disclosure may comprise a computer-readable medium which 35 an engine, a brake system, a chemical production plant, etc. 
comprises instructions that, when executed, perform, at least 

	
The data module (120) can be implemented by a computer 

in part, the described method. The computer-readable 	or a controller, which can initiate an acquisition of data from 
medium may comprise, for example, a random access 	each sensor (112) of the sensor module (110) executing a 
memory (RAM) and/or a read-only memory (ROM). The 	sampling strategy which can be designed to capture possible 
instructions may be executed by a processor (e.g., a micro-  40 wear-out mechanisms. The data module (120) can also com- 
processor, a microcontroller, a digital signal processor (DSP), 	prise a communication component for communicating with 
an application specific integrated circuit (ASIC), a standard 

	
each sensor (112) of the sensor module (110). The data mod- 

logic integrated circuit, or a field programmable logic array 	ule (120) can also comprise a data storage component for 
(PLD, FPGA etc.)). 	 storing the sensor data sets (124) for subsequent analysis. In 
Technical Approach 
	

45 case of the provided turbofan data set, acquisition of the data 
Referring to FIG. 1, shown therein is an exemplary 

	
from the sensors (112) is completed, but the sensor data sets 

embodiment of the prognostic analysis system (100) of the 
	

(124) are stored in the data module (120). 
present disclosure. The prognostic analysis system (100) 

	
For example, in the case of a turbofan, the data module 

comprises a sensor module (110), a data module (120), a 
	

(120) can be implemented by the flight computer, an embed- 
window module (130), a normalizing module (140), a health 5o ded controller, and a data bus. The embedded controller for 
level module (150), and a prognosis module (160). The prog- 	the turbofan can read the sensors (112) and communicate the 
nostic analysis system (100) is coupled to a physical system 	sensor data sets (124) to a data bus (e.g., IEEE-1553 standard) 
(102) and is for the analysis of the physical status of the 	which sends the sensor data sets (124) to a flight computer. 
physical system (102) to provide a prognosis (165) for the 

	
The flight computer stores some of this data for download and 

physical system (102). 	 55 analysis after the flight is over. The data module (120) may be 
The physical system (102) is coupled to the sensor module 

	
implemented with other components for other physical sys- 

(110) which comprises at least two sensors (112) for sensing 	tems (102). 
the physical status of the physical system, such as tempera- 	The window module (130), coupled to the data module 
ture, pressure and RPM measurements. 	 (130) can take the sensor data set (124) and configure a sensor 

Referring still to FIG. 1, the data module (120) is coupled 6o data point window (136) for normalizing the time interval- 
to the sensor module (110) and is for the acquiring sensor data 	separated data. Since the data from different sensors (112) 
sets (124) consisting of time interval-separated, quantitative 

	
look very different, the Applicants normalized the sensor data 

data during the operational lifetime of the physical system 	sets using a z-transform (z°x—µ/a) using a sensor data point 
(102). As mentioned previously in the present disclosure, the 	window (136). Such normalization allows to focus on the 
sensor data set (124) does not need to be directed at any 65 variation of the actual sensor data signal instead of an actual 
specific feature designed to map any specific failure mecha- 	value of the sensor data itself. In this case, the sensor data 
nism or mode. 	 point window (136) is chosen to be 20 points wide for 
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8 
smoothing out the data to minimize irregular behavior of the 

	
Time is not the only factor which can impact the health 

data. However, the sensor data point window (136) can be 
	

level. FIG. 3 shows that different turbofans can degrade at 
sufficiently sized to ensure the failure trends are not masked. 	dramatically different rates. Specifically, FIG. 3 shows two 

The sensor data point window (136) can be determined by 
	

different turbofans, the health level of a first turbofan (210), 
iterative improvement for the physical system (102). As an 5 and the health level trend of a second turbo fan (320) which 
example guideline, a sensor data window of greater than 10 

	
lasted half as long as the first turbofan, although both have 

can be chosen to obtain a smooth average. The window may 
	

beginning and end-of-life health levels which are almost 
be made larger if the health level (153) computed appears too 	exactly the same as the other at the same state. 
random and requires smoothing. An ideal sensor data point 

	
Note that both turbofans have ending health level of about 

window (136) is less than twice as long (in real time) as the io 5% even though one turbofan has twice the longevity of the 
anticipated lifetime of the system (e.g., for a turbofan with an 	other. Each turbofan is taken out of service at a health level of 
mean time between failure of 80 hours, and an average flight 	about 5% for repair, maintenance or replacement. The mini- 
duration of 3 hours, data sampled only once per flight, a 	mum useful health level of 5% where repair, maintenance, or 
maximum for the sensor data point window (136) may be 	replacement is indicated, can also be seen in the laboratory 
2x80/3=52 samples). 	 15 generated ideal sensor data in the analysis of the present 

In the case of frequently sampled data, such as those usu- 	disclosure. 
ally available on board a vehicle or in contact with a physical 

	
It is further noted that the systems have not yet failed at the 

system, there is no practical limitation on the maximum win- 	5% health level. The threshold health level of 5% further 
dow size. For example, using the previous case with data 

	
indicates a saturation of the method such that there is no 

available at a rate of 1 Hz gives a recommended maximum 20 longer any effective randomness left in the sensor data varia- 
size of 2X80x60x60 —over half a million samples, which 

	
tions. Once the 5% health level threshold is reached, two 

greatly exceeds the optimal window size anticipated for any 	consequences can be expected: 1) The physical system oper- 
application. 	 ates with different failure physics than when its health level is 

Referring again to FIG. 1, the normalizing module (140) 
	

above 5%, or 2) Further use of the prognostic analysis can no 
can be used to normalize the sensor data utilizing the sensor 25 longer reveal new information. Therefore the physical system 
data point window (136) to calculated normalized sensor data 

	
is indicated or predicted to be taken out of service for repair, 

sets (148). Applicants computed the mean and standard 
	

maintenance, or replacement at or before the 5% health level 
deviation of a sensor data point window (136) of 20 point 

	
is reached. 

wide for each of 6 sensors (112) and then subtracted this mean 
	

In the laboratory generated ideal sensor data case, Appli- 
and divided by the standard deviation for all the data of each 30 cants supplied an algorithm with ten signals, and 1,000 
of the 100 turbofans. 	 samples generated artificially for each case. In the first case, 

The health level module (150), coupled to the normalizing 	shown as (410) in FIG. 4, all signals are totally random, 
module (140) can utilize the normalized sensor data sets 

	
following a uniform distribution (not a Gaussian) within a 

(148) to determine a health level (153) forthe physical system 
	

deadband from 0 to 1. This represents the "worst case" of a 
(102) by applying the entropy (H) equation shown in the 35 noisy signal where there is no trend. In the second case, 
section on "use of information theory." Since this equation 	shown as (420), these signals are overlaid with a linear trend 
represents information/entropy, Applicants subtracted the 

	
in all of the signals, shifting the average by a rate of 1 every 

value from 1 to create the health level (153). The health level 
	

200 samples. The third case shown as (430) introduces a 
(153) is defined at 1 for a device in new condition and decreas- 	sharper trend of 1 every 50 samples. 
ing to zero as the device wears out completely. 	 40 	From FIG. 4, Applicants show that in the first case (410) 

The prognosis module (160), coupled to the health level 
	

where there is no trend, the health level remains consistent (if 
module (150) can utilize the health level (153) and trends of 

	
noisy) and high, in this case never falling below approxi- 

the health level (153) to predict failure and end-of-life for the 	mately 0.6. In the case of a real system where random noise is 
physical system (102). The prognosis module (160) can also 

	
Gaussian, or with any kind of signal averaging available 

indicate a need forrepair. In the example case as described for 45 which is usually the case for performance estimates the 
the turbofan, the normalizing module (140), the health level 

	
health level will be even better behaved. 

module (150), and the prognosis module (160) can be imple- 	In contrast, the signals with overlaid trends (420, 430) 
mented with a flight computer for in-flight analysis, or with a 	clearly and steadily trend towards zero. The second case (420) 
standalone personal computer for a post-flight analysis. 	is clearly distinct from the first case (410) after approximately 

Applicants note four specific behaviors for the health level 50 200 samples, corresponding to the time where the trend is 
which are useful in prognostic analysis for the system: 1) The 	significant compared to the noise band. Similarly, the third 
health level shows an overall decrease in time, 2) the health 

	
case (43 0) is distinct after less than 100 samples, in keeping 

level shows the machine's life-cycle, 3) the health level is 	with its greater slope. From this behavior, Applicants can also 
irreversible, 4) the health level increases after a repair. 	estimate that the minimum usable health level is approxi- 

When the prognostic analysis method is applied to a set of 55 mately 0.05. Any value at or below this figure can be under-
test data from many turbofans, the health level demonstrates 	stood to indicate a system that is well outside of its normal 
a gradual decrease in performance compared against succes- 	operating range and at risk of imminent failure. 
sive uses of the same systems. A typical graph of the health 

	
Again by way of artificially testing the analysis, the health 

level of a turbofan, derived from its performance data, is 
	

level can be demonstrated to be irreversible utilizing the real 
shown in FIG. 2. 	 6o data. FIG. 5 shows the health level trend of a turbofan calcu- 

For this turbofan, one sample of performance data is pro- 	lated with its sensor data sets (124 of FIG. 1) in time interval 
vided for each usage run, and the point at which the turbofan 	order (shown as 510) and with its data ordered in reverse with 
failed or was taken out of service is known (e.g., the end of 

	
time (shown as 520). FIG. 5 indicates that when the sensor 

each graph). Wear in the system occurs at an unknown rate, 	data set (124) is reversed in time the resulting health level 
and the input data is of varying length. Applicants note there 65 trend (520) shows a much steeper drop with time and does not 
appears to be a systematic decrease in health level trend (210) 

	
resemble the health level trend (510) plotted in correct time 

with time for this turbofan. 	 order. 
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The health level trend of the time-reversed turbofan as 
shown (520) is completely different from that of the original 
turbofan's health level trend (510). Instead of slowly losing 
health, it almost immediately goes to nearly zero. This feature 
of the health measure is due to its consideration of both 
system average and variance when reversed in time, the 
system departs from its average and increases its variance 
quickly, stabilizing on new values, and does not recover. 

FIG. 6 further illustrates the value of this health measure by 
demonstrating the health level (610) for a turbofan showing 
an increase accompanying a simulatedrepair (see repairpoint 
620). The repair scenario is simulated since the turbofan data 
used in this study were presented as a single-blind dataset, 
and were not accompanied by a description of the actual 
events during the life-cycle of each turbofan. Applicants 
simulated the repair by taking the sensor data of a turbo fan 
which was almost at the end of its life-cycle and including the 
sensor data of a different turbofan. This second turbofan 
sensor data was included at the same number of usages; 
however, this turbofan was used several more times before it 
stopped working. The Applicants then computed the health 
level of this "repaired" turbofan. The results are given in FIG. 
6 where the health level (610) shows a marked increase fol-
lowing the repair (620). 

In another embodiment of the present disclosure and refer-
ring the FIG. 1, the prognosis module (160) can indicate a 
need for repair, resulting in physical repairs to the physical 
system (102). The repair (610) can result in an increase in the 
healthlevel (153) ofthephysical system (102) (shownnn FIG. 
6). Thus, the acquisition of the sensor data sets (124) by the 
prognostic analysis system (100) results in the transformation 
of the sensor data set (124) into a prognosis (165) for the 
physical system (102) and repairs to the physical system 
(102) which leads to an increase of the health level of the 
system and an accompanying potentially longer operation 
time for the physical system (102) in the physical world. 

In yet another embodiment of the present disclosure, the 
prognostic analysis system (100) may be for a small sub-
system of a complex machine, such as an engine of an air-
plane, with 2 to 100 sensors. In an example of the present 
disclosure, about 10 sensors (112) are in the sensor module 
(110). The data module (120) can collect data from each of the 
10 sensors (112) at about the same time with a sampling plan 
which can be once per flight in order to capture data from 
every operation. A personal computer, such as one with an 
Intel PENTIUM processor running a program such as MAT-
LAB, can be used to collect and store the data, for example, in 
a spreadsheet format such as CSV (comma-separated value), 
and the prognosis (165) can be used to determine when repair 
or replacement of the engine is expected. 

Referring now to FIG. 7 therein is shown a flow chart of a 
method (700) of operation of a prognostic analysis system 
(100 of FIG. 1) in a further embodiment of the present dis-
closure. The method (700) includes: providing a physical 
system (5710); providing sensors (5720); acquiring sensor 

10 
data sets (S730); configuring sensor data point window 
(S740); calculating normalized sensor data sets (S750); deter- 
mining health level (S760); and providing prognosis (S770). 

Thus, the prognostic analysis system (100) and method 
5  (700) of operating the system (100) appears to provide a 

capability for the early detection of anomalies as well as the 
prediction of how much life is left in the physical system as 
demonstrated by the exemplary systems of turbofans. The 
prognostic analysis method (100) does not necessarily 

10 
require detail pre-knowledge of specific wear-out mecha-
nism. However general failure modes and effects analysis or 
failure mode, effects, and criticality analysis may be needed 
to identify that the expected failure modes are most likely of 
the wear-out types which are characterized by a gradual 
reduction in performance over time, rather than the brittle- 

15 
break types which are characterized by sudden an cata-
strophic failure. The prognostic analysis system (100) and 
methods (700) of operating the system (100) can be appli-
cable to many mechanical, chemical, optical, and electrical 

20 
systems. 

The examples set forth above are provided to give those of 
ordinary skill in the art a complete disclosure and description 
of how to make and use the embodiments of the present 
disclosure, and are not intended to limit the scope of what the 
inventors regard as their disclosure. Modifications of the 

25 
above-described modes for carrying out the disclosure may 
be used by persons of skill in the art, and are intended to be 
within the scope of the following claims. All patents and 
publications mentioned in the specification may be indicative 
of the levels of skill of those skilled in the art to which the 

30 
disclosure pertains. All references cited in this disclosure are 
incorporated by reference to the same extent as if each refer-
ence had been incorporated by reference in its entirety indi-
vidually. 

35 	
It is to be understood that the disclosure is not limited to 

particular methods or systems, which can, of course, vary. For 
example, the person skilled in the art will understand that the 
number steps or components shown is only indicative and that 
the method can occur in more or fewer steps and that the 

40 
system may contain more or less components according to the 
various embodiments. It is also to be understood that the 
terminology used herein is for the purpose of describing 
particular embodiments only, and is not intended to be limit-
ing. As used in this specification and the appended claims, the 

45 
singular forms "a," "an," and "the" include plural referents 
unless the content clearly dictates otherwise. The term "plu-
rality" includes two or more referents unless the content 
clearly dictates otherwise. Unless defined otherwise, all tech-
nical and scientific terms used herein have the same meaning 

50 
as commonly understood by one of ordinary skill in the art to 
which the disclosure pertains. 

A number of embodiments of the disclosure have been 
described. Nevertheless, it will be understood that various 
modifications may be made without departing from the spirit 
and scope of the present disclosure. Accordingly, other 
embodiments are within the scope of the following claims. 

APPENDIX 1 

ITHEALTH Information-theory based estimator of system health 

Usage: [healthout] = ithealth(inputmatrix, windowsize, sigavgs, sigstds) 

% ITHEALTH is derived from the research code INFOHEALTH developed by 
Robert Sneddon, September 2009. Modifications made by Ryan Mackey. 

ITHEALTH provides an estimate of system health from performance data, 
updated with each new set of information. This information is assumed 
to be in rectangular form, i.e. N sensors by M samples, but may be 
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APPENDIX 1-continued 

irregular. Typically, this information is provided as an average of 
performance sensors that is updated only once per cycle, i.e. an average 
snapshot of performance for a single flight or a single operation of 
the system. This signal is assumed to have no dynamic information. 
Instead, trends in the value of the performance data from one run to the 
next may provide an indication of system health. 

The ITHEALTH algorithm estimates system health from local signal 
variances. If these variances are random and uncorrelated, then the 
information content of the signals will be very low. Conversely, a high 
information content indicates a pattern to the signal variances, i.e. an 
emerging trend. Since systems rarely trend towards getting healthier, 
this is in general evidence of a deteriorating condition. This can also 
be seen by a consideration of system stability -- when a system is 
healthy, it has a "dead band" of stability, where minor deviations in 
any particular signal do not affect the rest of the system. But as it 
ages and wears, its stability is compromised, or excursions finally pass 
beyond the "dead band," and in so doing create a global response, which 
we detect as information in the signals. 

ITHEALTH accepts any number of signals. In testing this number is 
usually in the high single to low double digits. If the signal count is 
very low (say less than four) it will become more difficult to estimate 
the information content. 

% The only parameter is the window size. This window defines how local 
our local variance is. The default value is 10, i.e. we will examine 
trends over the last 10 cycles compared to the entire history of 

% operation. For small numbers of signals this value may be increased, 
which will introduce additional lag in the estimate, but may provide 

% better accuracy. 

% ITHEALTH also has better performance if the signal averages and standard 
deviations during normal operation are known ahead of time (for 
instance, the standard operating point and noise characteristics of the 
sensors). These parameters are generally available from specifications 
or can be computed from nominal data. If available, they can be 
supplied to ITHEALTH as vectors, each of length equal to the number of 
sensors. If not available, ITHEALTH will automatically estimate these 
values from the first few measurements supplied, i.e. the first 
windowful of data. It is not recommended to supply only the averages 
without also providing the standard deviations. However, the algorithm 
is not particularly sensitive to these parameters. 

ITHEALTH simulates `real time" operation by reading in the input 
file as a single matrix, then sending the contents line by line to the 
algorithm itself. For an embedded application, remove this shell and 
apply live data to the algorithm directly, while making provisions to 
retain past data for purposes of windowing. 

ITHEALTH (C) 2009, Jet Propulsion Laboratory 
Original Version 6 October 2009 
This Version 1.0, 6 October 2009 
Contact: Ryan Mackey, Ryan.M.Mackey@jpl.nasa.gov, (818) 354 9659 

function [healthout] = ithealth(inmat, windowsize, sigavgs, sigstds) 
Check for input parameters 

if exist(`windowsize') —= 1 	% If no windowsize provided, 
windowsize = 10; 	% Set default window size to 10 

end 
if exist(`sigavgs') —= 1 	% If signal averages not provided, estimate from 

sigavgs =mean(inmat(:,I:windowsize),2); 	% first windowfulofsamples 
end 
if exist(`sigstds') —= 1 	% If signal standard deviations not provided, 

sigstds = std(inmat(:,I:windowsize),0,2); 	% estimate these as well 
end 

Initialize variables 
[numsigs, numsamp] = size(inmat); 
datawin = zeros(numsigs, windowsize); 	% Create buffer for windowed data 
count = 0; 	 % Initialize count of how many samples we've read 

Begin main loop 
for i = 1 : numsamp 

Update data buffer 
forj = 1 : windowsize-1 

datawin(:,j) = datawin(:,j+1); % Shift window buffer by 1 
end 

Update window with current data 
currentdata = inmat(:,i); 
datawin(:,windowsize) _ (currentdata — sigavgs) J sigstds; 

We normalize the incoming data by the average and std devs 



US 8,671,315 B2 
13 

APPENDIX 1-continued 

count = count + 1; 	% Keep track of how many samples so fax 
Calculate sum of individual variances 

sumvar = 0; 
for k = 1 : numsigs 

sumvar = sumvar + var(datawin (k,:)); 

end 
Calculate overall variance for current window 

tempwin = reshape (datawin, 1, windowsize * numsigs); % Put whole w 
into a single vector 

allvar = var(tempwin); 	 % and then compute the variance o 
whole vector 

Now compute and store overall information measure 
healthout (i) = (windowsize — 1) * sumvar / ( (numsigs * windowsize — 1) 

allvar); 
However, if window is not yet full, substitute a value of 1 since 
computation is invalid 

if count < windowsize 
healthout(i) = 1; 

end 
end % End main loop 

The invention claimed is: 
1. A method of prognostic analysis comprising: 
providing a physical system; 
providing a plurality of sensors for the physical system for 

sensing a physical status of the physical system; 
acquiring a sensor data set from each sensor , each sensor 

data set comprising one or more sensor data points; 
configuring a sensor data point window for the plurality of 

sensor data sets, the sensor data point window being a 
time window; 

calculating a plurality of normalized sensor data sets from 
the plurality of sensor data sets based on the sensor data 
point window; 

determining a health level for the physical system as a 
function of the plurality of normalized sensor data sets; 
and 

providing a prognosis for the physical system based on the 
health level of the physical system, 

wherein said health level is an indicator of a performance 
of the physical system, and 

the indicator measuring how the normalized sensor data of 
the plurality of sensor data sets vary individually in 
comparison to a total variance of the plurality of sensor 
data sets. 

2. The method according to claim 1, wherein the physical 
system comprises components selected from the group con-
sisting of mechanical component , electrical component, opti-
cal component , chemical component and combinations 
thereof. 

3. The method according to claim 1, wherein the physical 
system comprises components which exhibit wear-out 
behavior, and wherein the sensor data sets provide indication 
of the wear-out behavior. 

4. The method according to claim 1, wherein the plurality 
of sensor data sets comprise time interval separated , quanti-
tative data. 

5. The method according to claim 4, wherein the time 
interval between each data point and the next data point for 
each sensor data set is fixed or variable. 

6. The method according to claim 4, wherein the health 
level for the system decreases with time. 

7. The method according to claim 1, wherein each data 
point from one sensor data set is acquired at the same time or 
near the same time as a corresponding data point from another 
sensor data set.  

20 

8. The method according to claim 1, wherein the number of 
sensors is at least 2. 

9. The method according to claim 1, wherein the configur-
ing the sensor data point window further comprises config- 

25 uring a size for the sensor data point window to be large 
enough such that irregular behavior is minimized and small 
enough such that failure trends are captured. 

10. The method according to claim 1, further comprising 
conducting a repair to the physical system in accordance with 

so the prognosis, thus providing an increase in the health level of 
the physical system. 

11. The method according to claim 1, wherein the provid-
ing the prognosis further comprises predicting an expected 

35  repair, maintenance, or replacement of the physical system 
when the health level of the system reaches about 5%. 

12. The method according to claim 11, wherein destructive 
analysis of the physical system is not required to be per-
formed. 

13. A system comprising a computer readable medium 
4o configured with instructions that when executed perform the 

method according to claim 1. 
14. The method of claim 1, wherein the sensor data point 

window is configured to normalize sensor data sets so that 
45  unexpected information or momentary shift in sensor data do 

not propagate and are thus ignored. 
15. The method of claim 1, wherein said health level is 

calculated according to the following equation: 

50 	
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55 wherein 62  denotes variance, 62  denotes variance within dif-
ferent sensors across a sensor data point window, n,, is the 
total number of data points in the sensor data point window, 
NT  is the total amount of data points. 

16. The method of claim 1, wherein the sensor data sets are 
6o not directed to any specific feature designed to map any 

specific failure mechanism or mode of said physical system. 
17. The method of claim 1, wherein each data point is an 

average of sensor acquired data for a given operational cycle 
of the physical system. 

65 	18. A prognostic analysis system comprising: 
a first processor configured to sense a physical status of a 

physical system and comprises a plurality of sensors; 

14 

ndow 

f this 
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• second processor configured to acquire a sensor data set 
from each sensor of the plurality of sensors, the second 
processor being coupled to the first processor; 

• third processor configured to configure a sensor data 
point window for a plurality of sensor data sets, the third 
processor being coupled to the second processor and the 
sensor data point window being a time window; 

• fourth processor configured to calculate a plurality of 
normalized sensor data sets from the plurality of sensor 
data sets based on the sensor data point window, the 
fourth processor being coupled to the third processor; 

• fifth processor configured to determine a health level of 
the physical system based on the plurality of normalized 
sensor data sets, the fifth processor being coupled to the 
fourth processor; and 

• sixth processor configured to provide a prognosis for the 
physical system based on the health level of the physical 
system, the sixth processor being coupled to the fifth 
processor, 

wherein said fifth processor is configured to determine the 
health level of the physical system as an indicator of a 
performance of the physical system, the indicator mea-
suring how the normalized sensor data points of the 
plurality of sensor data sets vary individually in com-
parison to the total variance of the plurality of sensor 
data sets. 

19. The system according to claim 18, wherein the first 
processor comprises components selected from a group con-
sisting of mechanical components, electrical components, 
optical components, chemical components and combinations 
thereof. 

20. The system according to claim 18, wherein: 
the first processor comprises components which exhibit a 

wear-out behavior; and 
the first processor provides indication of the wear-out 

behavior. 
21. The system according to claim 18, wherein the second 

processor is for acquiring a sensor data set comprising time 
interval separated data and quantitative data from each sensor 
of the plurality of sensors. 

16 
22. The system according to claim 21, wherein the second 

processor is for acquiring a sensor data set comprising time 
interval separated data and, quantitative data having fixed or 
variable intervals between each data point and a next data 

5  point. 
23. The system according to claim 18, wherein the health 

level decreases with time. 
24. The system according to claim 18, wherein the second 

10 
processor acquires each data point from one sensor data set at 
a same time or near the same time as a corresponding data 
point from another sensor data set. 

25. The system according to claim 18, wherein the first 
processor comprises at least 2 sensors. 

15 	26. The system according to claim 18, wherein the third 
processor is configured to configure a size of the sensor data 
point window to be large enough such that irregular behavior 
is minimized and small enough such that failure trends are 
captured. 

20 	27. The system according to claim 18, wherein: 
the sixth processor is configured to further indicate a repair 

of the physical system in accordance with the prognosis; 
and 

the fifth processor is configured to further determine an 
25  increase in the health level of the physical system due to 

the repair. 
28. The system according to claim 18, wherein the sixth 

processor is configured to further predict an expected repair, 
maintenance, or replacement of the physical system. 

30 29. The system according to claim 28, wherein the predict-
ing of the expected repair, maintenance, or replacement of the 
physical system occurs when the health level of the physical 
system reaches 5%. 

30. The system according to claim 28, wherein the sixth 
35 processor predicts an expected repair, maintenance, or 

replacement of the physical system without destructive analy-
sis of the physical system. 
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