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(57) ABSTRACT 

A small scale, high speed turbomachine is described, as well 
as a process for manufacturing the turbomachine. The turbo-
machine is manufactured by diffusion bonding stacked sheets 
of metal foil, each of which has been pre-formed to corre-
spond to a cross section of the turbomachine structure. The 
turbomachines include rotating elements as well as static 
structures. Using this process, turbomachines may be manu-
factured with rotating elements that have outer diameters of 
less than four inches in size, and/or blading heights of less 
than 0.1 inches. The rotating elements of the turbomachines 
are capable of rotating at speeds in excess of 150 feet per 
second. In addition, cooling features may be added internally 
to blading to facilitate cooling in high temperature operations. 
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SMALL SCALE HIGH SPEED 
	

BRIEF DESCRIPTION OF THE DRAWINGS 
TURBOMACHINERY 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Application No. 61/308,880, filed Feb. 26, 2010, the content 
of which is incorporated by reference herein in its entirety. 

GOVERNMENT LICENSE RIGHTS 

This invention was made with government support under 
National Aeronautics and Space Administration (NASA) 
Phase II Small Business Innovation Research (SBIR) contract 
NNXIOCA89C. The government has certain rights in this 
invention. 

BACKGROUND 

This application relates to turbomachinery and in particu-
lar to high speed, small scale turbomachinery. 

High-speed turbomachinery is used in many applications, 
including high pressure liquid centrifugal pumps, high-speed 
centrifugal gas compressors, gas turbines, liquid turbines, 
rocket turbopumps, car-engine turbochargers, aircraft auxil-
iary power units, jet engines, and stationary power generation 
devices. These devices usually include one or more rotating 
devices that transmit power from a rotating shaft into a work-
ing fluid, increasing the energy contained in the working 
fluid, or extract power from a working fluid and transfer that 
power into a rotating shaft, reducing the energy contained in 
the working fluid. 

Turbomachines typically have rotating elements with outer 
diameters in the range of 3 inches (for turbochargers) up to 
several feet (for large jet engines, steam turbines, or hydro-
electric turbines). However, similar devices have generally 
not been successfully designed or constructed that can oper-
ate at high speeds when the outer diameters of the rotating 
elements are one and a half inches or smaller. Design of 
devices in this size range has not succeeded, in part, because 
it is not currently possible to manufacture turbomachines 
with the precision and small features required to maintain 
high performance operation at these scales and speeds. 

SUMMARY 

To enable a small scale, high speed turbomachine, embodi-
ments of the invention include turbomachine designs and 
techniques for manufacturing the turbomachine. The turbo-
machine is manufactured by bonding stacked sheets of metal 
foil, each of which has been pre-formed to correspond to a 
cross section of the turbomachine structure. The turboma-
chines include rotating elements that are capable of operating 
at tip speeds in excess of 150 feet per second. Using this 
process, turbomachines may be manufactured with rotating 
elements that have outer diameters of less than four inches in 
size, and/or blading heights of less than 0.1 inches. 

The turbomachines may also include static structures, 
which may be added after bonding through machining, or also 
created through the same stacked sheet bonding process. 
Embodiments of the invention also include designs for inte-
grated cooling components to assist in bringing down the 
operating temperature of a turbomachine, as well as labyrinth 
seals that may be used, optionally, in conjunction with turbo-
machines of any size. 

FIG.1 illustrates a cross sectional view of a turbomachine. 
FIG. 2a illustrates a turbomachine with a pump and a 

5 turbine, in accordance with one embodiment. 
FIGS. 2b and 2c show a turbomachine with two alternate 

embodiments of a rotating element. 
FIG. 3 illustrates a sample three dimensional model of a 

rotating element, and a sample set of etched metal foil sheets 
io matching three different cross sections of the sample rotating 

element at different locations along the axis, according to one 
embodiment. 

FIGS. 4a and 4b illustrate example cross-sections of tur-
bomachine rotating elements manufactured by stacking metal 

15 foil sheets that are perpendicular to the rotation axis, in accor-
dance with one embodiment. 

FIGS. 4c and 4d illustrate an example cross sections of a 
rotating element of a turbomachine manufactured by forming 
metal foil sheets into conical layers and stacking these layers, 

20 according to one embodiment. 
FIGS. 4e and 4f illustrate two example cross-sections of a 

turbomachine rotating element manufactured by stacking 
metal foil sheets that are parallel to the rotation axis, in 
accordance with one embodiment. 

25 	FIG. 4g illustrates an example foil sheet prior to stacking, 
according to one embodiment. 

FIG. 4h illustrates a rotating element of a turbomachine 
after excess material has been removed, whereby the rotating 
element was made from stacking metal foil sheets that are 

30 parallel to the rotation axis, according to one embodiment. 
FIGS. 4i and 4j illustrate example cross sections of a rotat-

ing element of a turbomachine made from stacking metal foil 
sheets in circumferential layers around the axis of rotation, in 
accordance with one embodiment. 

35 	FIG. 4k illustrates a portion of a typical circumferential 
sheet, in accordance with one embodiment. 

FIG. 5a illustrates an example cross section of a static 
structure of a turbomachine made from stacking and bonding 
metal foil sheets to define internal flow structures, in accor- 

4o dance with one embodiment. 
FIG. 5b illustrates a sample sheet for creating a static 

structure pump discharge volute, according to one embodi-
ment. 

FIG. 5c illustrates a static structure of a turbomachine after 
45 excess material has been removed, whereby the static struc-

ture is made from stacking and bonding metal foils sheets, 
according to one embodiment. 

FIG. 6 illustrates a flow diagram for a process for manu-
facturing rotating elements and static structure of a small 

50 scale, high speed turbomachine, according to one embodi-
ment. 

FIGS. 7a and 7b illustrate example cross sections of a 
rotating element of a turbomachine that includes internal 
cooling features, where the rotating element and the internal 

55 cooling features area made from stacking and bonding metal 
foil sheets, according to one embodiment. 

FIG. 7c illustrates a portion of an example foil sheet prior 
to stacking, where the example foil sheets include features 
used for internal cooling, according to one embodiment. 

60 FIGS. 7d and 7e illustrate portions of example foil sheets 
prior to stacking, where the example foil sheets include fea-
tures used for internal cooling, according to other embodi-
ments. 

FIGS. 8A, 813, and 8C illustrate examples of labyrinth seals 
65 in accordance with several different embodiments. 

The FIGS. depict various embodiments of the present 
invention for purposes of illustration only. One skilled in the 
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4 
art will readily recognize from the following discussion that 

	
ther, temperature changes may cause the material making up 

alternative embodiments of the structures and methods illus- 	either orboth of the rotating element and the stationary casing 
trated herein may be employed without departing from the 

	to expand or contract, changing the clearance between the 
principles of the invention described herein. 	 two and therefore the performance of the turbomachine. 

5 	Some turbomachines include shrouds in between the hous- 
DETAILED DESCRIPTION 

	
ing and the rotating element in order to maintain the efficiency 
of the turbomachine. Some large scale turbomachines make 

Turbomachine Elements 	 use of shrouding to balance out axial thrust, which can cause 
FIG.1 illustrates a cross sectional view of a turbomachine. 	problems at the higher pressures readily achieved by larger 

The turbomachine 100 includes a first rotating element 101 io turbomachines pumping high density fluids such as liquids. 
that increases the enthalpy of the working fluid that passes 

	
As the pressure on the rotating element goes up (e.g., 500 psi 

through it. An example of a first rotating element 101 may be 	and higher), shrouding can improve the balance of pressure 
a compressor, pump, or impeller, and may include additional 

	
between the inlet and outlet sides of the rotating element, 

stages or an inducer. For simplicity, the first rotating element 	greatly reducing the axial force on the turbomachine's bear- 
101 will be referred to herein as a pump. The pump 101 is 15 ings. 
powered by a second rotating element 102 that decreases the 

	
As a turbomachine gets smaller in size, it becomes more 

enthalpy of the turbine drive fluid that passes through it. An 
	

difficult to manufacture an efficient turbomachine with a 
example of a second rotating element is a turbine. For sim- 	small amount of clearance between the blading of the rotating 
plicity, the second rotating element 102 will be referred to as 	element and the external housing. In such cases adding a 
a turbine. 	 20 shrouding to eliminate the clearance would improve perfor- 

Turbine 102 powers pump 101 via a shaft 103. Typically, 	mance, but at very small sizes, it also becomes more difficult 
pump 101, turbine 102, and the shaft 103 are different physi- 	to manufacture a rotating element with an integral shroud 
cal components. The working fluid enters the turbomachine at 	using techniques familiar to those skilled in the art. In one 
the entrance 115, passes through blading 104, and is collected 

	
embodiment, a small turbomachine and a process for manu- 

in exit device 105. The turbine drive fluid enters at inlet 106, 25 facture includes a shrouded rotating element, which allows a 
passes through turbine inlet guide vanes 107, passes through 

	
relatively large clearance between the outside of the shroud 

turbine blading 108, and exits after passing by one or more 	and the stationary casing without substantially reducing the 
struts 109. 	 efficiency and performance. The shrouding of the turboma- 

In existing turbomachines, there is a often a close clearance 	chine increases, rather than decreases, the efficiency and per- 
110 between the blading 104 of pump 1 and the external 30 formance of the smaller scale rotating elements. In one 
housing 116. The close clearance 110 forms a forward seal. 	embodiment, well-controlled small gaps may be inserted 
The forward seal minimizes leakage or errant flow of the 

	
between the co-rotating shrouding and the blading to slightly 

increased pressure fluid from the exit device 105 back into the 
	

further improve performance. In one embodiment, the clear- 
incoming working fluid. Rear seal 111 minimizes leakage 	ance between the blading and the shroud, along more than 
from the exit device 105 of pump 101. Similarly, rear seal 112 35 half the length of the blading in the primary flow direction, is 
minimizes leakage from turbine flow path. Bearings 113 and 

	
less than five percent of the height of the blading. 

114 allow the pump 101 and turbine 102 and shaft 103 to 
	

In one embodiment, the turbomachine is between 0.5 and 4 
rotate at high speed while still remaining centered on the 

	
inches, inclusive, in rotating element outer diameter. In one 

centerline axis 117. 	 embodiment, the turbomachine is between 0.4 and 3 inches, 
In existing turbomachines, rotating elements are typically 40 inclusive, in rotating element outer diameter. In one embodi- 

assembled from multiple components that are mechanically 	ment, a turbomachine is manufactured that comprises a rotat- 
fastened together, these components typically including mul- 	ing element 1 inch in diameter that rotates at 55,000 RPM and 
tiple individual blades and a mounting disk. In some cases the 	pressurizes water. In various embodiments of the turboma- 
rotating element may be a single piece. The individual com- 	chine, the materials of construction and the shape of the 
ponents or singe piece element are typically machined from 45 blading will be selected so that a rotating element of the 
single pieces of material or cast to near-final shape and then 	turbomachine is able to rotate at a particular maximum speed. 
machined to final shape. Turbomachines have complicated 

	
In one embodiment, this maximum speed of a rotating ele- 

internal geometries. In order to meet standard turbomachine 	ment is greater than 150, 250, 350, 450, 550 or 800 feet per 
efficiencies, the geometries of the rotating elements are pre- 	second. In one embodiment, the turbomachine pressurizes a 
cisely configured. For example, the shape of the blading and 50 liquid fuel. In one embodiment, the turbomachine pressurizes 
fluid flow paths is carefully selected to achieve the design 	a liquid oxidizer. In one embodiment, the turbomachine has at 
performance goals of the machine, and changes to the shape 

	
least two rotating elements on a common shaft and pressur- 

will often reduce performance. As another example, variance 
	

izes both a liquid fuel and a liquid oxidizer in separate rotating 
in the clearance between the blading of a rotating element and 

	
elements. In one embodiment, the turbomachine does not 

the external housing or any added shrouding may affect the 55 utilize a turbine, but contains at least one rotating element to 
efficiency of the turbomachine. 	 pressurize a fluid and is powered by a high-speed electric 

In most turbomachines, the smallest clearance that is fea- 	motor. In one embodiment, the turbomachine is a rocket 
sible to manufacture and maintain during operations is pre- 	turbopump. In one embodiment, the turbomachine is a gas 
ferred to maximize efficiency and performance. In many 	turbine engine. 
cases, if it is feasible to manufacture the turbomachine with a 60 	In one embodiment, the blading of the rotating elements 
co-rotating shroud such that there is zero clearance, this is 

	
has height at the outer radius of 0.020 inches or less. In one 

done. However, in some types of turbomachines, usually 	embodiment, the blading has height at the outer radius of 
compressors or pumps, a small clearance between the blading 

	
0.012 inches. In one embodiment, the blading has height of 

and the casing allows some amount of leakage flow between 
	

0.050 inches at the tip. In one embodiment, the blading has 
the higher and lower pressure side of the blades, which can 65 height of 0.1 inches at the tip. In one embodiment, the partial 
increase turbomachine efficiency relative to a shrouded 

	
gap between the co-rotating shrouding and the blading of the 

design. Too much or too little flow decreases efficiency. Fur- 	rotating element is less than two percent of the blading height. 
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In one embodiment, the partial gap between the co-rotating 

	
is also more suited towards including an additional turbine 

shrouding and the blading of the rotating element is less than 	stage or stages following stationary blading 248. 
one percent of the blading height. 	 Process for Manufacturing Turbomachines 

FIGS. 2a-2c illustrate cross sectional views a small scale, 	FIGS. 3, 4a through 4k, 5, and 6 illustrate a process for 
high speed turbomachine, in accordance with several 5 manufacturing elements of a small scale, high speed turbo- 
embodiments of the invention. FIG. 2a illustrates a turboma- 	machine, according to one embodiment. The process of 
chine with a pump 221 and a turbine 222, in accordance with 

	
manufacture has no inherent limit on the lower bound for 

one embodiment. The pump 221 may be a pump or compres- 	either of the rotating elements or the blading heights of those 
sor, and may comprise more than one stage. The turbine 222 

	
rotating elements. In addition to manufacturing the rotating 

is a radial-inflow turbine, joined to the pump 221 via a shaft io elements, the process is also able to manufacture stationary 
joint 223. In one embodiment, the pump 221 is a single 	elements of the turbomachine. 
mechanical part, including a hollow shaft 224 next to the 

	
Traditional techniques for building turbomachines at small 

entrance 230 where the working fluid is introduced. The 	sizes run into problems when trying to manufacture turboma- 
entrance 230 feeds into blading 225 and/or 226, and shroud 

	
chines with sufficient precision, for example for the blading 

227. The shroud 227 and hollow shaft 224 eliminate the 15 clearance between blading and a shroud or housing. In order 
relatively large gap that would otherwise occur between blad- 	to construct a small scale turbomachine as described above, 
ing 225 and/or 226 and the turbomachine stationary casing 	the process includes diffusion bonding or brazing of separate 
270. Turbine 222 similarly includes blading 228 and a shroud 

	
metal foil sheets, each etched with a thin cross section of the 

229. 	 structure of a rotating element of a turbomachine. 
In one embodiment, blading 225 within hollow shaft 224 20 	FIG. 3 illustrates a sample three dimensional model of a 

may optionally serve as an inducer to provide initial pressur- 	rotating element 310, and a sample set of etched metal foil 
ization of the working fluid in order to limit cavitation at the 	sheets 318 matching three different cross sections 312, 314, 
fluid entrance to blading 226. The pressurized working fluid 

	
316 of the sample rotating element at different locations 

then passes through the pump blading 226 where it is further 	perpendicular to its axis of rotation, according to one embodi- 
pressurized. 	 25 ment. The three dimensional model 310 is shown with its 

The working fluid flows from blading 226 through diffus- 	shrouding removed so that individual blades 311 may be seen. 
ing section 231. The diffusing section 231 may optionally 

	
The metal foil sheets are thin slices of material pre-formed to 

include stationary blading (not shown). The working fluid is 
	

have shapes of two dimensional slices of the turbomachine 
collected in exitpassages 232 for distribution as an input to an 	cut or etched into them, such that sheets 313 correspond to 
engine (not shown), for example to a rocket engine. 	so axial location 312; and sheets 315 correspond to axial loca- 

Turbine inlet chamber 233 receives a turbine drive fluid 
	

tion 314, and sheets 317, with blading 319, correspond to 
from a source, for example an engine. Turbine inlet chamber 	axial location 316. The metal foil sheets may be pre-formed 
233 accelerates the drive fluid through turbine inlet guide 

	
by chemical etching, or by other methods such as machining, 

vanes 234 and through turbine blading 228. The acceleration 	water jet cutting, or laser-cutting. Other methods of pre- 
of the drive fluid through blading 228 extracts power which is 35 forming may be used as well. Once sheets are pre-formed, the 
transmitted through shaft joint 223 back to pump 221. The 

	
final blading is formed by stacking (or layering) the metal foil 

drive fluid collects at exit location 235, and may be provided 
	

sheets on top of one another in a properly aligned fashion, and 
back to the engine for further use or removed as exhaust. 	then bonding the sheets together. In one embodiment, the 

In one embodiment, the turbomachine includes two or 	sheets are between 0.0001 and 0.032 inches thick, inclusive. 
more bearings 238 and 239. The bearings 238 and 239 maybe 40 	FIGS. 4a and 4b illustrate example cross-sections ofrotat- 
bearings of conventional size, and do not need to be reduced 

	
ing elements of a turbomachine manufactured by stacking 

in size to match the smaller scale of embodiments of the 	metal foil sheets such that the sheets form planes perpendicu- 
turbomachine. In one embodiment, the turbomachine 

	
lar to the axis of rotation 413 and 423, in accordance with one 

includes two or more seals 236 and 237 in order to prevent 	embodiment. FIG. 4a depicts a pump impeller of a turboma- 
leakage of working fluid outside the device or to other areas of 45 chine, according to one embodiment. FIG. 4b depicts a radial 
the device, for example at the exit 232 of the pump. This is 

	
in-flow turbine rotor of a turbomachine, according to one 

particularly beneficial if the working fluid is under high pres- 	embodiment, or a radial out-flow turbine rotor, according to 
sure. 	 another embodiment. In FIGS. 4a and 4b, the layers of pre- 

FIGS. 2b and 2c show two alternate embodiments of tur- 	formed metal foil sheets 410 and 420 define internal geom- 
bine 222. In the embodiment of FIG. 2b, turbine 240 includes 50 etries such as blading 416 and 426, as well as the non-bladed 
extended radial inflow blading 241 and an extended shroud 

	
center of rotating element 415. Other internal features created 

242 permitting the addition of axial seal 243 to turbine 222. 	using the layers include impeller inlet flow area 414, impeller 
The additional axial seal 243 prevents leakage of turbine drive 

	
blading leading edge 415, and turbine outlet hub 424. 

fluid outside the device or to other areas of the device. The 
	

In one embodiment, thin layers 410 and 420 are combined 
extended blading 241 allows for a more gradual extraction of 55 with one or more thicker plates such as 411, 412, 421 and 422 
energy from the working fluid, which could improve the 	on one or both sides of the layers. In this embodiment, these 
efficiency of the turbine relative to turbine 222 with non- 	plates 411, 412, 421 and 422 are located in regions of axial 
extended blading 228. 	 extent of the rotating element that do not contain complex 

In the embodiment of FIG. 2c, axial-flow turbine 245 
	

internal passages or blading, and can be bonded into position 
includes axial flow blading 246, axial flow turbine inlet guide 60 with the thin sheets 410, 420, reducing the total number of 
vanes 247 and exit vanes 248, as well as two additional seals 	sheets that are processed prior to bonding the initial part. 
249 and 250 to turbine 222. The additional seals 249 and 250 

	
The ordered and stacked cross sections of the turboma- 

prevent leakage of turbine drive fluid outside the device or to 	chine (or static structures) are fused together into a single part 
other areas of the device. This embodiment may allow for 	through a bonding process. In one embodiment, the bonding 
higher speed operation than turbine 222 since the blading 245 65 process is a diffusion bonding process. In another embodi- 
is radially outward from the turbine disk, while blading 228 is 	ment, the bonding process is a brazing process. Machining or 
cantilevered off of the disk of turbine 222. This embodiment 	other techniques may be used to cut away excess material 
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outside of the final part boundaries 417 and 416 in order to 

	
FIGS. 4i and 4j illustrate example cross-sections of a rotat- 

change the shape of the turbomachine rotating element, or 
	

ing element of a turbomachine manufactured by stacking 
expose the internal flow passages, or produce features, e.g. 	metal foil sheets 470 such that the sheets form cylindrical 
418 and/or 428 that allow the rotating element to be aligned 

	
shells each concentric with the axis of rotation 473, in accor- 

and coupled to other rotating elements. 	 5 dance with one embodiment. In one embodiment, this rotat- 
FIGS. 4c and 4d illustrate an example cross section of a 

	
ing element would be an axial-flow turbine. The sheets are 

rotating element of a turbomachine manufactured by forming 	wrapped around cylinder 471, such that their ends meet at 
metal foil sheets into conical layers and stacking these layers, 	seam 474 (though in other embodiments the seams of each 
according to one embodiment. In the example embodiment of 

	
layer need not be co-incident), and outer solid thick-walled 

FIG. 4c, a rotating element of a turbomachine is manufac-  io cylinder 472 is placed around the sheets to contain them. Care 
tured by shaping, forming, and stacking metal foil sheets such 

	
should be taken to ensure proper alignment of the layers. The 

that the sheets form partial conical shells where the axes of the 	sheets and inner and outer cylinders are then bonded together 
shells are coincident with the axis of rotation 431. In one 	to define blades 475 and flow path areas 476 internal to the 
embodiment, the sheets are stacked at an angle that is not 0 or 	structure. Material is then removed to contour 478 to expose 
90 degrees with respect to the axis of rotation. The thin 15 the blades and flow areas. FIG. 4k depicts, for one embodi- 
conical shells 430 are formed from flat sheets 440 illustrated 

	
ment, the shape of one sheet 480 before it is formed into the 

in FIG. 4d, according to one embodiment. The flat sheets 440 
	

cylindrical shell, including blades 482 and flow path 481. In 
are pre-formed such that an arc-segment of angle 443 is 	one embodiment, the shape of the blades would be different in 
removed so that as the two edges on either side of angle 443 

	
each layer to allow for a gradual change in blade incidence 

are brought together, a conical shell is formed. The flat sheets 20 and turning angle from the blade hub to blade tip. In one 
440 also include center holes 444. The flat sheet includes 	embodiment, the flat sheets maybe formed into axisymmetric 
features 442 that define the solid blading of the eventual 

	
shells that are neither conical nor cylindrical prior to bonding. 

rotating element, as well as features 441 that define the fluid 
	

Note that in all subfigures FIG. 4, the thickness of sheets 
flow path between the blades within the eventual rotating 

	
410, 420, 430, 450, 470 is typically enlarged for clarity and 

element. 	 25 not to scale. Some embodiments would utilize many more 
In one embodiment, a solid base 432 is shaped to receive 	sheets than can be illustrated effectively. 

the conical shells. The base 432 may be connected to an 
	

FIG. 5 represents an example static structure, according to 
alignment pin 433 along the rotation axis 431, and an align- 	one embodiment: a pump discharge volute. FIG. 5a illustrates 
ment cylinder 434. The alignment pin 433 and alignment 	an example cross section of an example pump discharge 
cylinder 434 are used to maintain the conical shells in axial so volute of a turbomachine. The static structure is manufactured 
alignment while they are stacked to form the internal blading 

	
by stacking and bonding metal foil sheets such that the sheets 

436. Care is taken to ensure appropriate circumferential 
	

form planes perpendicular to the axis of rotation 525 of the 
alignment of the blading elements, while also ensuring that 	rotating elements within the static structure. In one embodi- 
individual shells are rotated around the axis such that the 	ment, the sheets are etched to define the internal flow features 
seams separating angle 443 are distributed circumferentially 35 of the primary working fluid. In one embodiment, these flow 
around the element. Once the shells are in place, a solid top 

	
features include the collection volute 511, central hole 513, 

435, shaped to fit closely to the internal contour of the conical 
	

and diffusion section 512, which in some embodiments will 
shells is inserted, and the shells can be bonded together. Once 

	
include internal blading. In one embodiment, additional solid 

the shells are bonded together, excess material can be 
	

blocks of material 515, 516, with central holes 517, 518, are 
removed by machining or other means to the final external 40 stacked on either side of the sheets 510, and the whole stack 
contour 437 of the element. 	 is bonded together. In one embodiment, material is removed 

FIGS. 4e and 4fillustrate example cross-sections of a rotat- 	to contour 519, creating inlet fitting 520, mating surfaces 521 
ing element of a turbomachine manufactured by stacking 	and 522 for mounting to other parts of the static structure, and 
metal foil sheets 450 such that the sheets 450 form planes 

	
impeller contour 523. 

parallel to the axis of rotation 451, in accordance with one 45 	FIG. 5b illustrates a sample sheet for creating a static 
embodiment. FIG. 4e shows a cross section through the axis 	structure pump discharge volute, according to one embodi- 
of rotation 451, and FIG. 4f shows a cross section perpen- 	ment. The volute shape 531 is included, as is central hole 532. 
dicular to the axis of rotation 451. The blading 452 is defined 

	
Additional material 533 is left on one edge of the sheet to 

in those layers and locations within the boundary 453, but 	allow sufficient material to add pump outlet fitting 534 during 
outside of the boundary of 454 which represents the center 50 final machining. 
non-bladed portion of the rotating element. After the layers 

	
FIG. 5c illustrates a sample static structure pump discharge 

are stacked and bonded together, excess material may be 	volute 540, according to one embodiment. The inlet fitting 
removed. In one embodiment, illustrated in FIG. 4f and in the 

	
541 receives the fluid into the turbomachine, and the outlet 

upper half of FIG. 4e, excess material is removed outside of 
	

fitting 542 discharges the pressurized fluid. Rotating elements 
contour 455 to produce a rotating element without a shroud. 55 fit within the static structure, rotating about rotation axis 525. 
In another embodiment, illustrated in FIG. 4f and the lower 

	
FIG. 6 illustrates a flow diagram for a process for manu- 

half of FIG. 4e, excess material is removed outside of contour 
	

facturing rotating elements and static structure of a small 
456 to produce a rotating element with a co-rotating and 

	
scale, high speed turbomachine, according to one embodi- 

integral shroud. 	 ment. The process for manufacturing a turbomachine and any 
FIG. 4g illustrates a single foil layer from within layers 6o additional stationary elements takes as an input 610 a design 

450, according to one embodiment. Regions 461 are removed 
	

for a turbomachine, for example a Computer Aided Design 
to create flow areas, and regions 462 remain to create the 

	
(CAD) drawing or other three-dimensional representation of 

blading. Region 463 remains to create the hub of the rotating 	the turbomachine including its constituent rotating and non- 
element. FIG. 4h depicts an shroudless inducer, a rotating 	rotating elements. The turbomachine is divided up 620 into 
element 465 that would result from utilizing contour 455 for 65 two dimensional sheets, each representing a cross section of 
removing excess material, according to one embodiment. 	the turbomachine or an element of the turbomachine at an 
This inducer includes blading 463, defining flow area 464. 	appropriate plane or circular or conical or other axisymmetric 
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shell. Each sheet has a specified thickness. The sheets are 	can be illustrated successfully, so there will be substantially 
pre-formed 630 into the cross section of the rotating element 

	
higher out-of-sheet-plane resolution within the cooling struc- 

from the design drawing through etching or machining, or 	tures. 
another suitable process. The sheets are separated from each 

	
FIG. 7c illustrates a sample sheet used to manufacture the 

other, and are ordered and stacked 640 so as to reproduce the 5 internally cooled axial-flow turbine, according to one 
structure of the turbomachine. The stack of sheets is bonded 

	
embodiment, and includes coolant distribution channels 731, 

650 together to bind the sheets together into a single compo- 	and blade cooling passage 732. A contour 733 for removing 
nent. The stack may be fusion bonded under heat and pres- 	material to define the blades and flowpath geometry is also 
sure, diffusion bonded, or brazed, depending upon the 

	
illustrated for one embodiment. 

embodiment. The device is machined 660 to create any addi-  io 	In additional embodiments, cooling features are incorpo- 
tional stationary elements and to form the turbomachine into 	rated into radial in-flow and radial out-flow turbines, static 
the desired shape. In one embodiment, the machining may 	structures including turbine inlet guide vanes, as well as into 
include electro-discharge machining (EDM). 	 axial turbines manufactured using sheets formed into cylin- 

Blading with Integral Cooling Components 
	

drical shells. In some embodiments there are performance 
Turbomachines frequently operate at high temperatures. A 15 advantages because the sheets are in planes approximately 

turbomachine exposed to a temperature above a certain 	parallel to the flow direction and allow for additional geo- 
threshold may work less efficiently or cease to work entirely. 	metrical complexity in defining shapes within the planes of 
This may be due to a number of different reasons. For 	the sheets. 
example, materials making up the blading, shrouding, hous- 	FIGS. 7d and 7e illustrate examples of this increased flex- 
ing, or central portions of the rotating element may melt or 20 ibility. FIG. 7d shows cooling passages 741 and trailing edge 
lose strength at the temperature of the fluid passing through 

	
slot 742, in one embodiment. In one embodiment, FIG. 7e 

them. Also, thermal expansion of the materials making up the 	shows porous structures 751 serving as cooling passages, 
blading, shrouding, and/or housing may cause the clearance 	where increased internal surface area and increased flow tur- 
between blading and shrouding or housing to decrease or 

	
bulence enhances cooling. FIG. 7e also shows trailing edge 

increase in size. A change in the clearance may decrease the 25 slot 752. 
efficiency of the turbomachine. If the gap closes entirely, the 

	
Static Structure 

turbomachine may cease functioning. 	 Other examples of static structures which may be part of a 
Large turbomachines incorporate integrated cooling fea- 	turbomachine may also include blading for exit vanes used in 

tures that allow the rotating elements to process fluids with 
	

a diffuser located downstream of a rotating element, blading 
higher temperatures than would be possible if the rotating so for turbine inlet vanes upstream from a turbine inlet, inlet or 
elements were uncooled. The cooling features are designed to 	outlet volutes, and sealing elements. Static structures to be 
keep the rotating structure temperature well below the tem- 	used in conjunction with the small scale turbomachine may 
perature of the working fluid. As turbomachines get smaller, 	also be manufactured separately from the turbomachine using 
it is more difficult to incorporate integrated cooling features 	the same process. 
which can assist in cooling the turbomachine at high tempera-  35 	The process described used to create the turbomachine 
ture operation. However, the use of bonded metal sheets 	maybe altered into order to fabricate bearing journals. Fab- 
makes it possible to incorporate integrated cooling features in 	ricating bearings allows the turbomachine to incorporate fluid 
many embodiments, even at small scales. 	 bearings. Examples of fluid bearings include hydrostatic, 

In one embodiment, the etched metal foil sheets used to 
	

hydrodynamic, or film bearings. 
construct the rotating elements include features that, once 40 	For very small turbomachinery, in some embodiments it 
stacked and bonded, create cooling flow passages within the 	will be advantageous to include partial emission pumps or 
structure and blades of the rotating element. In one embodi- 	compressors or partial admission turbines. These types of 
ment, the sheets include features that result in porous blading 	turbomachinery involve static structures where a portion of 
designed to receive and distribute a cooling fluid within the 	the inlet flow annulus (for turbines) or the outlet flow annulus 
rotating element. In one embodiment, the stationary elements 45 (for pumps/compressors) is blocked so as to restrict flow. In 
of the turbomachine include passages for a cooling fluid to 	one embodiment, a partial emission static structure is created 
pass nearby and cool the stationary element. 	 by closing a portion of diffusion area 512 (in FIG. 5a) such 

FIGS. 7a and 7b illustrate cross sections of a rotating 	that flow can only enter the volute over a fraction of the 
element of a turbomachine manufactured by stacking and 

	
receiving circumference. 

bonding metal foil sheets 711 such that the sheets form planes 50 	Labyrinth Seals 
perpendicular to the axis or rotation 712, and the sheets 

	
In some embodiments, it may be beneficial to use labyrinth 

include features 713, 714 for cooling the rotating element. In 	type seals to prevent excessive fluid leakage. FIG. 8A illus- 
one embodiment, the rotating element will be an internally 	trates a labyrinth seal in accordance with one embodiment. 
cooled axial-flow turbine. In one embodiment, after bonding 

	
The labyrinth seal includes a smooth rotating element 873, 

excess material will be removed to contour 715 to define the 55 rotating about axis 895 placed in close proximity to stationary 
blading and turbine disk, as well as to provide access ports 	element 874 which includes a number of repeating teeth. In 
716 for the internal cooling fluid. 	 one embodiment, the teeth are created by alternately layering 

FIG. 7b illustrates a cross section through the cooling 	a number of thinner layers of a material 871 with a number of 
features 714, according to one embodiment. In one embodi- 	thicker layers of a similar material 872. In one embodiment, 
ment, cooling features includes cooling passages 721 and 6o a typical thickness of a thinner layer would be approximately 
722, passages 723 for forming jets into internal cavity 724 for 

	
0.002 inches, and a typical thickness of a thicker layer would 

impingement cooling of the blade leading edge, and trailing 
	

be approximately 0.008 inches, such that the number of teeth 
edge slots 725 for directing the cooling air into the main flow 	per inch is approximately 100. Alternating thick and thin 
path. The external contour 726 of the blade is shown accord- 	layers allows for a large number of teeth per length of seal, 
ing to one embodiment. The cooling features illustrated in 65 which facilitates improved sealing compared to conventional 
FIG. 7B appear coarser and rougher than they would be in 

	
labyrinth seals. In another embodiment, rotating element 873 

most embodiments, since many more sheets can be used than 	may be the shaft of the turbomachine, a sleeve of the shaft, or 
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a material inserted onto the shaft. The rotating element may 
be made from a different material than the remainder of the 
turbomachine. In one embodiment, rotating element 873 is 
made of PTFE. 

The labyrinth seals may be defined by a number of param-
eters. The length 890 indicates the length of the teeth 871 of 
the labyrinth seal. The thickness 891 indicates the thickness 
of the teeth 871. The pitch 892 indicates the distance between 
teeth 871. The gap 893 is the distance between the rotating 
element 873 and the stationary element 874. 

FIGS. 8B and 8C illustrate labyrinth seals according other 
embodiments. The labyrinth seal includes stationary ele-
ments 881 and 882 placed in contact with rotating elements 
887 and 888. The labyrinth seals of FIG. 8 include a set of 
teeth for each of the stationary and rotating elements. Smaller 
teeth on the rotating elements 887 and 888 may be created by 
stacking thin layers 883 and 884 with thick layers 885 and 886 
of similar thicknesses. The smaller teeth are smaller relative 
to their counterparts on the stationary elements. The smaller 
teeth are aligned axially such that the smaller teeth are located 
in between the longer teeth of the stationary element. Inter-
lacing the teeth in this manner improves seal performance by 
diverting the path of fluid as it is leaking through the seal. In 
one example, the teeth divert leaking fluid away from an 
upstream seal gap away from the next seal gap. 

Additional Considerations 
In the above description, turbomachines are described as 

acting upon various fluids such as the working fluid and the 
turbine drive fluid. The described embodiments also function 
with gases as well as liquids. In some cases, taller blading 
may be used if the turbomachine is operating on a gas in order 
to adjust for reduced density versus a liquid substance. How-
ever, the concepts disclosed herein remain the same regard-
less of which type of substance is used. 

Generally, the turbomachines may be constructed from any 
solid material which approximately maintains its structure 
when the turbomachine is operated at high speed, high tem-
perature, and/or high pressure. The description above makes 
use of the term "metal foil sheets," however a turbomachine 
manufactured according to embodiments of the invention 
may be made from a variety of materials, including different 
metals, metal alloys, other compounds that include metal 
elements, plastics or other organic compounds. Example met-
als from which the turbomachine may be constructed include 
stainless steel, nickel, nickel-based alloys, titanium, titanium-
based alloys, brass, aluminum, or aluminum-based alloys. 

The foregoing description of the embodiments of the 
invention has been presented for the purpose of illustration; it 
is not intended to be exhaustive or to limit the invention to the 
precise forms disclosed. Persons skilled in the relevant art can 
appreciate that many modifications and variations are pos-
sible in light of the above disclosure. 

Finally, the language used in the specification has been 
principally selected for readability and instructional pur-
poses, and it may not have been selected to delineate or 
circumscribe the inventive subject matter. It is therefore 
intended that the scope of the invention be limited not by this 
detailed description, but rather by any claims that issue on an 
application based hereon. Accordingly, the disclosure of the 
embodiments of the invention is intended to be illustrative, 
but not limiting, of the scope of the invention, which is set 
forth in the following claims. 

What is claimed is: 
1. A process for manufacturing a rotating element of a 

turbomachine, the method comprising: 

12 
pre-forming a plurality of sheets of a material, each sheet 

comprising a cross section of the rotating element of the 
turbomachine; 

stacking the sheets in an order to reproduce a structure of 
5 	the rotating element; 

bonding the sheets together to form the rotating element 
therewithin; and 

removing an amount of excess material from the bonded 
sheets to free the rotating element therefrom, 

10 	wherein stacking the sheets in an order to reproduce the 
structure of the rotating element comprises stacking the 
sheets at an angle that is not 0 or 90 degrees with respect 
to the axis of the rotating element. 

15 	2. A process for manufacturing a rotating element of a 
turbomachine, the method comprising: 

pre-forming a plurality of sheets of a material, each sheet 
comprising a cross section of the rotating element of the 
turbomachine; 

20 	stacking the sheets in an order to reproduce a structure of 
the rotating element; 

bonding the sheets together to form the rotating element 
therewithin; and 

removing an amount of excess material from the bonded 
25 	sheets to free the rotating element therefrom, 

wherein stacking the sheets in an order to reproduce the 
structure of the rotating element comprises forming the 
sheets into axisymmetric shells prior to bonding. 

3. A turbomachinery component configured to rotate dur-
30 ing operation, comprising: 

a plurality of preconfigured metal sheets that when bonded 
together define a hub, a shroud, a plurality of blades, and 
a plurality of fully formed primary flow paths for pump- 

35 	ing or compressing a working fluid or gas or for extract- 
ing energy from the working fluid or gas, 

wherein the plurality of blades extend from the hub to the 
shroud and are integrally formed with the hub and the 
shroud by the bonded metal sheets, 

40 	wherein the plurality of preconfigured metal sheets are 
stacked at an angle that is not 0 degrees and not 90 
degrees with respect to a centerline axis of the hub. 

4. A turbomachinery component configured to rotate dur-
ing operation, comprising: 

45 	a plurality of preconfigured metal sheets that when bonded 
together define a hub, a shroud, a plurality of inducer 
blades, a plurality of impeller blades, and a plurality of 
fully formed primary flow paths for pumping or com-
pressing a working fluid or gas or for extracting energy 

50 	from the working fluid or gas, 
wherein the plurality of inducer blades and the plurality of 

impeller blades extend from the hub to the shroud and 
are integrally formed with the hub and the shroud, 

55 
wherein the plurality of preconfigured metal sheets are 

stacked at an angle that is not 0 degrees and not 90 
degrees with respect to a centerline axis of the hub. 

5. A turbomachinery component configured to rotate dur-
ing operation, comprising: 

60 	a plurality of preconfigured metal sheets that when bonded 
together define a hub, a shroud, a plurality of blades, and 
a plurality of fully formed primary flow paths for pump-
ing or compressing a working fluid or gas or for extract-
ing energy from the working fluid or gas, 

65 	wherein the plurality of blades extend from the hub to the 
shroud and are integrally formed with the hub and the 
shroud by the bonded metal sheets, 



US 8,956,123 B2 
13 	 14 

wherein at least one of the preconfigured metal sheets 
defines a portion of each of the hub, the shroud, the 
plurality of blades, and the plurality of fully formed 
primary flow paths, 

wherein a discharge diameter of the blades is 0.4 inches to s 
3 inches, 

wherein a blade height of each of the blades at the dis-
charge diameter is 0.1 inch or less, 

wherein the blade height of each of the blades varies from 
an inlet end to a discharge end of the blades, 	 10 

wherein the plurality of preconfigured metal sheets are 
stacked at an angle that is not 0 degrees and not 90 
degrees with respect to a centerline axis of the hub. 
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