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Abstract 

This work explores the use of alternative internal structural designs within a full-scale wing 

box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers.  The 

baseline wing model is a fully-populated, cantilevered wing box structure of the Common 

Research Model (CRM).  Metrics of interest include the wing weight, the onset of dynamic flutter, 

and the static aeroelastic stresses.  Twelve parametric studies alter the number of internal 

structural members along with their location, orientation, and curvature.  Additional evaluation 

metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable 

wing designs. The best designs of the individual studies are compared and discussed, with a focus 

on weight reduction and flutter resistance.  The largest weight reductions were obtained by 

removing the inner spar, and performance was maintained by shifting stringers forward and/or 

using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% 

increase in stress levels.  Flutter resistance was also maintained using straight-rotated ribs 

although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and 

stress levels were higher.  For some configurations, the differences between curved and straight 

ribs were smaller, which provides motivation for future optimization-based studies to fully exploit 

the trade-offs.   

Nomenclature 

 

ε Distance between two structural members  

η Fraction that determines control line endpoint locations in a wing section 

CG Center of gravity 

CGroot Center of gravity at the root region (first 1/8 of wing semi-span) 

CGtip Center of gravity at the tip region (last 1/8 of wing semi-span) 

CRM Common Research Model 

FGM Functionally graded materials/metals 

i or IBD Inboard wing section 

KS Kreisselmeier-Steinhauser function 

LE Leading edge 

o or OBD Outboard wing section 

p1i, p1o Number of structural members within a wing section  

p1*  Vector defining spanwise structural members as spars or stringers 

(p2i, p3i) , (p2o, p3o) Control line parameters in a wing section  

[p4i, p5i, p6i], [p4o, p5o, p6o] Curvature definition parameters in a wing section  

p7i, p7o Rib rotation parameter  

TE Trailing edge 

x Direction parallel to the aircraft fuselage centerline 

y Direction parallel to ground and perpendicular to the aircraft fuselage 

centerline 

 

 

I. Introduction 

 

Curvilinear spars, ribs, and stiffeners may offer advantages over the conventional straight spar and rib designs 

utilized in most aircraft today in that they widen the structural design space. The traditional orthogonal grid of 

structural members typically has disparate load-bearing requirements during flight, whereas curvilinearity will blend 

these roles, potentially enhancing efficiency.  Additionally curvilinear members may prove to be advantageous in 

coupling wing bending and torsional stiffness for improved aeroelastic tailoring as well.  New additive 
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manufacturing techniques, such as the electron beam freeform fabrication (EBF
3
) [1] are also maturing, providing 

more opportunities for fabricating these potentially complex lightweight structures. 

Curvilinear structural reinforcement of wing structures has been readily demonstrated at the panel level, with 

the majority of the work conducted by Kapania and coworkers at Virginia Tech.  Curved metallic panel stiffeners 

have been shown to improve the performance of a minimum-mass panel under buckling, crippling, and strength 

constraints [2], [3].  Locatelli et al. [4] expands the concept to the wing box level, using full-depth curvilinear ribs 

and spars.  Curvilinear structures are again shown to effectively minimize wing weight under a variety of 

constraints, though aeroelastic physics and metrics are not considered.  Finally, though Refs. [5], [6], and [7] do not 

utilize a curvilinear parameterization, all demonstrate a benefit in structural weight/performance due to a deviation 

from the traditional orthogonal grid of metallic ribs and spars within a wing box.   

NASA is working with Kapania and coworkers at Virginia Tech to support the development of an optimization 

tool that populates a transport aircraft wing with curvilinear spars, ribs, and stiffeners for improved structural 

efficiency and aeroelastic performance.  The curvilinear stiffeners will replace traditional stringers to more directly 

reinforce individual skin panels.  In parallel to the development of this optimization tool, the work presented in this 

paper explores the design space in a more methodical manner to better understand a transport wing’s aeroelastic 

response when various perturbations are made to its design.  

In this report, a fully-populated wing box structure within the Common Research Model (CRM) wing [8] is 

used as a baseline.  An aeroelastic framework of MATLAB, PATRAN, and NASTRAN modules is used to compute 

the static aeroelastic response and the dynamic aeroelastic flutter boundary of a given wing structure.  These 

concepts are described in Section II.  Section III describes the parameterization of the internal structural members of 

the wing box.  Twelve parametric studies are performed on the baseline’s spars, ribs, and stringers to observe which 

design changes in the internal structure have the greatest effect on both increasing the wing’s flutter resistance and 

in decreasing its weight. The first five studies, described in Section III, modify the stringers and inner spar, while 

keeping the baseline rib configuration constant.  The next six studies, described in Section V, modify the ribs, while 

keeping the baseline spar/stringer configuration constant.  Section VI presents the final study which combines spar 

designs with rib designs of the previous studies. In section VII, additional evaluation metrics are considered to 

identify design trends that lead to lighter-weight, aeroelastically stable wing designs, where the results are specific to 

the CRM and similar wing designs.  Section VIII compares the best designs of the individual studies (1-12) and 

illustrates which spar and rib configurations are most effective.  Section IX of this paper provides the final 

conclusions and outlook. 

II. Modeling and Baseline Description 

 

The transport aircraft wing configuration used for this work is the Common Research Model, which is a full-

scale, cantilevered wing.  The CRM is a modern single-aisle transport class aircraft configuration that was generated 

as an open geometry for collaborative research within the aerodynamics community.  It has a wingspan of 192.8 ft, 

an aspect ratio of nine, a taper ratio of 0.275, a leading edge sweep angle of 35°, and a break along the trailing edge 

at 37% of the semi-span (also referred to as a yehudi break) [8]. A traditional internal structure was developed in this 

work to use as a baseline for structural analysis.  The wing box was defined to lie between 10% and 70% of the local 

chord.  

The baseline wing box topology used for this work is shown in Figure 1 and consists of full-depth spars at the 

box leading edge, trailing edge, and one-third of the distance between the two.  Thirty-seven straight ribs are evenly 

distributed from root to tip, each aligned with the airflow. Seven pairs of stringers (one on each skin) travel from 

root to tip: two pairs are evenly distributed between the leading edge spar and the inner spar, and five pairs between 

the inner and trailing edge spar.  These stringers have a rectangular cross section, with a depth of 2.95 inches and a 

thickness of 0.18 inches.  A full-depth rib stiffener exists at each stringer-rib intersection, each with a depth of 2.64 

inches and a thickness of 0.18 inches.    
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Figure 1.  Baseline CRM structure used for tailoring studies: contour indicates local shell thickness (inches). 

The thickness distribution of the ribs, spars, and wing skins is seen in the figure, and aluminum (2024-T3 alloy) 

was used throughout.  Spars, ribs, and skins were modeled with higher-ordered triangular shell elements, stringers 

and rib stiffeners were modeled with beam elements, and the displacement degrees of freedom of all nodes at the 

wing-root of Figure 1 were fixed to zero.  The inertial impact of leading and trailing edge control effectors were 

modeled as lumped masses, connected to the leading and trailing edge spars via un-weighted interpolation elements.   

Six 320 lb masses were used along the inboard leading edge, and three additional of 240 lbs outboard.  Similarly, six 

840 lb masses and three 140 lb masses were used along the trailing edge.  These mass values were calculated by 

scaling data from a similar commercial transport. 

Starting with the outer mold line of the CRM [8], MATLAB scripts were used to generate PATRAN session 

files to populate the CRM outer mold line with a user-defined topology of ribs, spars, stringers, and rib-stiffeners (all 

of which may be curvilinear or straight).  The resulting geometry was auto-meshed using CTRIAR elements (ribs, 

spars, and skins) and CBAR elements (stringers and rib stiffeners) to define the finite element model.  A static 

aeroelastic analysis, buckling analysis, and a flutter analysis were then conducted in NASTRAN.  MATLAB scripts 

were used to generate input files for the analyses and to extract the data from the NASTRAN output files to compare 

performance metrics and assess the aeroelastic tailoring concepts.  Flat-plate aerodynamic paneling was utilized for 

both steady and unsteady air loads, with a 10×10 mesh of boxes for the inboard section of the wing (spanning from 

the root to the yehudi break) and a 10×40 mesh for the outboard wing section (spanning from the yehudi break to the 

tip).  Finite element nodes located at intersections of the upper skins and ribs, or the upper skins and spars, were 

used to interpolate between the structural and aerodynamic meshes.   

Static aeroelastic wing deformation was computed at specified angles of attack of -2°, 0°, 2°, 4°, and 6°, a Mach 

number of 0.85, and an altitude of 35 kft.  The resulting data set was distilled into structural weight, wing tip 

deflection/twist and an aggregate stress metric (Kreisselmeier-Steinhauser (KS) function [9]), where low values are 

desirable.  The flexural axis of the wing [10] and the line of centers of gravity from root to tip were also computed.  

Buckling eigenvalues were computed for each deformed state and the corresponding buckling mode.  This can be 

done for each of the aeroelastic trim cases, but only the extremes (-2° and 6°) are typically of interest.  A flutter 

analysis (p-k method) was then performed with 20 structural dynamic modes at a Mach number of 0.85, and using 

the speed of sound at sea level, the velocity was computed and fixed.  The dynamic pressure varied from 0 to 14.8 

psi and was divided into 250 increments by varying the flow density; zero-damping cross-over points indicate 

flutter.  

The resulting weights and flutter dynamic pressures for the design permutations provided in this report are 

normalized by the baseline wing model’s metrics.  A higher value of the normalized flutter dynamic is desired, 

providing a greater margin between the cruise dynamic pressure and the flutter boundary. 

III. Solution Methodology 

 

In this work, twelve parametric studies are performed on the baseline CRM wing’s internal structure, leaving 

the material and overall thicknesses the same as the baseline, but altering the number, location, orientation, and 

curvilinearity of the ribs and spars.  A brief description of the studies is included in Table 1; the last column refers to 

designs highlighted later in Figure 33.   
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Table 1. Description of the parametric studies performed on the spars and ribs. 

 

Study 

 

Investigations  

Designs in 

Figure 33 

 Spar studies 

1 Number of straight spars and their location  

2 Curvature of inner spar (higher degree of curvature than study 3) a, b 

3 Curvature of inner spar (lower degree of curvature than study 2) c 

4 Curvature of stringers only (inner spar removed) d, e 

5 Varying stringer curvature separately in inboard and outboard (inner spar 

removed) 

 

 Rib studies 

6 Number of straight ribs  

7 Rotating straight ribs (inboard and outboard orientations the same) g 

8 Rotating straight ribs (only outboard orientation modified)  

9 Rib curvature (same curvature for inboard and outboard) h, i 

10 Study 9 but with inner spar removed j, k, l 

11 Rib curvature (different curvature for inboard and outboard)  

 Combined studies 

12 Combines spar/stringer designs (studies 1-5) with rib designs (studies 6-11) m, n 

 

 

In these studies, the geometry of a few specific structural members was fixed, including the front and rear spars, 

one rib at the wing yehudi break, one rib at the wing tip, and the skins. The baseline wing box was defined using a 

series of parameters in order to facilitate the generation of alternate wing designs.  For each new design, a MATLAB 

script generated a set of session files for PATRAN to create a new CAD model of the internal wing box 

configuration and its corresponding finite element mesh.  It was not uncommon for PATRAN to have complications 

meshing a design or creating the CAD surfaces.  Meshing issues often occurred when the alignment of two structural 

members within a design caused highly skewed elements.  Therefore, it was advantageous to study as many designs 

as possible to help minimize the effect of missing data points (gaps in the design space).  To thoroughly explore the 

design space without committing to the numerous function evaluations required of a formal optimization routine, a 

full factorial approach [11] was used when applicable.   

The internal rib and spar structure of the baseline CRM was parameterized using the ‘linked shape 

parameterization’ as described in [12], which defines the structural members (either ribs or spars) of a wing section 

using b-splines.  The schematic in Figure 2 shows three b-splines in the unit square, where each spline has three 

control points: one on the upper edge of the design space, one on the dashed line called the control line (which 

determines the location of maximum curvature for each structural member), and one on the lower edge of the design 

space.  The placement of all of the control points within the design space is defined by six parameters, p1-p6, where 

p1 simply defines the number of b-splines (or structural members).  Parameters p2-p3 (referred to in this work as the 

control line parameters) define the locations of the endpoints of the control line.  These two parameters, along with 

an equation in [12] and parameter p5, determine the location of the inner of three control points defining a structural 

member; this inner point falls on the control line.  Parameters p4 and p6 define the locations of the remaining two 

control points located at the endpoints of each structural member. Together, parameters p4, p5, and p6 are referred 

to in this work as the curvature definition parameters.  This unit square of Figure 2 is mapped to a section of the 

wing whose perimeter is defined as a quadrilateral. 
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Figure 2. ‘Linked shape parameterization’ (Courtesy of authors of Ref. [12]). 

The CRM baseline model has two wing sections, the inboard (IBD) and outboard (OBD).   The ‘linked shape 

parameterization’ is applied twice to the inboard, once for spars and once for ribs, and twice to the outboard, once 

for the spars and once for the ribs, leading to a total of 24 design variables.  Figure 3 shows how the ‘linked shape 

parameterization’ is mapped to the CRM baseline model for both the spars (Figure 3(a)) and ribs (Figure 3(b)).  

Inboard parameters are labeled with an “i” subscript, while parameters in relation to the outboard are labeled with an 

“o” subscript.  Referencing the figure, each structural member is defined by three control points, as mentioned 

above.  Since the spars run spanwise from root to tip, each spar is comprised of two consecutive b-splines, one from 

each wing section.  For continuity, the inboard parameter at the wing break (p6i) and the outboard parameter at the 

wing break (p4o) are coincident; and therefore, p4o is not an independent parameter in the CRM parameterization.  

When referring to the general shape of a spar, five curvature definition parameters which span both wing sections 

are used, i.e. [p4i, p5i, p6i, p5o, p6o].  The locations of the control points associated with p5i and p5o will slightly 

change as the endpoints of the control lines are varied by parameters [p2i, p3i] and [p2o, p3o], respectively.  For the 

ribs, the general shape is defined by three curvature definition parameters, i.e. [p4, p5, p6], where the location of the 

control points associated with p5 will slightly change as parameters p2 and p3 are updated, within the respective 

wing section.    

Figure 4 provides an example of how the six parameters (p1-p6) define ribs within a wing section.  In the 

example, the number of ribs equals three, and the first control point of each structural member is located on the 

leading edge.  The second control point is located on the control line, and the third control point is located on the 

trailing edge. The curvature definition parameters (p4-p6) can define whether the structural members in the wing 

section are convex or concave.  For the CRM application, the convex ribs open toward the wing tip (when p4 and p6 

are greater than p5), while concave ribs open toward the wing root, (when p4 and p6 are less than p5).  Therefore, in 

this rib example, the curves are convex.  The control line parameters define the endpoints of the control line and, in 

this example, provide a unique shape for each rib due to the varying locations of each rib’s maximum curvature.  

When the values of the curvature definition parameters (p4-p6) are equal, the structural members are straight.  

Figure 5 illustrates six designs (1a-2c) having straight members.  When the p4-p6 values for a structural member all 

equal unity, for example [p4i, p5i, p6i, p5o, p6o] = [1, 1, 1, 1, 1] for spars and [p4, p5, p6] = [1, 1, 1] for ribs, the 

straight members are all equally spaced (illustrated as (1a) and (2a), respectively).  For the spars, when all the values 

are greater than unity, for example [4, 4, 4, 4, 4], the straight spars are unequally spaced and shifted toward the 

leading edge, as shown in (1b).  The exact spacing between the members is determined by an equation found in [12].  

When all the values are less than unity, for example [0.25, 0.25, 0.25, 0.25, 0.25], the straight spars are unequally 

spaced and shifted toward the trailing edge, as shown in (1c).  For the ribs, when all the values are greater than 

unity, for example [4, 4, 4], the straight ribs are all unequally spaced and shifted toward the wing tip, as shown in 

(2b).  When all the values are less than unity, for example [0.25, 0.25, 0.25], the straight ribs are all unequally 

spaced and shifted toward the wing root, as shown in (2c).   
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Figure 3. Application of the ‘linked shape parameterization’ (p1-p6) in both sections of the CRM wing box.  

The parameters define 5 control points (noted as circles) for each spar and 3 control points (noted as circles) 

for each rib.  The arrows for the epsilon values are representative of their location in the parameterization 

but not their actual length in this example.  For clarity, the control lines are not explicitly shown. 

 

 
 

Figure 4.  An example of the application of ‘linked shape parameterization’ for defining ribs within a wing 

section. 
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Figure 5. Illustration of how the values of the curvature definition parameter (p4-p6) can create straight 

structural members with various spacings. 

When the values of the curvature definition parameters (p4-p6) are unequal to one another, the structural 

members are no longer straight. Figure 6 shows the effect of parameters p4-p6 on four spars when the parameters 

are not equal.  The control lines, shown as the dashed lines, are the same as the baseline’s, (p2=p3=0.5).   The 

outboard wing section of the left figure happens to have straight spars since p6i=p5o=p6o.  Similarly, Figure 7 shows 

the effect of parameters p4-p6 on rib shape, recalling that the parameter values can define convex or concave ribs.  

In the figure, the control lines for the ribs are located along the mid-chord, in the same location as the baseline’s 

control lines, (p2=p3=0.5).    

In these studies, the control line is varied using five pairs of values for the control line parameters, p2 and p3.  

The five pairs of values are shown at the bottom of Table 2 and are represented within the table by dashed lines.  

The top row illustrates the effect that each pair of control line parameters has on a set of four spars within the 

inboard wing section, where the curvature definition parameters are constant over the entire row at [p4i, p5i, p6i] = 

[4, 0.25 ,4].  The same is shown for the ribs but using a different set of curvature definition parameters, [p4i, p5i, p6i] 

= [1, 4, 1]. 

The baseline CRM wing was introduced in section II.  Its corresponding parameters are shown in Table 3, along 

with a schematic of the wing box in Figure 8.  Since the baseline’s ribs are straight and uniformly spaced and the 

inner spar is straight (at least within each wing section), the curvature definition parameters (p4-p6) are all equal to 

unity.  The baseline’s control lines in each wing section are defined with p2=p3=0.5, which means the spar control 

lines are located along the mid-span of each wing section, while the rib control lines are located along the mid-chord 

of each section.  

A few additional parameters were added to the ‘linked shape parameterization’ to facilitate further design 

investigations.  First, the stringers of the baseline CRM model were incorporated into the parametric model by 

replacing a single spar with a pair of stringers (one on the upper skin and one on the lower skin). The spars and 

stringers are associated in that the stringers take on the same location and shape as the spar it replaces.  Therefore, 

by introducing an additional parameter, p1*, which is a binary vector whose length is the total number of spars and 

stringers, the members can be toggled between a full depth design (spars) and a partial depth design (stringers), 

where spars = 1 and stringers = 0.  For the baseline model, the third member (of eight members total) was defined as 
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a spar while all the other members were stringers, i.e. p1* = [00100000].   An additional parameter, p7, was also 

added to the ribs to populate the section with straight ribs at a specified angle of orientation, since the ‘linked shape 

parameterization’ had limitations in this regard.  When using this parameter (which was not used for the baseline), 

the rib definition parameters (p2-p6) are ignored since the rotated ribs have no curvature. 

 

 

 
 

Figure 6.  Three examples showing the effect of parameters p4-p6 (more specifically [p4i, p5i, p6i, p5o, p6o]) on 

the spar designs. 

 
 

Figure 7.  Six examples showing the effect of parameters p4-p6 on the rib designs.  Certain combinations of 

values can shift the curves toward the leading edge (LE) or trailing edge (TE). 
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Table 2.  Examples showing the effect of the control line (dashed) on a constant set of curvature definition 

parameters (p4-p6) for spars and ribs in the inboard. 

 
 

 
 

Figure 8.  Schematic of the baseline CRM model, where the thick lines represent the parameterized spars and 

ribs, the dashed lines represent the control lines, and the solid thin red lines represent the stringers.  Stringers 

were incorporated into the baseline model using an additional parameter, p1*. 

Table 3.  Parameters for the baseline CRM model. 

 Parameters Baseline Values 

Spars/stringers p1* [00100000] 

IBD Spars/stringers  [p1, p2, p3, p4, p5, p6] [8, 0.5, 0.5, 1, 1, 1]  

OBD Spars/stringers  [p1, p2, p3, p5, p6] [8, 0.5, 0.5, 1, 1] 

IBD Ribs  [p1, p2, p3, p4, p5, p6], p7 [10, 0.5, 0.5, 1, 1, 1], N/A 

OBD Ribs  [p1, p2, p3, p4, p5, p6], p7 [25, 0.5, 0.5, 1, 1, 1], N/A 

 

IV. Spar and Stringer Topology Studies 

In this section, five parametric studies are performed on the spars and stringers. Using the parameterization 

described above, the spars and stringers are associated with one another.  Therefore, it is not possible to only vary 

the inner spar’s shape without also varying the stringers’ shape.  However, it is possible to exclude the inner spars 

and study the effect of only using stringers.  The first three parametric studies focus on spars and stringers (referred 
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to as spar/stringer studies), while the last two consider stringers only.   An alternative stringer configuration, run-out 

stringers, does not have a geometric dependence on the spars and often times cross over and intersect with the spars.  

Run-out stringers were briefly implemented in this work, but the intersections created highly skewed elements often 

causing meshing errors (and therefore are not used here).   

A. Number and Location of Straight Spars 

The first parametric study explores how the number of straight spars and their location affect wing weight and 

the flutter speed. As mentioned before, the baseline design has eight equally spaced spanwise structural members 

where all the members are stringers except for the third member, which is a spar.  In this study, the total number of 

spanwise structural members is always eight, like the baseline.  Only the binary values in parameter p1*, which 

identifies each spanwise structural member as a spar or a pair of stringers, is modified as delineated in Table 4, 

(where this table is included for consistency purposes as each subsequent study will have a similar table).  Figure 9 

shows the normalized weight and normalized flutter dynamic pressure results with respect to the baseline; designs 

are distinguished from one another as described in the key.  With a change in spar location, both the mass and 

stiffness (and their distributions within the wing) are modified.  For the most part, the results show that the addition 

of spars increases the flutter speed.  In every case, as the number of spars is held constant, the flutter speed increases 

when the spars are moved forward, while the opposite occurs when the spars move aft. The effect is significant 

enough that the design with four spars all positioned toward the leading edge has the same flutter speed as the design 

with eight spars.  This type of tailoring technique, i.e., moving the center of gravity (CG) forward especially at the 

outboard, is well-known for flutter speed improvement [13]. 

 

Table 4.  Study 1: number and location of spars. 

 Modified parameters Parameter values 

  

Distinction between a spar and a stringer p1* 0’s or 1’s 

 

 
 

Figure 9.  Results of the studies on the number of spars and their location (study #1).  Data is normalized by 

the baseline model’s weight and flutter dynamic pressure. 
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B. Spar Curvature 

The next two parametric studies (#2 and #3) explore how the curvature definition of spar/stringers (represented 

by [p4i, p5i, p6i, p5o, p6o]) affect wing weight and flutter speed.  The values used for each parameter are shown in 

Table 5 and Table 6. The only difference between these studies is that the values in study #2 more dramatically shift 

the spar/stringer control points either closer to the leading edge (when using 10 instead of 4) or closer to the trailing 

edge (when using 0.1 instead of 0.25).  A full factorial study would have considered 243 (3
5
) permutations; 

however, given the results in the previous study, which showed better stability when the spars were closer to the 

leading edge, designs having all the spar’s control points shifted toward the trailing edge, i.e., [p4i, p5i, p6i, p5o, p6o]  

all ≤ 1 (except the baseline),were not considered in this study.  

Figure 10 shows the results compared to the baseline design for these two studies. Interestingly, there is 

minimal trade-off between weight and flutter speed. After analyzing the scatter of permutations, a trend between the 

curvature definition parameters and the flutter speed was identified by sorting the scatter by the last two parameters, 

p5o and p6o, as indicated by the figure’s legends. In other words, the flutter speed was influenced most by the 

position of the two control points located closest to the wing tip, where positioning toward the leading edge resulted 

in higher flutter speed, and vice versa.  Once again, the shift of the CG forward greatly affects the flutter speed, 

especially at the wing tip [13].  Among the resulting designs, study #2 included a design where the spar was straight 

and also shifted toward the leading edge, i.e. the curvature definition parameters were [10, 10, 10, 10, 10].  This 

design (noted as ‘a’ in Figure 10) performs just as well as the other designs which all have curvature in the spars.  

However, in shifting the spars and stringers toward the leading edge, the trailing edge is not well supported by the 

stringers (which is analogous to ‘1b’ in Figure 5).  By using spars and stringers equally spaced in the inboard, [p4i, 

p5i, p6i] = [1, 1, 1], but still curve toward the leading edge as they approach the wing tip for the purpose of flutter 

resistance, [p5o, p6o] = [10, 10], other considerations such as skin buckling may be improved using curvilinear 

spar/stringers.  For example, the design with no curvature, i.e. [10, 10, 10, 10, 10], has a higher flutter speed than the 

baseline but a 10% drop in buckling resistance, where a design with curvature, i.e. [1, 1, 1, 10, 10] (depicted as 

design ‘b’ in the figure), has the same buckling resistance as the baseline and still has a higher flutter speed than the 

baseline.  Finally, between the two studies, study #2 has greater biasing due to its parameter values and also 

achieves a larger range of flutter speeds.  

 

Table 5.  Study 2: spar and stringer curvature (more curvature potentional). 

 Modified parameters Parameter values 

Curvature definition p4i, p5i, p6i, p5o, p6o 0.1, 1, or 10 

 

Table 6.  Study 3: spar and stringer curvature (less curvature potential). 

 Modified parameters Parameter values 

Curvature definition p4i, p5i, p6i, p5o, p6o 0.25, 1, or 4 
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(a) Study #2 (b) Study #3 

 

Figure 10.  Results of the spar curvature studies (study #2 and #3). 

C. Stringer Curvature 
The next two parametric studies remove the inner spar to investigate the effects of stringers only.  Instead of 

comparing to the baseline design, the designs in this study are compared to a design identical to the baseline but with 

no inner spar and a total of 8 pairs of stringers. The first of the two studies (study #4) explores how stringer 

curvature affects wing weight and the flutter speed. The values used for each parameter are described in Table 7 and 

were identical to those used in study #3.  Figure 11 shows the results compared to a design with 8 straight stringers.  

Similar to the spar studies above, the flutter speed is influenced most by the position of the two control points 

located closest to the wing tip (p5o and p6o), where positioning toward the leading edge results in higher flutter 

speed.  As compared to study #3, which includes an inner spar and uses the same curvature definition values (0.25, 

1, and 4), the range in flutter speeds and weight is slightly less when the spar is not present. 

 

Table 7.  Study 4: stringer curvature, p1* = [00000000]. 

 Modified parameters Parameter values 

Curvature definition p4i, p5i, p6i, p5o, p6o 0.25, 1, or 4   
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Figure 11.  Results of the stringer curvature study (study #4). 

The next parametric study (#5) investigates the effects of varying the control line parameters (p2 and p3) and 

compares the difference between modifying the inboard versus the outboard. Five designs (each having a different 

set of curvature definition parameters) were chosen from the previous study (#4), when the control line parameters 

were the same as the baseline’s, p2=p3=0.5.  These chosen designs were then modified using various control line 

parameters.  The values used for each of the parameters modified in this study are shown in Table 8.  A total of 80 

(4x4x5) permutations were possible.  Figure 12 shows the weight and flutter results plotted twice, i.e., both subplots 

show the same data but the symbols are sorted differently.  The solid triangles indicate the designs chosen from the 

previous study.  The symbols located around each solid triangle are the results of varying the control line 

parameters.  In Figure 12(a), the data is sorted by control line parameters in the inboard wing section, and in Figure 

12(b), the data is sorted by control line parameters in the outboard wing section. 

 

Table 8.  Study 5: stringer control line and OBD and IBD sensitivities, p1* = [00000000]. 

 Modified parameters Parameter values 

Control line of IBD  p2i, p3i [0.2, 0.2], [0.8, 0.8], [0.9, 0.1], or [0.1, 0.9] 

Control line of OBD  p2o, p3o [0.2, 0.2], [0.8, 0.8], [0.9, 0.1], or [0.1, 0.9] 

Curvature definitions of 5 

designs from previous 

study which uses [0.5,0.5] 

for the control line 

p4i, p5i, p6i, p5o, p6o [4, 0.25, 4, 4, 4], 

[1, 0.25, 4, 4, 4], 

[0.25, 1, 4, 4, 4], 

[1, 0.25, 0.25, 4, 1], or 

[4, 0.25, 4, 0.25, 0.25] 

 

By comparing the two subplots, he designs having the same control line parameters in the outboard have similar 

flutter resistance, where changes to the inboard only seem to affect the weight of the design, not its flutter resistance.  

Therefore, as seen earlier, the wing’s stability is most affected by the inertial distribution in the outboard portions of 

the wing.  Additionally, the control line parameters of [0.9, 0.1] provide about a 3% increase in the flutter speed 

compared to the other control line parameters.  Figure 13 defines the outboard curvature definition parameters, p6i, 

p5o, and p6o, as [4,4,4] and applies control line parameters [0.9, 0.1] (solid lines) and  [0.1, 0.9] (dashed lines) to 

compare the resulting difference in the stringer shapes.  The stringers having the [0.9, 0.1] control line parameters 

bend toward the leading edge in the midsection of the outboard wing, where the stringers having the [0.1, 0.9] 

control line parameters are more aft.  Considering that a similar improvement could be made by updating the control 

line in the curvilinear spar designs of studies #2 and #3, the best design in study #3 (the upper leftmost design in 

Figure 10 (b)) was modified to have [0.9, 0.1] as its control line parameters for the outboard wing section.  The 

resulting flutter speed was increased by 2.1%.  
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Figure 12.  Results of the stringer curvature study when the control line position is different between the IBD 

and OBD wing sections (study #5). 

 
 

Figure 13.  Comparing the stringer curvature resulting from control line parameter values of [0.9, 0.1] (solid 

lines) and [0.1, 0.9] (dashed lines) within the outboard wing section of the parameterized model, where the 

curvature definition parameters [p6i, p5o, p6o] equal [4, 4, 4]. 

 

V. Rib Topology Studies 

 

Six parametric studies are conducted to evaluate the effect of various rib topologies. The first two studies 

involve straight ribs: the number of ribs and their orientation.  The remaining studies consider the effects of rib 
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curvature.  It is important to keep in mind that one role of the ribs is to preserve the airfoil shape (the outer mold 

line) under air loads [14], making their spacing (topology) significant.  The analysis here does not capture this role. 

A. Number and Location of Straight Ribs 
The first parametric study of the ribs (study #6) explores the effect of the number of ribs on the wing weight and 

flutter speed.  The values used for each parameter are described in Table 9.  Figure 14 summarizes the results of 

analyzing all combinations of the number of ribs in the inboard and outboard sections and compares them to the 

baseline design, which has 10 ribs in the inboard section and 25 ribs in the outboard section.  The two arrows in the 

figure show the trends when increasing the number of ribs in both the inboard and outboard wing sections.  The 

slopes of these arrows clearly show that increasing the number of ribs in the outboard section has a larger effect on 

the wing’s stability than increasing the number of ribs in the inboard section.  This is because straight ribs do not 

bear as much load (as a spar would for example) so their main impact here is inertial, where inertial changes in the 

outboard affect flutter speed the most [13].  Interestingly, when compared to the baseline, designs with fewer ribs in 

the inboard and more ribs in the outboard can have both lighter weight and an increase in flutter speed; however, 

these designs may have buckling issues and/or may not sufficiently support the wing skin, at least in the inboard.  

 

Table 9.  Study 6: number of ribs. 

 Modified parameters Parameter values 

# of ribs in IBD p1i 3, 6, or 10 

# of ribs in OBD p1o 5, 10, 15, 20, 25, 30, or 35 

 

 

Figure 14.  Results of the study on the number of straight ribs (study #6). 

B. Orientation of Straight Ribs 
The next parametric study (#7) explores the effect of the orientation of straight ribs.  The values used for each 

parameter are described in Table 10.  Parameter p7 is the angle of orientation of the straight ribs in degrees.  Figure 

15 shows the results compared to the baseline design.  In this case, no design was superior to the baseline (meaning 

no design had both less weight and a higher flutter speed).   The results indicate a clear trend, however, with both a 

maximum and minimum flutter speed (this same trend is found in [7].)  The maximum flutter speed occurs when the 

rib orientations are at 24 degrees, labeled as ‘a’; the minimum flutter speed occurs when the rib orientation are at -36 

degrees, labeled as ‘b’.  Although each design has the same number of ribs, the wing sweep causes the weight to 

vary between designs since the ribs become either longer or shorter based on their orientation within the sweptback 
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wing.  The lightest configuration occurs when the ribs are normal to the leading edge, and therefore is commonly 

used in transport aircraft design [14]. 

 

Table 10.  Study 7: rib orientation (IBD and OBD the same). 

 Modified parameters  Parameter values 

Rib  

orientation 

p7i and p7o   

(p7i = p7o) 
Various values chosen between –57 and 30 degrees.  Designs with 

values above 30 had difficulties meshing appropriately and could 

not be evaluated. 

 

 
 

Figure 15.  Results of the straight rib oriention study  (study #7 [and study #8]). 

The next parametric study (#8) only explores the orientation of the outboard ribs; the inboard ribs are straight 

and parallel with the flow, just like the baseline.  The values used for each parameter are shown in Table 11.  The 

subfigure of Figure 15 shows that the trend continues to hold, although there is a slight decrease in flutter resistance 

and weight range, as compared to study #7 when the inboard ribs are also reoriented.   

 

Table 11.  Study 8: rib orientation (IBD and OBD different). 

 Modified parameters  Parameter values 

Rib  

orientation 

p7o Various values chosen between –58 and 34 degrees.  Designs with 

values below -58 and above 34 had difficulties meshing appropriately 

and could not be evaluated. 

C. Rib curvature 

The next three parametric studies (#9, #10, and #11) investigate the effects of rib curvature. For the first study, 

the curvature definition parameters (p4, p5, and p6) are all assigned one of three values, 0.25, 1, or 4, resulting in 27 

permutations.  The control line location is also varied by changing p2 and p3 with the values shown in Table 12.  

When the three curvature definition parameters have the same value (p4=p5=p6), the ribs are straight although their 

spacing is not necessarily uniform depending on their value.  Some examples were shown earlier in Figure 5.  Figure 



17 

 

7 showed the effect when parameters p4-p6 were not equal.  Various curvatures can be defined.  The location of the 

maximum curvature can be modified by the values of p2 and p3 which determine the control line position.   

 

Table 12.  Study 9: rib curvature (IBD and OBD rib parameters the same). 

 Modified parameters Parameter values 

Control line p2, p3 [0.5, 0.5], [0.2, 0.2], [0.8, 0.8], [0.9, 0.1], or [0.1, 0.9] 

Curvature definition p4, p5, p6  0.25, 1, or 4 

 

These 27 permutations were first evaluated with the control lines used for the baseline, p2=p3=0.5.  The results 

of these designs are indicated with symbols (as opposed to small dots) in Figure 16.  The remaining designs, 

indicated by small dots, are the 27 permutations evaluated with the remaining four sets of control line parameters 

found in Table 12, resulting in 135 (27x5) maximum possible number of permutations.  The design with the lowest 

weight is understandably the design with straight ribs all shifted outboard, where the wing taper decreases the 

volume of available material.  Of all the designs, only a few were more superior to the baseline in terms of both the 

weight and flutter speed.  Of these few designs, the design with the highest flutter speed is indicated by a star in the 

figure.  This design is only slightly lighter (<0.2%) than the baseline design and has a 3.4% increase in flutter speed. 

The stresses also increased by 1.2% with respect to the KS function, which indicates increased aeroelastic stress 

levels throughout the wing. 

 

 
 

Figure 16.  Results of the rib curvature study (study #9). 

Looking at only the 27 original designs, there is one convex design that is slightly better than the baseline in 

both weight and flutter speed, but no trends are apparent based on convexity or concavity.  Therefore, individual 

designs of the 27 original designs were compared to their counterpart designs that had the same curvature definition 

values (p4-p6) but different control line parameters (p2, p3).  Figure 17 shows four sets of designs; designs (a) and 

(b) both have convex ribs, while designs (c) and (d) both have concave ribs. Each set of designs is sorted from best 

to worst in terms of flutter resistance.  By observing the changes in the control line values from one design to 

another, the designs with convex ribs (a and b) have an increased flutter speed as the control line is shifted toward 

the leading edge.  Designs (c) and (d) both have concave ribs and an increased flutter speed as the control line is 

shifted toward the trailing edge. 
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Interestingly, in all four groups of designs (a-d), those with the highest flutter speed (the leftmost designs) have 

a majority of their rib length at approximately 26 degrees orientation.  This is similar to the results of the straight rib 

rotation studies (Figure 10) that had 24 degrees as the best rib orientation.  In essence, the best curvature 

approximates the best rib rotation angle for the majority of the rib length.  For comparison purposes, Figure 18 plots 

the results of these five designs, i.e. the best rib rotation design (from study #7) and the best flutter designs shown on 

the left side of Figure 17.  Of the five designs, the design with ribs that are straight has the second highest flutter 

speed and the highest stress levels (represented by the KS function).  All of the designs have a higher flutter speed 

than the baseline.   

 

 

 
 

Figure 17.  Comparison between four different groups of designs that each have the same curvature 

definition parameters (p4-p6) but differing control line parameters (p2,p3).  The parameters p4-p6 are: (a) [4 

1 4], (b) [4 0.25 1], (c) [1 4 4], and (d) [1 4 1].  The designs with the highest flutter speed are the left-most 

designs and all have their ribs oriented in a similar direction. 
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Figure 18.  Comparing the best designs in the previous figure to the design in study #7 that has straight ribs 

all oriented at 24 degrees. 

The next parametric study (#10) removes the spar to determine whether the trends of the previous study are 

dependent on the presence of the inner spar.  The same set of 27 permutations of curvature definition parameters 

(p4-p6) were used.  Permutations of the three sets of control line parameters are shown in Table 13 and define 

control lines at constant chord locations. A total of 81 (27x3) permutations were possible. Figure 19 compares the 

results from designs having no inner spar to the designs with a spar.  The arrows in the figure identify corresponding 

designs that have the same rib configurations but either the absence or presence of an inner spar.  With the absence 

of the spar, the flutter speed decreased by 2-8%.  This range in flutter penalties indicates that some rib designs are 

less sensitive to spar removal than others, meaning that they potentially make up for the lost stiffness and mass of 

the missing inner spar.  

To investigate why some rib configurations may have a lower flutter penalty, Figure 20 plots each rib design by 

its flutter penalty versus its normalized weight.  A general, linear trend is apparent, suggesting that heavier designs 

will have a larger decrease in flutter speed when the inner spar is removed, which seems counterintuitive.  For 

designs having the same weight, the data still shows about a 3% range in flutter penalty values.  Therefore, for the 

same weight, some rib configurations are less sensitive to the spar removal than others.  To explore this, Figure 

21(a) shows designs least affected by spar removal, with respect to weight (i.e., these five designs are located on the 

lower edge of the band of points in Figure 20 and are circled).  Figure 21(b) shows designs most affected by spar 

removal, with respect to weight (i.e., these five designs are located on the upper edge of the band of points in Figure 

20 and are also circled).  The designs in Figure 21(a) have greater curvature than designs in Figure 21(b), suggesting 

that designs having more rib curvature partially serve as the missing spar.   

Four designs are highlighted in Figure 20: two designs have maximum curvature near the spar location, a third 

design has maximum curvature near the trailing edge, and a fourth design has rotated straight-ribs (this design was 

the best design of the rotated rib study and was added for comparison purposes).  Since the inner spar is located 

toward the leading edge, it would be expected that designs having maximum curvature near the leading edge may be 

partially serving as a spar and have less of a flutter penalty.  However, Figure 20 shows that a design having 

maximum curvature near the trailing edge has comparable flutter penalties with those designs having maximum 

curvature near the inner spar location, especially when taking into account the linear trend across the data. 
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As a final observation, three of the four designs illustrated in Figure 20 have nearly the same weight.  As 

expected, the design with no rib curvature has the greatest flutter penalty.  The other two designs have ribs of similar 

curvature and lower penalties, yet there is a relatively large discrepancy between their flutter penalties, indicating 

again that the location of maximum curvature is not a clear indicator of a design’s flutter resistance in the absence of 

an inner spar. However, in general, these initial studies suggest that for the same weight, designs that have more rib 

curvature tend to have less of a flutter penalty when the inner spar is removed. 

Interestingly, the new results in Figure 19 indicate a design more superior than the best design in the previous 

rib study, at least with respect to weight and flutter speed. Originally, when this particular rib design had a spar, it 

had about a 7% higher flutter speed than the baseline but was heavier than the baseline.  With the removal of the 

spar, the weight is now 5.5% less than the baseline and the flutter speed is now 5.1% higher than the baseline.  The 

stresses however increased by 2.9% with respect to the baseline’s KS value. 

 

Table 13.  Study 10: rib curvature without the inner spar included (IBD and OBD rib parameters the same). 

 Modified parameters Parameter values 

Control line p2, p3 [0.5, 0.5], [0.2, 0.2], [0.8, 0.8] 

Curvature definition p4, p5, and p6  0.25, 1, or 4 

 

 

 
 

Figure 19.  Results from the rib curvature study having no inner spar (study #10). 

The third parametric study involving curved ribs (study #11) employs different rib curvatures for the inboard 

and outboard wing sections.  Table 14 shows the parameters varied in this study; the control line variable in the 

inboard and outboard sections were limited to either [0.2, 0.2] or [0.8, 0.8].  In addition to these parameters of Table 

14, an additional case with straight ribs was considered, where the parameters for p2-p6 were [0.2, 0.2, 1, 1, 1].  

Figure 22 summarizes the results for this study.  Figure 22(a) and (b) both show the exact same data; however, the 

data is sorted differently between the two figures.  Referencing Figure 22(b), only half of the designs are highlighted 
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with symbols as opposed to small dots.  These designs were selected for clarity purposes and all have [0.8, 0.8] as 

the control line parameters in the outboard section of the wing.  Their symbols distinguish which curvature 

definition parameters each design has in the outboard wing section.  These same designs are highlighted in Figure 

22(a), but their data points are now sorted by the curvature definition parameters (p4-p6) within the inboard section 

of each wing design.  Figure 22(b) shows how the designs having the same curvature definitions in the outboard all 

have nearly the same flutter speed, while Figure 22(a) shows that the inboard curvature definitions of these designs 

tends to affect the weight of a design but not its flutter speed.  Once again, changes to the outboard have a greater 

effect on the wing’s aeroelastic response, than the inboard.   

 

 
Figure 20. The reduction of flutter speed due to removal of the inner spar (study #10). 
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Figure 21. Designs corresponding to the circled data points on the upper (b) and lower (a) edges of the band 

in Figure 20. 
 

Table 14.  Study 11: rib curvature (IBD and OBD rib parameters different). 

 Modified parameters Parameter values 

Control line p2, p3 [0.2, 0.2] or [0.8, 0.8] 

Curvature definition p4, p5, and p6  [4, 0.25, 1], [4, 1, 4], [1, 4, 4], or [0.25, 4, 1] 
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(b) 

 

Figure 22.  Results of the rib curvature study which uses different rib definitions between the IBD and OBD 

wing sections (study #11). 

VI. Combining Curvilinear Spars and Ribs 

 

To this point, the effect of having curvilinear spars, ribs, and stiffeners simultaneously has not been explored; 

however, given a few of the studies above which removed spars from a design, there is indication that changes to 

spars or ribs may be fairly independent of one another.  This section provides one parametric study that combines 

curvilinear spars, stringers, and ribs, where the results here are less thorough than before since the design space is 

larger. 

In this study, curvilinear spars and curvilinear ribs are combined to determine whether their relative 

performances complement (create a more superior design) or oppose one another.  The 27 rib permutations from 

study #9 (which all used straight spars) are used for the comparison.  For each of the rib permutations, three new 

designs were created, each using a different curvilinear spar definition, creating at most 108 (27+27x3) design 

permutations.  These new designs were then compared back to the original rib permutation having straight spars.  

Figure 23 shows the three alternate spar configurations chosen ‘a’ - ‘c’, and Table 15 shows the values of each 

parameter modified.  Each of the three designs have different values for their outboard-most control points, p5o and 

p6o, where p5o was constrained to equal p6o. This choice of parameters was based on the results of studies #2 and #3, 

to ensure a large range of flutter speeds between the three spar designs. It was more important to have spar designs 

with a range of flutter speeds than to have spars that were curvilinear along their entire span, since the flutter 

resistance of each spar/rib combined design is evaluated here for trends.   

The results of this study are shown in Figure 24.  The permutations using design ‘a’ for the spar configuration 

are highlighted with circles. The permutations using design ‘c’ are highlighted with triangles.  The permutations 

using p5o = p6o = 1 (design ‘b’ and the straight spars) are highlighted with squares and indicated in the figure.   In 

the figure, five groups of designs are identified, where each group has a constant rib configuration.  The trend is 

consistent between each group of designs, suggesting that independent of the rib configuration, a design can have an 

increase in its flutter resistance by incorporating a spar configuration that is of higher performance than its current 
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configuration. The next section of the paper is focused on trends in the data and will continue to explore whether rib 

and spar configurations that have a high resistance to flutter continue to complement one another when combined.   

 

 
 

Figure 23.  Three curvilinear spar/stringer configurations applied to the 27 original curved rib designs from 

study #9. 

 

 

Table 15.  Study 12: combined curvilinear spars and ribs. 

 Modified 

parameters 

Parameter values 

Rib curvature definition 

(creates 27 permutations) 

p4, p5,and p6  0.25, 1, or 4 

Spar definition [p2i, p3i, p2o, p3o, … 

p4i, p5i, p6i, p5o, p6o]  

 

Spar/stringers(baseline): [0.5,0.5,0.5,0.5,1,1,1,1,1]; 

Spar/stringers(a): [0.5,0.5,0.5,0.5,0.25,1,4,4,4], 

Spar/stringers(b): [0.5,0.5,0.9,0.1,4,4,1,1,1], or 

Spar/stringers(c): [0.5,0.5,0.9,0.1,0.25,4,1,0.25,0.25]  
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Figure 24.  Results from combining curvilinear spars with curvilinear ribs (study #12). 

Given this trend, the best design of the previous rib curvature study shown in Figure 16 was modified to have a 

high performing curvilinear spar, which used the parameters of design ‘a’ except for (p2o and p3o) which were 

updated to be [0.9, 0.1] (the highest performing control line for spars).  This design is illustrated in Figure 24.  The 

result is a 1.2% decrease in weight and an 11.3% increase in flutter resistance.  The stresses also increased by 1.3% 

with respect to the KS function.  Thus, by comparing this design with the best design in Figure 19, which had rib 

curvature and no spar, this design outperforms in flutter resistance but not in weight reduction. 

VII. Identifying Design Trends 

 

The goal in this section is to identify design trends that lead to lighter-weight, aeroelastically stable wing 

designs, with respect to the baseline.  Weight and flutter were the focus of the previous parametric studies (#1-12).  

As mentioned earlier, other evaluation metrics were calculated for each design, including: an aggregate stress 

function (the Kreisselmeier-Steinhauser (KS) function), the position of the wing’s flexural axis (measured at the 

wing tip), the global buckling eigenvalue, the wing tip deflection, the wing tip twist, the shear at the root, the root 

bending moment, the root torsional moment, and the center of gravity (CG) of the wing.  Additionally, the CG of 

eight individual spanwise segments of the wingspan was calculated so that the section CG at the root (CGroot) and 

the section CG at the wing tip (CGtip) could be evaluated for variances in mass distribution along the wingspan.  

These evaluation metrics are considered in this trend-identification study to provide additional insight into each 

wing’s properties and behavior. 

Given the many design perturbations generated over the twelve parametric studies, only a subset of those 

designs are analyzed for trends.  Multiple subsets (referred to as groups) were chosen to observe whether a trend is 

consistent across all groups of designs.  Table 16 provides information about each of the groups (A-G). In all cases, 

except group G, the designs chosen for the group came from a single parametric study.  Since some studies did not 

have much weight variation amongst the designs, due to keeping the number of structural members (spars and ribs) 

constant for comparison purposes, designs having a large range in flutter speeds and similar weight were chosen for 

each group.  

Groups A and B had the smallest range in weight because they were chosen from studies that only varied the 

curvature of the spars or stringers.  Groups C – E had slightly larger changes in weight; however, these designs were 
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specifically chosen from parametric studies that only varied a single parameter, such as the spar location study 

(where spanwise members were toggled between spars and stringers using p1* in Figure 9) or the rib orientation 

studies (where the straight ribs were rotated by p7 in Figure 15).  This way, the change from one design to another 

was gradual and intentional such that potential trends may be easier to detect.  For example, in group D, which uses 

designs that varied the location of two spars, only four designs of a possible twelve were chosen for the subset.  

These designs placed a pair of adjacent spars in four different locations from leading edge to trailing edge, i.e. p1* = 

[11000000], [00110000], [00001100], and [0000011].   

Group F has the broadest range in flutter speeds.  Unlike the previous three groups, this group does not have a 

small change in its internal structure configuration from one design to the next since the designs were chosen from 

the study that combined the curvilinear ribs and curvilinear spars, resulting in multiple parameters changing from 

one design to the next.  Finally, the designs chosen for group G were taken from the best designs across multiple 

studies.  All of the designs within this group have a lower weight and higher flutter speed than the baseline.  The 

purpose of this group is to detect whether these designs all have something in common that can explain their 

superiority to the baseline with respect to weight and flutter speed. 

 

Table 16.  Description of groups of designs used for the trends study 

Group 

ID 

Group title Studies (and corresponding 

figures) where the subsets of 

data were sourced  

Weight 

range (%) 

Flutter 

range 

(%) 

Figure 

showing 

trend data 

A Spar/stringer curvature Spar/stringer curvature  

#3, (Figure 10(b)) 

0.36 

 

13.7 Figure 25 

B Stringer only curvature Stringer curvature 

#4, (Figure 11) 

0.07 

 

12.3 Figure 26 

C Location of 1 spar Spar number and location 

#1, (Figure 9) 

2.1 

 

6.0 Figure 27 

D Location of 2 spars Spar number and location 

#1, (Figure 9) 

3.3 

 

10.6 Figure 28 

E Rib orientation Rib orientation 

#7, (Figure 15) 

3.9 

 

11.7 Figure 29 

F Large flutter range Combined curvilinear spars 

and ribs 

#13, (Figure 24) 

0.72 

 

18.2 Figure 30 

G Improved weight and flutter 

resistance 

#2, #3, #4, #5, #6, #9, #10, 

and #12 (Numerous figures 

above) 

7.4 12.9 Figure 31 

 

Table 17 summarizes the most apparent trends observed from reviewing the data found in groups A – G.  Data 

from each of the groups is organized in Figure 25 – Figure 31.  Each figure has fifteen plots labeled (a) – (o).  Since 

each group of designs has a relatively large range in flutter speeds, the normalized dynamic pressure at flutter is 

always used for the x-axis.  When looking for correlations, the focus was more on detecting general trends and less 

on quantifying the correlations.  For that reason, the y-axis of all the plots in these figures is also normalized; the 

title above each plot indicates the evaluation metric being considered.   

The first trend involves weight and is observed in groups C - G.  (Groups A – B did not have a large enough 

weight range to observe a trend).  As weight was decreased in the wing, both the wing tip deflection and the stresses 

increased.  As weight was increased, the two measurements decreased, recalling that a lower KS value indicates 

decreased aeroelastic stress levels throughout the wing.  Since weight was not included as the x-axis in the plots, 

these observations were detected by comparing the profile of the weight vs. flutter speed plot (plots a) with the 

profiles of the tip deflection (plots e) and KS (plots b).  For example, in group C, shown in Figure 27, the weight 

profile with respect to flutter speed in plot (a) resembles a rotated letter “C” and is similar yet inverted for both the 

tip deflection (plot e) and KS (plot b).  This trend is not surprising and somewhat trivial, considering that the 

addition of weight would likely increase the wing’s stiffness, which would in turn decrease the tip defection and 

subsequently result in less stress in the wing.   

The next trend (#2) indicates a relationship between the wing weight and the location of the flexural axis.  For 

example, this is noticeable in group C (Figure 27), since the flexural axis profile of plot (d) resembles the rotated 

“C”-shaped weight profile of plot (a).  This trend is detected in groups C – E.  This relationship must be an indirect 
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relationship (dependent on some other feature of the wing design) since the flexural axis is only affected by 

stiffness, not inertia.   

The next two trends (#3 and #4) also involve the location of the flexural axis.  These trends contradict one 

another, however.  Trend #3 indicates more wash-out, as the flutter speed increases (and applies to groups A, C, and 

D), while Trend #4 indicates more wash-in, as the flutter speed increases (and applies to group E).  Wash-out or 

wash-in is approximated here by the movement of the flexural axis (plots d) and the corresponding twist at the wing 

tip (plots h), where neither of these metrics is a true indicator of wash-in or wash-out but have shown correlations, 

especially when the inertial properties of the wing remain constant [10].  When the flexural axis moves forward, 

away from the swept wing, the moment arm between the flexural axis and the loads on the wing increases 

potentially causing more wash-out, which is consistent with the additional tip-down twisting of the wing.  The 

opposite occurs with wash-in; the flexural axis typically moves aft with the wing tip twisting up.  This trend for 

wash-out is clearest in group A, Figure 25 (plots d and h).  Here the weight variation is extremely small, so unlike 

groups C – E where the weight profile was also observed in the flexural axis plot (as described by trend #2), the 

trend is not affected by the weight.   

The inconsistency with wash-in and wash-out trends may be partially explained by considering the differences 

between the groups.  Groups A, C, and D all indicate wash-out and have variability only in their spar and stringer 

designs.  Group E indicates wash-in and has variability in the orientation of the ribs.   Secondly, both wash-in and 

wash-out have been used in the literature to explain aeroelastic tailoring, but the wings referred to in those studies 

typically have a constant mass or constant mass distribution [10].  By keeping in mind that wash-in and wash-out are 

products of the wing’s stiffness distribution, they only partially affect the wing’s dynamics, as mass and its 

distribution also play a major role in stability.   

By considering mass distribution, it is possible that the spars and stringers have an entirely different effect on 

the mass distribution than the ribs do.  Therefore, the data was analyzed for trends involving the wing’s CG, CGroot, 

and CGtip (plots j – o).  The same groups observed to have trend #3 involving wash-out all show their wing CG and 

CGtip moving forward as the flutter speed increases, as seen by trend #5.  Group E did not indicate such a trend.  

Therefore, during these parametric studies, as permutations on the wing designs were made, both the mass and 

stiffness distributions changed, making it difficult to find design trends that show a consistent correlation with an 

increase in flutter speed.  This is further confirmed by groups F and G, which had many design parameters changing 

from one design to the next, such that patterns and trends were not detectable except for trend #1.  It is possible that 

more trends are included in this data, but only the most obvious are discussed here.   

 

Table 17.  Description of the trends discovered in the data and the design groups that reflect those trends. 

 

  

Trend Notional cause Notional effect Groups 

A B C D E F G 

1 Decrease in weight (plot a)  Increase in tip deflection (plot e) 

Increase in KS (plot b) 

N/A 

 

○ ○ ○ ○ ○ 

2 Decrease in weight (plot a)  Flexural axis forward (plot d) N/A 

 

○ ○ ○   

3 Flexural axis forward (plot d) 

(Wash-out) 

Increase in negative twist (plot h) 

Increase in flutter speed (x-axis) 

○  ○ ○    

4 Flexural axis aft (plot d) 

(Wash-in) 

Decrease in negative twist (plot h) 

Increase in flutter speed (x-axis) 

    ○   

5 CG shifts forward (plot j) 

CGtip shifts forward (plot l) 

Increase in flutter speed (x-axis) ○  ○ ○    
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Figure 25.  Data for group A (spar/stringer curvature).  Plot crossed out has less than 0.1% range on the y-

axis. 
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Figure 26.  Data for group B (stringer only curvature).  Plots crossed out have less than 0.1% range on the y-

axis. 
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Figure 27.  Data for group C (location of 1 spar). Plots crossed out have less than 0.1% range on the y-axis. 
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Figure 28.  Data for group D (location of 2 spars).  Plots crossed out have less than 0.1% range on the y-axis. 
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Figure 29.  Data for group E (rib orientation). Plots crossed out have less than 0.1% range on the x- and y-

axes. 
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Figure 30.  Data for group F (large flutter range). 
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Figure 31.  Data for group G (improved weight and flutter speed). 

Given what was observed with the conflicting wash-in and wash-out trends seen above, it would seem that a 

high performing curvilinear spar design (which displays more wash-out than the baseline) would conflict with the 

highest performing rotated rib design (which displays more wash-in than the baseline) to create a wing design of 

lower flutter resistance than at least one of these two original designs.  To explore this, a wing was created which 

used rotated ribs at 24 degrees (the best seen in the rib orientation studies) and a high performing inner spar 

configuration, i.e. [p2o, p3o] = [0.9, 0.1] and [p4i, p5i, p6i, p5o, p6o] = [0.25, 1, 4, 4, 4]. 

The results are summarized in Table 18, and the values represent percent differences when compared to the 

baseline.  Looking at the data most influenced by the stiffness (flexural axis, tip deflection, and tip twist), the two 

designs have clearly differing values as anticipated. Looking at the data most influenced by the mass, the two 

designs differ once again, since the rib design has its root mass forward of the baseline and its tip mass aft of the 
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baseline.  The spar design is just the opposite. The movement of the tip mass will have a greater impact on flutter 

speed than the root mass.  Although these designs seem to have different means for increasing their flutter resistance 

over the baseline, when combined, their respective increases in flutter speeds essentially add to create a design with 

even higher resistance to flutter.   

In the resulting design (provided in the last row of the table), the tip mass moves forward, which has been seen 

to increase the flutter speed with the spar studies.  The flexural axis moves away from the wing, indicating more 

wash-out than the baseline; however, the tip twist value is negative, corresponding to less negative twisting 

compared to the baseline, which indicates more wash-in behavior than the baseline (at least at the tip).  Additionally, 

when observing the KS values of the two designs, one is positive and one is negative. Typically, for the other 

metrics in the table (besides flutter), the result for the combined design is somewhere between the two values of the 

original designs, but here, the resulting KS value for the combined design has a higher absolute value than either of 

the other designs it comprises.   

 

Table 18.  Percent differences with respect to the baseline of three designs, where the first two designs 

combine to make the third design. 

        Stiffness Mass 

Design Weight KS 

Flutter 

speed 

Flexural 

axis*  Tip def. Tip twist ** 

CGroot 

(+ = aft) 

CGtip 

(+ = aft) 

Ribs rotated  1.5 3.8 5.8 0.2 2.7 -4.8 -0.12 0.01 

Curved spar  -1.0 -0.5 9.3 -0.5 -0.2 2.4 0.44 -0.07 

Combination 0.5 4.4 15.5 -0.2 2.6 -1.9 0.33 -0.05 
* Flexural axis: Positive value indicates flexural axis moving toward wing (more wash-in expected) 

** Tip twist: Positive value indicates increased negative twist (more wash-out expected)   

 

One final comparison was made to uncover a potential correlation; the separation in natural frequencies of wing 

designs.  The natural frequencies are affected by both the wing mass distribution and stiffness distribution. The onset 

of flutter typically occurs as two wings modes begin to coalesce.  Therefore the first and second bending modes (1B 

and 2B) and the first torsional mode (1T) for groups A and F were calculated.  Figure 32 shows the results when 

comparing the differences between (1B and 1T) and (2B and 1T).  Both have a slight negative trend (meaning the 

separation in the modal frequencies decrease) as the flutter speed increases.  This again is counterintuitive because 

the expected trend is positive, where a larger separation in the modes would be expected to delay the onset of flutter 

[13].  Once again, this example and the example described in Table 18 demonstrate the difficulties of discovering 

design trends for improving flutter resistance. 
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Figure 32.  Comparing the separation of natural modes to normalized Qflutter for two groups of designs, 

spar/stringer curvature (group A) and larger flutter range (group F). 

VIII. Parameter Studies Summary 

 

This section compares the best designs of the individual studies above (#1-12) and illustrates which spar and rib 

configurations are most effective.  To help illustrate the relative performance between designs highlighted earlier, 

Figure 33 plots the best designs of those parametric studies which showed significant improvement (higher flutter 

speed and/or lower weight) over the baseline.  The legend in the figure identifies the studies from which the data 

points originated.  The last entry in the legend is a group of designs that were created from combining designs 

generated from the separate studies on rib, spar, and stringer modifications.  For consistency, when creating these 

new designs, only those designs which had a maximum p4-p6 value of 4 were considered (eliminating the use of 

designs from study #2 which had a maximum p4-p6 value of 10).  Table 19 provides the design parameter values 

and the performance results for many of the designs shown in Figure 33.  Finally, Figure 34 illustrates six designs, 

most of which are new designs, to help aid the discussion on superior rib and spar configurations.   

For the spar/stringer designs (studies #2 - #5 in Figure 33), the best curvature definition parameters (i.e., p4i, 

p5i, p6i, p5o, p6o) of study #3 is design ‘c’, whose flutter speed vs. weight data point was located in the upper left 

corner of an earlier figure, Figure 10(b).  Table 19 shows that the curvature definition parameters for the outboard 

section of the spar (i.e., p6i, p5o, p6o) are all equal and greater than one (i.e., [4, 4, 4]), defining the spar as straight 

and shifted toward the leading edge in the outboard section of the wing.  It can be seen from study #3’s data that this 

topology for the outboard section of the wing (i.e., p6i = p5o = p6o =4) was consistent across the four highest data 

points found in Figure 10(b).  For study #3, the design having no spar curvature (i.e., all five curvature definition 

parameters equal to 4) failed to mesh successfully.  However, for comparison purposes, the two best designs of 

study #2 (design ‘a’ and ‘b’ in Figure 33) also had a straight spar in the outboard wing section, and further, design 

‘b’ had a straight spar in the inboard section (i.e., the five curvature definition parameters all equaled 10).  As 

discussed earlier, the curvilinearity of the spar/stringers does not seem to provide additional benefit over a straight 

configuration with respect to flutter resistance.  Additionally, these designs (‘a’ and ‘b’) have a higher flutter speed 

than design ‘c’, as shown Figure 33, suggesting that for higher flutter resistance it is more important to shift the 

weight forward and less important to have curvilinear spar/stiffeners.   
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Figure 33 and Table 19 also show that by enabling the curvature definition parameters (p4 – p6) to have the 

values of 0.25, 1, and 4, the spar/stringers can shift forward (and aft) by a certain amount.  After reaching the 

maximum forward position, the control line parameters enabled the spar/stringer designs to bend even further 

forward. In study #5, although the inner spar was not included, the trend showed that the best designs, which had 

straight stringers in the outboard, could be improved by updating the control line parameters from [0.5, 0.5] to [0.9, 

0.1] in the outboard.  Figure 13, shown previously, illustrates how these control line parameters bend the straight 

spar/stringer of the outboard wing section forward.  This set of control line parameters was applied to design ‘c’ to 

create an improved design (design ‘f’).  Design ‘f’ and its counterpart design that has no inner spar, design ‘d’, are 

used in every case in designs ‘m’ – ‘r’ shown in Figure 34.   

Considering the rib studies that held the number of ribs constant (studies #7 and #9 - 12), study #7 had an 

increased flutter resistance (and increased weight) when the straight ribs were oriented at 24 degrees (design ‘g’).  

Study #9 had two designs (‘h’ and ‘i’ in Figure 33) with relatively high flutter speeds where both designs had 

convex ribs whose control line locations caused the ribs to have the majority of their length angled near 26 degrees.   

Concave designs were also shown to have better flutter resistance when their control line locations caused more rib 

length to be oriented along 26 degrees, but these designs were not better than design ‘h’ and ‘i’.  Design ‘h’ 

(illustrated earlier in Figure 16), has slightly less weight than the baseline, where design ‘i’ has more weight than the 

baseline. Designs ‘j’ and ‘k’ of study #10 are less weight than the baseline mostly due to the removal of the inner 

spar and utilize the rib configuration of design ‘i’. Design ‘j’ was illustrated previously in Figure 19.  In study #12, 

when the spar and rib designs were combined, the best spar/stringer configuration (design ‘f’) was combined with 

the rib configuration of design ‘h’, to create a more superior design, design ‘m’, which was illustrated in Figure 24.  

This design is also shown in Figure 34.  The rib configurations of either designs ‘g’, ‘h’, and ‘i’ are used in all but 

one case (design ‘n’) in the high performing designs of Figure 34.   

Design ‘n’ was another superior design of study #12.  However, design ‘n’ is trivial in that the ribs are both 

straight and shifted outboard (p4=p5=p6=4) making them shorter in both length and depth, such that they are the 

lightest rib configuration possible when modifying the curvature definition parameters (p4 - p6).  This design 

happens to have a higher flutter speed than the baseline due to its spar configuration ‘f’.  When exploring how a 

design having baseline spars and curvilinear ribs (like design ‘h’, whose rib configuration is found in design ‘m’ in 

Figure 34) can have a lower weight than the baseline, design ‘n’ with the straight ribs provides some insight.  In 

particular, the curvature definition parameters of design ‘h’ are all greater than or equal to unity, i.e. [4, 1, 4], such 

that the endpoints of all the ribs are shifted outboard, just as they were with design ‘n’ when the ribs became 

geometrically smaller, resulting in less weight.   

Designs ‘o’ and ‘p’ (shown in Figure 34) were created from the rib configurations of designs ‘g’ and ‘i’, 

respectively, by updating the baseline spar/stringer configuration to the lighter weight and higher flutter speed 

design of design ‘f’.  Designs ‘o’ and ‘p’, although slightly heavier than the baseline (by ≤ 0.6%), are worth showing 

here since their flutter speeds reach 16.1% improvement over the baseline.  Designs ‘q’ and ‘v’ are essentially 

designs ‘p’ and ‘o’ with no inner spar, respectively.  Design ‘q’ is shown in Figure 34. 

For a similar reason, designs ‘r’, ‘t,’ and ‘u’ were created to further investigate curvilinear ribs, since curvilinear 

ribs will always have more weight than their straight rib counterparts for the same number of ribs, unless the ribs are 

rotated normal to the leading edge or shifted outboard within a tapered wing like the CRM.  Since curvilinear ribs 

are essentially longer, fewer of them may be needed to support the overall wing structure.  Therefore, five ribs were 

eliminated from the outboard section of design ‘p’ to create design ‘r’ (shown in Figure 34).  Here the new design is 

about the same weight as the baseline and still has a 12.6% increase in the flutter speed.  By removing some ribs, the 

stresses increased by 0.2% over that of design ‘p’ and resulted in a 0.6% increase in KS over the baseline.   

Additionally, to compare design ‘i’ (a curvilinear design) and design ‘g’ (a rotated straight-rib design) to the 

baseline, ten ribs were removed from the outboard of design ‘i’ to create design ‘t’, and nine ribs were removed 

from the outboard of design ‘g’ to create design ‘u’.  The resulting designs are very close to the baseline weight, and 

although the flutter speed reduced, the curvilinear design, design ‘t’, still has a 2.1% increase in the flutter speed 

where the straight-rotated rib design has only a 0.4% increase in flutter speed.  Interestingly, design ‘t’ has a lower 

flutter speed than design ‘h’ (a curvilinear design mentioned previously).   This implies that the additional weight 

from design ‘i’, not only its curvature, helps it have the highest flutter value of study #9.  Yet curvature is still 

playing an important role here since there are many designs in study #9 that have higher weight than design ‘i’ but a 

lower flutter speed. 

When using the same set of parameter values to modify the spar/rib curvatures, the spars (and stringers) proved 

to be more effective in increasing the flutter speed of the designs than the ribs.  For example, design ‘f’ (which has 

spar/stringer modification only) had a 9.3% improvement in the flutter speed and a 0.5% decrease in KS, where 

design ‘h’ (which has rib modification only) had a 3.4% improvement in flutter speed and a 1.2% increase in KS.   
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Design ‘e’ (which had stringer modifications only and no inner spar) had a 6.0% improvement in the flutter speed 

and a 2.8% increase in KS which is expected given the larger weight decrease of 7.1%.  Design ‘f’ and design ‘h’ 

only had a 1.0% and 0.2% decrease in weight, respectively.  The spars and stringers may be more effective in 

increasing the flutter speed than the ribs since they are aligned more with the load path, even when ribs are curved or 

reoriented.  This enables the spars and stringers to have both an inertial and stiffness impact, compared to the ribs 

which primarily only have an inertial impact. 

 

 
 

Figure 33.  The best designs of the parametric studies along with nine new designs.  The numbers in the 

legend indicate which of the twelve parametric studies the design came from.  The dashed box indicates the 

designs having no inner spar. 
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Table 19.  Summary of the best designs of the parametric studies along with nine new designs. 
 

 

 

Study 

 

 

Design 

 

Spar/stringers 

(p2o,p3o) [p4i,p5i,p6i,p5o,p6o] 

 

Ribs (IBD = OBD) 

(p2o,p3o) [p4o,p5o,p6o] 

 

Weight 

(%) 

Flutter 

Speed 

(%) 

 

KS 

(%) 

#2 a (0.5, 0.5) [0.1, 0.1, 10, 10, 10] - baseline - -1.3 11.5 1.1 

 b (0.5, 0.5) [10, 10, 10, 10, 10] - baseline - -1.1 11.7 1.1 

#3 c (0.5, 0.5) [0.25, 1, 4, 4, 4] - baseline - -0.9 7.2 -0.2 

#5 d (0.9, 0.1) [0.25, 1, 4, 4, 4] 

(no spar) 

- baseline - -7.2 5.5 2.4 

 e (0.9, 0.1) [4, 0.25, 4, 4, 4] 

(no spar) 

- baseline - -7.1 6.0 2.8 

new f (0.9, 0.1) [0.25, 1, 4, 4, 4] - baseline - -1.0 9.3 -0.5 

#7 g - baseline - Straight at 24 degrees 1.5 5.8 3.8 

#9 h - baseline - (0.2, 0.2) [4, 1, 4] -0.2 3.4 1.2 

 i - baseline - (0.2, 0.2) [4, 0.25, 1] 1.7 7.5 -0.1 

#10 j (baseline with no spar) Same as i -5.5 5.1 2.9 

 k (baseline with no spar) (0.5, 0.5) [4, 0.25, 1] -6.1 2.2 3.3 

 l (baseline with no spar) Same as h -7.3 -0.1 4.4 

#12 m Same as f Same as h -1.2 11.3 1.3 

 n Same as f (0.5, 0.5) [4, 4, 4] -2.6 5.5 0.4 

new o Same as f Same as g 0.5 15.5 4.4 

new p Same as f Same as i 0.6 16.1 0.4 

new q Same as d Same as i -5.6 13.9 3.0 

new r Same as f Same as i (5 less OBD ribs) -0.3 12.6 0.6 

new s (baseline with no spar) Same as g -5.7 1.2 7.1 

new t - baseline - Same as i (10 less OBD ribs) -0.2 2.1 0.3 

new u - baseline - Same as g (9 less OBD ribs) 0.0 0.4 1.6 

new v Same as d Same as g -5.8 9.7 7.3 
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Figure 34.  Six designs having relatively high performance in either weight reduction or flutter resistance. 

 

IX. Conclusions and Outlook 

 

In this work, a fully-populated wing box structure within the CRM wing is used as a baseline.  An aeroelastic 

framework of MATLAB, PATRAN, and NASTRAN modules is used to compute the static aeroelastic response and 

the dynamic aeroelastic flutter boundary of a given wing structure.  Twelve parametric studies were performed on 

the baseline wing’s spars, ribs, and stringers to help identify which changes to  the internal structure design have the 

greatest effect on both increasing the wing’s flutter resistance and in decreasing its weight. The parameters used in 

these studies allowed for both straight and curvilinear structural members. Additional evaluation metrics were 

considered to detect design trends that lead to lighter-weight, aeroelastically stable wing designs, where the results 

here are specific to the CRM and similar wing designs.   

Since the focus of this research is weight reduction, it would have been useful to hold the flutter speed constant 

during a parametric study and monitor the subsequent allowable weight change, but this is very challenging (without 

optimization). Instead it was typically effective to hold the number of structural components constant (which 

consequently minimized the weight range among the designs) and compare the relative changes in flutter results.  

With this approach, although the resulting designs have similar weight, it can be inferred that designs having higher 

flutter speeds should be capable of a lower weight, than designs with lower flutter speeds.  However, multiple 

metrics, such as the effect on static aeroelastic stresses and skin bucking, also need to be taken into account, which 

tends to complicate these inferences. 

By varying the spar, stringer, and rib configurations, some designs were created that simultaneously had less 

weight and higher flutter resistance than the baseline model.  The best of these designs are included in Figure 33 and 

Table 19. Two designs, which modified the curvature of the spars and stringers, (design ‘c’ and design ‘f’) showed 

improvement in the KS value, weight, and flutter values.  The combination of a lower weight, higher flutter 
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resistance, and lower stresses was rarely observed.  Of the designs in Table 19, the largest increase in the KS value 

using curvilinear members was 4.4%.  For straight-rotated members, the largest increase was 7.3%, but some of this 

stress may have been due to the configuration of the baseline, where the rib between the inboard and outboard 

sections remains straight, causing the rotated straight ribs to attach to it. If this rib was eliminated, the rotated ribs 

would remain continuous, potentially decreasing the stresses.  Design ‘o’ in Figure 34 shows the connectivity 

between the straight-rotated ribs at the boundary between the inboard and outboard ribs.   

When using the same set of parameter values to modify the spar/rib curvatures, the spars (and stringers) proved 

to be more effective in increasing the flutter speed of the designs.  For example, design ‘f’ (which has spar/stringer 

modification only) had a 9.3% improvement in the flutter speed and design ‘e’ (which had stringer modifications 

only and no inner spar) had a 6.0% improvement in flutter speed. Design ‘h’ (which has rib modification only) had a 

3.4% improvement in flutter speed.   Of these three designs, the stringer-only design had the greatest stress but also 

the greatest weight reduction due to the removal of the inner spar.  The spars and stringers may be more effective in 

increasing the flutter speed than the ribs since they are aligned more with the load path, even when ribs are curved or 

reoriented.  This enables the spars and stringers to have both an inertial and stiffness impact, compared to the ribs 

which primarily only have an inertial impact. 

When modifying the spar and stringers (not the ribs), the straight designs performed just as well as the 

curvilinear designs, since the weight and flutter improvements resulted mostly from shifting the spanwise structural 

members forward (e.g., designs ‘a’ and ‘b’).  Here, it was most beneficial to straighten the spar and stringers so that 

a majority of their length was closer to the leading edge.  At times curvature did help improve the wing’s flutter 

resistance, but this was only when the curvature allowed the spar to bow closer to the leading edge (e.g., design ‘c’ 

which has a straight spar in the outboard wing section was modified to have slight curvature, resulting in design ‘f’ 

which has a higher flutter speed than design ‘c’).  A straight spar would still outperform this design if its location 

was closer to the leading edge (e.g., design ‘b’ has as straight spar closer to the leading edge than design ‘f’, which 

has a slightly curved spar.)  When considering buckling, it was found that the straight spar design had a 10% 

reduction in buckling resistance.  To maintain the buckling resistance of the baseline yet improve the flutter speed, a 

particular design used a straight, equally-spaced spar and stringer configuration in the inboard section (to improve 

the support of the skins near the wing root) and a curved, forward-shifted spar and stringers configuration in the 

outboard (to increase the wing’s stability).  

When modifying the ribs only (not the spar and stringers), the best designs had a majority or all of the rib 

lengths oriented at roughly 24-26 degrees (e.g., designs ‘g’, ‘h’, and ‘i’). Designs ‘g’ and ‘i’ showed that the straight 

rib designs performed similarly to the curved rib designs, respectively.  The straight rib design had more stress but 

as mentioned above this may have been due to the configuration of the baseline.  The curved rib designs had 

relatively higher weight than the baseline, unless the curved ribs were shifted outboard (design ‘h’) due to the values 

of the curvature definition parameters (p4-p6) or the number of ribs was reduced (design ‘r’, ‘t’, and ‘u’), which may 

be feasible since fewer ribs may be sufficient when their relative length is greater.  Three designs (‘h’, ‘t’, and ‘u’) 

had similar weight as the baseline.  These designs showed at most a 3.4% increase in the flutter speed.  The third 

design (‘u’) had straight-rotated ribs and showed only a 0.4% improvement in the flutter speed.  The second design 

(‘t’) had a lower flutter speed (and ten fewer ribs) than the first design, which meant that before the ten ribs were 

removed, the design’s flutter speed (i.e., the flutter speed of design ‘i’) was affected by both rib curvature and the 

additional weight and stiffness from the extra ribs.   

For the topology work, large weight reductions were obtained by removing an inner spar, and performance was 

maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement 

in flutter speed, but a 3.0% increase in stress levels (design ‘q’).  Performance was also maintained (for flutter speed, 

not stress) using rotated-straight ribs (design ‘v’) but the design had a 4.2% lower flutter speed than the curved ribs 

of similar weight (design ‘q’).   

By exploring obvious trends in the data, no evaluation metric consistently correlated with weight or flutter 

speed; however, some trends were detected when comparing designs that had gradual changes in structural 

configuration from one design to the next, as opposed to picking random designs of varying topology to compare.  

An expected trend found from the data was that a decrease in weight typically resulted in more tip deflection and 

higher stresses. It appeared that some wing designs used wash-in to increase flutter resistance (rotated rib designs), 

which is the expected trend, while other designs used wash-out (spar/stringers designs).  However, when these 

differing groups of design were merged together, their benefits surprisingly complimented one another (neglecting 

stress). As permutations to the wing designs were made, both the inertial and stiffness distributions changed, making 

it difficult to find design trends that showed consistent correlation with an increase in flutter resistance.   
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The results of these parametric studies provided additional insight into the following: 

 

• The addition of spars increases the flutter resistance of the wing with a corresponding weight penalty.  

When spars are located toward the leading edge, the flutter speed increases, such that a wing design with 4 

spars (and 4 stringers) can have the same flutter resistance as a wing design with 8 spars (and 0 stringers).  

This follows a well-known trend of pushing the CG forward for better flutter resistance [13]. 

• The outboard wing section, especially the wing tip, was the most sensitive region for aeroelastic tailoring. 

For this design space, inertial forces (which are most readily impacted by adding/altering material at the 

wing tip) are playing a greater role than elastic forces (which are more sensitive to changes at the wing 

root, where the bending and torsional stresses will be largest). 

• When modifying the number of straight ribs in a design, there were a few designs with lower weight and 

higher flutter speed than the baseline, but they required fewer ribs in the inboard and more ribs in the 

outboard, making the rib spacing quite different between the two wing sections.  It is likely this rib 

configuration increased the wing’s resistance to flutter by lowering the frequency of the first bending mode 

[13].  However, this rib arrangement potentially creates other problems such as buckling or outer mold line 

distortion.   

• When rotating straight ribs, there were clear trends between weight and flutter, with a maximum flutter 

speed at 24 degrees and minimum at -36 degrees; however, no design was superior to the baseline in both 

weight and flutter speed.  Similar results were found in [7].  The design having ribs oriented at -36 degrees 

is a standard rib configuration, i.e. ribs are perpendicular to the wing leading edge, which is recommended 

for weight reduction [14].  This design had 2% less weight than the baseline, where the design having 

maximum flutter speed had 1.5% more weight than the baseline. 

• When investigating the effect of rib curvature, the most insight came by comparing designs that had the 

same curvature definitions (which defined the general curvature as concave or convex) but different control 

lines (where the control line defined the location of maximum curvature in a rib or spar).  Four example 

cases were considered.  Regardless of the direction of the curve (concave or convex), the best designs had a 

large portion of their curved ribs aligned near 26 degrees.  The locations of control lines caused the rib 

curvatures to align the majority of their rib length at approximately the same orientation as the best design 

from the rotated, straight-ribs study. 

• When evaluating the effect of curved ribs with stringer-only designs, the flutter speed decreased by 2-8% 

due to removal of the inner spar.  Initial studies suggest that for the same weight, designs having more rib 

curvature tend to have less of a flutter penalty in the absence of the inner spar.   

• When combining a high-performing spar design with a high-performing rib design (where the performance 

is measured with respect to weight and flutter), the resulting designs complimented one another to produce 

a higher performing design in terms of flutter resistance and weight reduction than the two designs it 

comprises (neglecting changes in stress). 

 

Since the design evaluations in this work are based on comparisons with a baseline model, the resulting trends 

are less sensitive to modeling inaccuracies, such as finite element model discretization errors, undetected transonic 

effects, and any other modeling omission.  In other words, each potential inaccuracy may shift individual flutter 

points but would likely not impact the comparative metrics being used here.     

Allowing the ribs, stringers, and spars to curve resulted in greater tailorability of the structural performance and 

provided some designs where all three parameters, weight, flutter point, and KS values, were all improved. The 

tradeoffs between straight and curvilinear members are significant enough that formal design optimization is the best 

next step.  A design optimization routine could exploit the trade-offs and remove weight where possible to drive 

toward lower weight designs that still satisfy the design constraints, including flutter stability, static aeroelastic 

stresses, and skin buckling.  While buckling was considered occasionally in this work, future studies will incorporate 

a larger emphasis on skin buckling.  Already, an optimization framework is being developed by collaborators at 

Virginia Tech who are considering these various trade-offs and employing curvilinear spars, ribs, and stiffeners 

where advantageous. 
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