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ABSTRACT 

Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex 
wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed 
junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross 
section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, 
the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. 
Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the 
Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in 
terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. 
By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along 
each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered 
cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were 
analytically generated from finite-element analysis. The shape prediction accuracies of the Variable-
Domain Displacement Transfer Functions were then determined in light of the finite-element generated 
slopes and deflections, and were found to be comparable to the accuracies of the constant-domain 
Displacement Transfer Functions.  

NOMENCLATURE 

a   coefficient of first term of quadratic function, ( ) a b e 2 , in./in. 
b   coefficient of second term of quadratic function, ( ) a b e 2 , 1/in. 
c depth factor (vertical distance from neutral axis to lower surface of uniform embedded beam), 

in.   
c(x) depth factor (vertical distance from neutral axis to lower surface of nonuniform embedded 

beam at x), in. 
ic    c(xi ), lower depth factor (vertical distance from neutral axis to lower surface of  

   nonuniform embedded beam at x xi ), in. 
ci  upper depth factor (vertical distance from neutral axis to upper surface of nonuniform 

embedded beam at x xi ), in.  

0c    value of ic  at fixed end (embedded beam root), 00xx , in. 

nc    value of ic  at free end (embedded beam tip), lxx n , in. 
DLL  design limit load  
e   coefficient of third term of quadratic function, ( ) a b e 2 , 1/in2 
hi    depth of embedded beam at x xi .  
i   n,....,3,2,1,0 , strain-sensing station identification number 
j   dummy index 
k   dummy index  
l   length of embedded beam, in. 
n index for the last span-wise strain-sensing station (or number of strain-sensing domains)  
R   radius of curvature, in. 
RRF   rotated reference frame, aligned with wing’s out-of-plane direction 

SPAR  Structural Performance And Resizing 
x, y   Cartesian coordinates (x in embedded beam axial direction, y in lateral direction), in. 

ix    axial coordinate (or symbol) associated with i-th strain-sensing station, in.  
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)(xy       embedded beam deflection at axial location x, in. 

iy    )( ixy , embedded beam deflection at axial location, ixx , in. 

Pred.)( iy  predicted value of iy , in. 

SPAR)( iy   value of yi  calculated from SPAR program, in. 
l  nlxx ii /)( 1 , constant-domain length (distance between two adjacent strain-sensing 

stations 1{ ix , }ix , in. 

il)(  )( 1ii xx , variable-domain length (distance between two adjacent strain-sensing stations 

1{ ix , }ix , in. 
(x)   lower surface bending strain at axial location x, in/in 

i    (xi ), lower surface bending strain at strain-sensing station, ix , in/in 

i     upper surface bending strain at strain-sensing cross section, ix , in/in 
)(x   embedded-beam slope in reference to x-system, deg 

i    )( ix , slope at strain-sensing station, ixx , deg 

Pred.)( i  predicted values of i , deg 

SPAR)( i  SPAR-calculated values of i , deg 
   1ixx , local axial coordinate measured from strain-sensing station, 1ix , in. 

INTRODUCTION 
For structural deformed shape predictions using distributed surface strains, the Displacement Transfer 

Functions (refs. 1 9) are needed to convert the surface strains into out-of-plane deflections for mapping out 
the overall structural deformed shapes. The surface strain data are to be obtained at the strain-sensing 
stations discretely distributed along the strain-sensing line lying on the surfaces of a planer structure (for 
example, an aircraft wing). The depth-wise cross section of the structure along the strain-sensing line can 
be considered as an embedded beam with width of the strain-sensing line (fig. 1).  

 
In the formulations of earlier Displacement Transfer Functions (refs. 1–9), the embedded beam was 

first discretized evenly into multiple small domains (constant-domain lengths) with strain-sensing stations 
located at the domain junctures. Thus, within each small domain, the depth variation of the embedded beam 
could be described with a linear function, and the surface strain distribution could be described with either 
linear or nonlinear function. Such a piecewise approach enabled piecewise integrations of the embedded-
beam curvature equation (second order differential equation) to yield beam slope and deflection equations 
in recursive forms. Each set of recursive slope and deflection equations were then combined into a 
summation-form deflection equation (called the Displacement Transfer Function) for each embedded beam. 
In the Displacement Transfer Function, the deflections are expressed explicitly in terms of geometrical 
parameters of the discretized embedded-beam and surface strains along the strain-sensing line. By inputting 
the surface strains into the Displacement Transfer Function, one can then calculate deflections along the 
embedded-beam for generating the elastic curve. By using multiple strain-sensing lines, one can then map 
out all the elastic curves of the multiple embedded beams to construct the overall structural deformed shapes 
(under bending and torsion) for visual display. The Displacement Transfer Functions combined with a 
strain-sensing system, thus created a revolutionary new structure-shape-sensing technology, “Method for 
Real-Time Structure Shape-Sensing,” (U.S. Patent Number 7,520,176, ref. 6), which is very attractive for 
application to the in-flight deformed shape monitoring of flexible wings and tails of unmanned flight 
vehicles by the ground-based pilot for maintaining safe flights. In addition, the real-time wing shape 
monitored could then be input to the aircraft control system for aero-elastic wing shape control.  
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The shape prediction accuracies of the earlier constant-domain Displacement Transfer Functions (based 
on piecewise-linear strain representations) (refs. 1 7) were successfully validated analytically using finite-
element analyses of different sample structures such as cantilever tubular beams (uniform, tapered, slightly 
tapered, step-wisely tapered), two-point supported tapered tubular beams, flat panels, and tapered wing 
boxes (un-swept and swept).   
   

Also, by using piecewise-nonlinear strain representations in the formulations (ref. 8), the shape 
prediction accuracies could be improved greatly, especially for highly tapered beam structures with rapidly 
changing strain gradients. The Displacement Transfer Functions were originally formulated for the straight 
embedded beams. However, with the introduction of empirically established curvature-effect correction 
terms, those Displacement Transfer Functions could be used for shape predictions of slender curved 
structures with different arc-angles up to 360 degrees, a complete circle (ref. 10). All the earlier 
Displacement Transfer Functions (refs. 1 9) were formulated based on uniform discretization of the 
embedded beam into multiple domains with equal domain lengths.  
 
 For the shape predictions of certain long complex wing structures consisting of multiple sections joined 
together, one must avoid locating the strain-sensing stations right at the jointed junctures, where the strain 
outputs could be erroneous. Also in the region where the strain gradient changes rapidly, shorter strain-
sensing intervals (shorter domains) are needed to improve the shape prediction accuracies. Such situations 
demand the use of variable-domain lengths for properly locating the strain-sensing stations. Therefore, 
variable-domain Displacement Transfer Functions are needed for deformed shape calculations of a complex 
structure for which a non-uniform discretization approach is required. 
 
 This technical publication presents the formulations of the variable-domain Displacement Transfer 
Functions (unevenly distributed strain-sensing stations) by extending the previously developed constant-
domain Displacement Transfer Functions (evenly distributed strain-sensing stations) (refs. 1 9) for 
structural deformed shape predictions. 
 
 A long tapered cantilever tubular beam was chosen for the shape prediction accuracy studies of the 
variable-domain Displacement Transfer Functions. Finite-element analysis was used to analytically 
calculate the input surface strains, and to generate reference yardsticks (slopes and deflections) for the shape 
prediction error analysis. The variable-domain Displacement Transfer Functions were found to provide 
highly accurate shape predictions, similar to the constant-domain Displacement Transfer Functions.  

NONUNIFORM AND UNIFORM BEAMS 
 In the present technical publication, the term “beam” implies the embedded beam, which is defined as 
the depth-wise cross section of the structure along the strain-sensing line, and different from the isolated 
classical Euler-Bernoulli beam. The nonuniform beam implies the embedded beam with varying depth. The 
slightly tapered beam implies the embedded beam with slowly changing depth. The uniform beam implies 
the embedded beam with constant depth. 

BASICS OF CONSTANT-DOMAIN DISPLACEMENT TRANSFER 
FUNCTIONS 

This section reviews the basics of formulations of the earlier Displacement Transfer Functions for 
constant-domain lengths (refs. 1 9). 
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Curvature-Strain Equation 

 Formulations of the earlier constant-domain Displacement Transfer Functions for structure deformed 
shape predictions stemmed from the integrations of the following geometrically established shifted 
curvature-strain differential equation for the embedded beam (ref. 9):  
  

              d 2y
dx2

(x)
c(x)

1
R

                       (1)  

  
In equation (1), x is the undeformed axial coordinate, y is the lateral deflection, )(x  is bottom-surface 

bending strain, and c(x) is the embedded beam depth factor, which is defined as the vertical distance from 
the neutral axis to the bottom surface of the embedded beam. Equation (1) is the simplified Lagrangian 
curvature equation, 1 / R(x) (d2y / dx2 ) 1 (dy / dx)2 , with the term, 2)/( dxdy , neglected. Neglection 

of the 2)/( dxdy  term is equivalent to setting axial displacements to zero (called shifted Lagrangian 
formulation) (refs. 9, 11, and 12).  Keep in mind that equation (1) is referred to as the undeformed 
x-coordinate, and is not the simplified form of the classical curvature equation, 
1 / R (d2y / dx2 ) [1 (dy / dx)2 ]3/2 , which is referred to as the deformed x-coordinate (Eulerian 
formulation) (refs. 9, 11, and 12).  

 
 The seven types of constant-domain Displacement Transfer Functions formulated earlier, based on 
equation (1), were found to be quite accurate [0.0235~0.3852 percent error range at beam tip] in the shape 
predictions of a tapered cantilever tubular beam under both small and large bending deformations, even 
with the free-end deflection reaching as large as 94 percent of the structural length (ref. 9). 

Discretizations 

 To integrate equation (1), the embedded beam of length, l, lying along the strain-sensing line (fig. 1), 
was first discretized evenly into n number of small domains, xi 1 x xi  (i = 1,2,3,…..,n), with constant-
domain lengths, l l / n [ (xi xi 1)], so that within each small domain, xi 1 x xi , the beam depth 
factor, c(x) (vertical distance from neutral axis to lower surface of beam at axial location, x), could be 
described with linear functions, and the surface strain, (x) , could be described with either linear or 
nonlinear function as shown in equations (2)–(4a):   
 
 Piecewise-linear depth factor representations (refs. 1 7):   
  

        c(x) ci 1 (ci ci 1) x xi 1

l
     ;     (xi 1 x xi )                 (2) 

 
 Piecewise-linear strain representations (refs. 1 7): 
 

                  (x) i 1 ( i i 1) x xi 1

l
     ;     (xi 1 x xi )                                (3) 
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Piecewise-nonlinear strain representations (ref. 8): 
 

     (x) i 1
3 i 1 4 i i 1

2 l
(x xi 1) i 1 2 i i 1

2( l)2 (x xi 1)2                         (4a) 

                    (xi 1 x xi ) 
 
 Note that, when i n , equation (4a) contains a nonexistence (fictitious) strain, n 1 , which can be 
estimated by using the following three-points extrapolation equation:  
    

        n 1 n 2 3 n 1 3 n                                                  (4b)  
 
 Equation (4b) was obtained from equation (4a) by setting 1ni  and setting the term (x xi 1)  to 
(xn 1 xn 1) 3 l  in the region (xn 1 x xn 1).    
 
 The piecewise approach enabled the piecewise integrations of the curvature-strain differential equation 
(1) to yield closed-form beam slope and deflection equations in recursive forms. The recursive slope and 
deflection equations were then combined into one deflection equation in dual summation forms (called the 
constant-domain Displacement Transfer Function), which are expressed in terms of embedded beam 
geometrical parameters and surface strains obtained at evenly spaced strain-sensing stations (at domain 
junctures) along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer 
Function, one can then calculate the out-of-plane deflections along each embedded beam. By using multiple 
strain sensing lines, one can then map out the overall structural deformed shapes (under bending and 
torsion) for visual display.  

LISTS OF CONSTANT-DOMAIN DISPLACEMENT TRANSFER 
FUNCTIONS  

 This section lists previously formulated key Displacement Transfer Functions for constant-domain 
lengths, nll /  (uniform discretization) (refs. 1–9). Those constant-domain Displacement Transfer 
Functions can then be used as a basis to formulate the variable-domain lengths Displacement Transfer 
Functions (nonuniform discretization) presented in the subsequent sections. Depending on the structural 
types, one can choose a suitable Displacement Transfer Function from the following list for shape 
predictions.  

Based on Piecewise-Linear Strain Representations 

 The following two sets of slope and deflection equations were formulated using piecewise-linear 
functions [eqs. (2) and (3)] to describe the distributions of both depth factor and surface strain,                    

)({ xc , )}(x .  

1. Nonuniform Embedded Beams (Linear Strain) )( 1 ii cc  (refs. 1, 3)  

 Slope equation: 
 

   1
1

2
1

11

1

1 tanlog
)(

tan i
i

i

ii

iiii

ii

ii
i c

c
cc

cc
cc

l   ; (i = 1,2,3,…..,n)              (5a)
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Deflection equations: 
 a. In recursive form:  
 

    111
1

3
1

11

1

12 tan)(log
)()(2

)( iiii
i

i
i

ii

iiii

ii

ii
i lycc

c
cc

cc
cc

cc
ly        (5b) 

                    (i = 1,2,3,…..,n) 
 
 b. In dual summation form:  
             

  

beams cantilever for 0=

terms slope from onContributi

terms deflection from onsContributi

00

1

1 1
2

1

11

1

12

1
1

1
3

1

11

1

12

tan)(log
)(

)()(    

)(log
)()(2

)(

liy
c
c

cc
cc

cc
jil

cc
c
c

c
cc

cc
cc

ly

i

j j

j
e

jj

jjjj

jj

jj

i

j
jj

j

j
ej

jj

jjjj

jj

jj
i

               (5c) 

                    (i = 1,2,3,…..,n)  
 

Equations (5) are called the Constant-Domain Nonuniform Displacement Transfer Functions for a 
nonuniform embedded beam based on piecewise-linear strain representations. The term “Displacement 
Transfer Function” was used because equation (5c) transforms the surface strains into out-of-plane 
deflections for plotting the deformed shape of the embedded beam. 

 
     Note that equations (5) are not applicable to the limit case of uniform beam (ci 1 ci c)  because of 
mathematical indeterminacy (0/0) caused by  and (ci ci 1) 0 . However, by expanding 
the logarithmic terms in equations (5) in series forms in the neighborhood of (ci 1 / ci ) 1, the factor 
(ci ci 1)  in the denominators can be eliminated (refs. 1, 3). The resulting Log-expanded equations (6) 
listed below are for slightly nonuniform embedded beams [(ci 1 / ci ) 1], and applicable to the limit case 
of uniform beams (ci 1 ci c) .    

2. Slightly Nonuniform Embedded Beams (Linear Strain) [(ci 1 / ci ) 1] (refs. 1, 3) 

 Log-expanded slope equation:   

     tan i
l

2ci 1

2 ci

ci 1
i 1 i tan i 1       ;     (i = 1,2,3,…..,n)                    (6a)  

  
Log-expanded deflection equations: 

 a. In recursive form: 

                        111
11

2

tan3
6

)(
iiii

i

i

i
i ly

c
c

c
ly      ;    (i = 1,2,3,…..,n)       (6b) 
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b. In dual summation form: 
 

                                    (6c) 

                     
 Equations (6) are called the Constant-Domain Log-expanded Displacement Transfer Functions for 
slightly nonlinear (including uniform) embedded beams based on piecewise-linear strain representations.  

Based on Piecewise-Nonlinear Strain Representations 

 The following two sets of slope and deflection equations were formulated by using the piecewise-linear 
function [eq. (2)] to describe the actual distribution of the depth factor, ),(xc  and the piecewise-nonlinear 
function [eq. (4)] to describe the actual distribution of the surface strain, )(x .  

1. Nonuniform Beams (Nonlinear Strain) (ci 1 ci )  (ref. 8) 

 Improved slope equation: 

   
1111112

1

1
111113

1

tan)()3(2)35(
)(4

         

log)2)(2(
)(2

tan

iiiiiiiiii
ii

i

i
eiiiiiiiii

ii
i

cccccc
cc
l

c
ccccccc

cc
l

          (7a) 

                    ),....,3,2,1( ni  
 
 Improved deflection equations: 
 a. In recursive form:  
   

      

yi
( l)2

2(ci ci 1)4 (2ci ci 1)(ci i 1 2ci 1 i ) cici 1 i 1  ci loge
ci

ci 1

(ci ci 1)

    ( l)2

12(ci ci 1)2 (8ci 5ci 1) i 1 2(5ci 2ci 1) i (2ci ci 1) i 1 yi 1 l tan i 1

             (7b) 

                    ),....,3,2,1( ni  
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b. In dual summation form: 
 

 

                   (7c) 

                    (i = 1,2,3,…..,n) 
 
Equations (7) are called the Constant-Domain Improved Displacement Transfer Functions for nonuniform 
embedded beams based on piecewise-nonlinear strain representations. 
 
 Equations (7) are not applicable to the limit case of uniform beam ( ccc ii 1 ) because of 
mathematical indeterminacy (that is, 0/0). To handle the limit case of uniform beams (ci 1 ci c) , the 
logarithmic terms in equations (7) could be expanded in series forms in the neighborhood of (ci 1 / ci ) 1 
(ref. 8), and obtain the following Log-expanded equations (8a), (8b), and (8c) for slightly nonuniform 
beams, and which are applicable to the limit case of uniform embedded beams (ci 1 ci c) .  

2. Slightly Nonuniform Embedded Beams (Nonlinear Strain) [(ci 1 / ci ) 1] (ref. 8) 

 Log-expanded slope equation: 
 

         tan i
l

12ci 1
3 5ci 1

2 4(ci ci 1)2
i 1 8ci 1(ci 2ci 1) i ci 1(2ci 3ci 1) i 1 tan i 1       (8a) 

                    ),....,3,2,1( ni  
 
 Log-expanded deflection equations: 
 a. In recursive form:  
 

              

yi
( l)2

24ci 1
4

7ci 1
3 (ci ci 1)(8cici 1 3ci

2 ) 3(ci
3 ci 1

3 ) i 1

2ci 1 (3ci
2 (ci ci 1)(3ci 8ci 1) i ci 1 ci

2 2(ci ci 1)2
i 1

                   yi 1 l tan i 1

              (8b) 

                    ),....,3,2,1( ni  
 
  
b. In dual summation form:  
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                                  (8c)  

                    ),....,3,2,1( ni  
 
 Equations (8) are called the Constant-Domain Log-expanded Displacement Transfer Functions for 
slightly nonuniform (including uniform) embedded beams based on piecewise-nonlinear strain 
representations.  

FORMULATION OF VARIABLE-DOMAIN DISPLACEMENT 
TRANSFER FUNCTIONS  

 This section describes the formulations of the Displacement Transfer Functions for variable-domain 
lengths (nonuniform discretization cases). Let the embedded beam be discretized into n domains with 
variable-domain length, )()( 1iii xxl ),....,3,2,1( ni [ l  in figure 1 replaced with ( l)i ], then the 
beam depth factor, )(xc , within each small domain, ii xxx 1 , between the two adjacent strain-sensing 
stations, 1{ ix , }ix , can be represented with the piecewise-linear function, and the surface strain, )(x , 
represented with either the piecewise-linear or the piecewise-nonlinear function (quadratic function). 
 

Piecewise-linear depth factor representation as shown in equation (9): 
 

          
i

i
iii l

xxcccxc
)(

)()( 1
11     ;     )( 1 ii xxx                             (9) 

 
Piecewise-linear strain representation as shown in equation (10): 
 

            
i

i
iii l

xx
x

)(
)()( 1

11      ;     )( 1 ii xxx                       (10)  
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Piecewise-nonlinear strain representations (fig. 2) (see Appendix A for derivation): 
 

   
2

1
11

1111

1
11

1
22

1111
1

)(
])()[()()(

)(])()[()(
                 

)(
])()[()()(

)(])()[(])()(2[)(
)(

i
iiii

iiiiiii

i
iiii

iiiiiiiii
i

xx
llll

llll

xx
llll

llllllx

       (11) 

                    (xi 1 x xi ) 
 
 When i n , equation (11) contains a nonexistence (fictitious) strain, n 1 . By setting 1ni  and 
setting the term (x xi 1)  to (xn 1 xn 1) [( l)n 1 ( l)n ( l)n 1]  in the region (xn 1 x xn 1) , 
equation (11) becomes the following three-points extrapolation formula for the calculation of the fictitious 
strain, 1n : 
 

           

n 1 n 2
( l)n[2( l)n 1 ( l)n ] n 2 [( l)n 1 ( l)n ]2

n 1 ( l)n 1
2

n

( l)n 1( l)n[( l)n 1 ( l)n ]
                                                                           [( l)n 1 ( l)n ( l)n 1]

         ( l)n n 2 [( l)n 1 ( l)n ] n 1 ( l)n 1 n

( l)n 1( l)n[( l)n 1 ( l)n ]
[( l)n 1 ( l)n ( l)n 1]2

                   

(12)

 
  
For a special case of constant-domain lengths, llll .....)()()( 321 , it is easy to show that 
equations [(11), and (12)] will degenerate respectively into equations [(4a), and (4b)] (see Appendix A). 

LISTS OF VARIABLE-DOMAIN DISPLACEMENT TRANSFER 
FUNCTIONS 

 The variable-domain slope and deflection equations in recursive forms can be obtained from the 
constant-domain recursion slope and deflection equations [(5a), and (5b) (8a), and (8b)] by simply 
changing the constant-domain length, l( l n) , into variable-domain lengths, )()( 1iii xxl . 
However, the derivations of the variable-domain Displacement Transfer Functions (recursive slope and 
deflection equations combined into dual summation forms) require considerable mathematical 
manipulations (see Appendix B). 

Based on Piecewise-Linear Strain Representations 

 The following two sets of variable-domain slope and deflection equations were formulated by using 
piecewise-linear functions to describe the piecewise variations of the depth factor and surface strain, )({ xc

)}(x , [eqs. (9), and (10)].  
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1. Nonuniform Beams (Linear Strain) [( l)i 1 ( l)i ; (ci 1 ci )] 

 Slope equation [see eq. (5a)]: 
 

1
1

2
1

11

1

1 tanlog
)(

)(tan i
i

i

ii

iiii

ii

ii
ii c

c
cc

cc
cc

l                           (13a)  

                         ),....,3,2,1( ni  
 
 Deflection equations: 
 a. In recursive form [see eq. (5b)]:  
 

           111
1

3
1

11

1

12 tan)()(log
)()(2

)( iiiii
i

i
i

ii

iiii

ii

ii
ii lycc

c
c

c
cc

cc
cc

ly      (13b) 

                       ),....,3,2,1( ni  
 
 b. In dual summation form (see Appendix B for derivation): 
 

                       (13c) 

                                            ),....,3,2,1( ni   
 
 Equations (13) are called the Variable-Domain Nonuniform Displacement Transfer Functions for 
nonuniform embedded beams based on piecewise-linear strain representations. For constant-domain 
lengths, llll .....)()()( 321 , equation (13c) degenerates into equation (5c). Equations (13) are 
not applicable to the limit case of uniform beam (ci 1 ci c)  because of mathematical indeterminacy (that 
is, 0/0 ). However, by expanding the logarithmic terms in equations (13) in series forms in the 
neighborhood of (ci 1 / ci ) 1 (refs. 1, and 3), one can obtain the following Log-expanded equations (14) 
for slightly nonuniform embedded beams [(ci 1 / ci ) 1], which are applicable to the limit case of uniform 
beams (ci 1 ci c) .  

2. Slightly Nonuniform Embedded Beams (Linear Strain) [( l)i 1 ( l)i ; (ci / ci 1) 1]  

 Slope equations:  
  

      11
11

tan2
2

)(
tan iii

i

i

i

i
i c

c
c
l     ;   ),....,3,2,1( ni                (14a)  
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Deflection equations: 
 a. In recursive form: 
 

              yi
( l)i

2

6ci 1

3 ci

ci 1
i 1 i yi 1 l tan i 1      ;     ),....,3,2,1( ni             (14b) 

 
b. In dual summation form:  
 

                                                 (14c) 

                    (i = 1,2,3,…..,n) 
 
Equations (14) are the Variable-Domain Log-expanded Displacement Transfer Function for slightly 
nonuniform (including uniform) embedded beams based on piecewise-linear strain representations. The 
derivation of equation (14c) is similar to that of equation (13c) (see Appendix B). For constant-domain 
lengths, llll .....)()()( 321 , equation (14c) degenerates into equation (6c). It must be 
mentioned that the shape prediction accuracy of equation (14a), (14b), and (14c) was experimentally 
validated (see section: Experimental Validations of Shape-Prediction Accuracies).  

Based on Piecewise-Nonlinear Strain Representations 

 The following two sets of slope and deflection equations were formulated by using the piecewise-
nonlinear function to describe the variation of the surface strain, )(x [eq. (11)], but the piecewise-linear 
function was used to describe the variation of the depth factor, )(xc [eq. (9)]. For simplifications, let the 
coefficients of the second and third terms of equation (11) be represented respectively with symbols iA  and 

iB  as shown in equations (15) and (16) respectively: 
 

     
])()[()()(

)(])()[(])()(2[)(

11

1
22

1111

iiii

iiiiiiiii
i llll

llllll
A         (15) 

 

     
])()[()()(

)(])()[()(

11

1111

iiii

iiiiiii
i llll

llll
B                 (16) 

 
Then, the improved slope and deflection equations can be written as (see Appendix C for derivations):
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1. Nonuniform Embedded Beams (Nonlinear Strain) [( l)i 1 ( l)i ; (ci 1 ci )] 

 Improved slope equation: 
 

  

tan i
( l)i

(ci ci 1)3 (ci ci 1)2
i 1 Ai ( l)i ci 1(ci ci 1) Bi ( l)i

2 ci 1
2 loge

ci

ci 1

         ( l)i

2(ci ci 1)2 2Ai ( l)i (ci ci 1) Bi ( l)i
2 (ci 3ci 1) tan i 1

                         

(17a) 

                    ),....,3,2,1( ni  
 
 Improved deflection equations: 
 a. In recursive form:  
 

          
yi

( l)i
2

(ci ci 1)4 (ci ci 1)2
i 1 Ai ( l)i (ci ci 1)ci 1 Bi ( l)i

2 ci 1
2 ci loge

ci

ci 1

(ci ci 1)

    ( l)i
2

6(ci ci 1)2 3A( l)i (ci ci 1) Bi ( l)i
2 (ci 4ci 1)i yi 1 ( l)i tan i 1

         (17b) 

                    ),....,3,2,1( ni  
 

b. In dual summation form: 
 

                         (17c) 

                    (i = 1,2,3,…..,n) 
  

Equations (17) are called the Variable-Domain Improved Displacement Transfer Functions for non-
uniform embedded beams based on piecewise-nonlinear strain representations. Derivation of equation (17c) 
is similar to that of equation (13c) (see Appendix B). For the constant-domain lengths, 

llll .....)()()( 321 , equations (17) will degenerate into equations (7) (see Appendix C). 
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 Equations (17) are not applicable to the limit case of uniform embedded beam ( ccc ii 1 ) because 
of mathematical indeterminacy (that is, 0/0). Therefore, the logarithmic terms in equations (17) were 
expanded in series forms in the neighborhood of (ci 1 / ci ) 1 , to yield the following Log-expanded 
equations (18) for slightly nonuniform embedded beams [(ci 1 / ci ) 1], applicable to the limit case of 
uniform beams (ci 1 ci c)  (see derivations in Appendix D). 

2. Slightly Nonuniform Embedded Beams (Nonlinear Strain) [( l)i 1 ( l)i ; (ci / ci 1) 1] 

 Log-expanded slope equation: 
 

                   tan i
( l)i

6ci 1
3

6ci 1
2 (ci ci 1)(2ci 5ci 1) i 1

Ai ( l)i ci 1(2ci 5ci 1) 2Bi ( l)i
2 ci 1

2
tan i 1                (18a)  

                    ),....,3,2,1( ni  
 
 Log-expanded deflection equations: 
 a. In recursive form: 
 

                  yi
( l)i

2

12ci 1
4

6ci 1
3 ci 1(10ci 3ci 1)(ci ci 1) 3(ci

3 ci 1
3 ) i 1

Ai ( l)i ci 1 2ci 1
2 (3ci 4ci 1)(ci ci 1)

Bi ( l)i
2 ci 1

2 ci 1 3(ci ci 1)

yi 1 ( l)i tan i 1

          

(18b) 

                    ),....,3,2,1( ni  
 

b. In dual summation form:  
 

                  (18c) 

                          ),....,3,2,1( ni  
 
 Equation (18) are called the Variable-Domain Log-expanded Displacement Transfer Functions for 
slightly nonuniform (including uniform) embedded beams based on piecewise-nonlinear strain 
representations. Derivation of equation (18c) is similar to that of equation (13c) (see Appendix B). For 
constant-domain lengths, llll .....)()()( 321 , equation (18c) degenerates into equation (8c) 
(see Appendices D, and E). 
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CHARACTERISTICS OF DISPLACEMENT TRANSFER FUNCTIONS 
 The Displacement Transfer Functions listed above are purely geometrical in nature, relating surface 
strains and depth factors to out-of-plane deflections, and contain no material/structural properties. Thus, in 
the shape predictions using the Displacement Transfer Functions, no knowledge of material/structural 
properties is required. In fact, the effects of material/structural properties are felt only by the surface strains 
and influence their outputs.  
 

Another key characteristic of the Displacement Transfer Functions is that the deflection, iy , at the 
strain-sensing station, ix , is expressed in terms of the inboard surface strains, ( 0, 1, 2 ,...., i ),obtained at 
all the inboard strain-sensing stations, (x0 , x1, x2 ,...., xi ),  including the strain, i , at the current strain-
sensing station, ix , where iy  is calculated. The outboard surface strains, ( i 1, i 2, i 3,...., n ),  are not 
needed in the calculations of iy . 

DETERMINATIONS OF DEPTH FACTORS 

 To use the Displacement Transfer Functions to convert surface strains into deflections, the depth 
factors, ),....,3,2,1( ni , of the embedded beam are needed in the deflection calculations. To determine 
the depth factors, ci (that is, locating the neutral axis), one can use two strain-sensing lines, each of which 
are lying respectively on the lower and upper surfaces of the embedded beam. The lower and upper surface 
strains, { i , i} ),....,3,2,1( ni , can then be used to determine the lower and upper depth factors,                
{ci , ci} . 
 
 As shown in figure 3, R is the radius of curvature of the neutral axis of the embedded beam under 
upward bending;  is the undeformed segment length along the neutral axis; CD is the elongation of 
the lower surface from un-deformed length,  to deformed length, AC;  is the contraction 
of the upper surface from undeformed length,  to deformed length, . Then, through 
geometrical similarities of the curved triangles, AC B BC B BC  (fig. 3), the lower and upper surface 
strains, { i , i}, can be related respectively to the lower and upper depth factors, {ci , ci}, as:  
 

   i
BC
AB

BC
A0B0

ci

R
 (tension)     ;     i

BC
AB

BC
A0B0

ci

R
 (compression)                   (19) 

 
Keep in mind that in upward or downward bending, the signs of the lower and upper surface strains,            
{ i , i}, are always opposite. By eliminating R in equation (19), the two depth factors, {ci , ci} , can be 
related as:  
 

           
ci

i

i

ci

         
;       ),....,3,2,1( ni         (20)  
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The depth of the embedded beam, hi , at strain-sensing station, xi , is given by:  
 
           hi ci ci          ;       ),....,3,2,1( ni         (21) 
 
In view of equations (20) and (21), one can establish the depth factor equations in the forms: 
 

               ci
i

i i

hi      ;     ci
i

i i

hi

              
;              ),....,3,2,1( ni          (22)          

        
Equation (22) can also be used for downward bending, and is applicable to both solid beam cross sections, 
and hollow beam cross sections (for example, aircraft wing cross sections). 
 
  If { i , i}  have the same magnitudes (opposite signs), then equation (22) gives 2, 
indicating that the neutral axis is located at the beam half depth. Equation (22) was used with great success 
in the shape predictions of both Ikhana (General Atomics Aeronautical Systems Inc., San Diego, California) 
composite wings (66-ft wingspan) (ref. 3) and Global Observer (AeroVironment Inc., Monrovia, 
California) composite wings (175-ft wingspan) (ref. 13), for which the locations of neutral axes were 
unknown. Therefore, equation (22) had to be used to calculate the depth factors, {ci , ci} , for each 
embedded beam using the associated surface strains, { i , i}. 

STRUCTURE USED FOR SHAPE PREDICTION ACCURACY STUDIES 
 To compare the shape-prediction accuracies of the newly formulated variable-domain Displacement 
Transfer Function with the earlier constant-domain Displacement Transfer Functions, a sample structure 
was needed. The structure chosen for the prediction accuracy analysis was an aluminum tapered cantilever 
tubular beam with geometries listed in table 1.  
 

Table 1. Geometries of aluminum tapered cantilever tubular beam. 
 

l, in. t, in. 0c , in. nc , in. ]}/)[(tan{ 0
1 lcc n , deg. 

(Length) (Wall thickness) (Root depth factor) (Tip depth factor) (Taper angle) 
300 0.02296 4 1 0.5729 

 
 The embedded beam (depth-wise structural cross section along the strain-sensing line) shown in figure 
1 can also represent the embedded beam of the tapered cantilever tubular beam. The embedded beam for 
the tubular beam is defined as the span-wise vertical cross section along the strain-sensing line which is 
coincidental with the bottom generatrix (a straight line for generating tubular surface through sidewise 
circular motion). Because the depth factor, 1,2,3,…..,n  (fig. 1), is the known local radius, only one 
strain-sensing line is needed to obtain surface strains, 1,2,3,…..,n  (fig. 1) for shape predictions. An 
upward point load of 300P lb (or 600P lb) was applied at the beam free end.  
 
 In the present technical publication, sixteen (n = 16) strain-sensing domains (distance between two 
adjacent strain-sensing stations) were used for the constant-domain cases with equal domain lengths of 

300 16 18.75 in. To create variable-domain cases, the strain-sensing stations at i 4, 8, and 
12 of constant-domain cases were removed to double the domain length to 2 18.75 37.5 in. in 
those three regions. The rest of the domain lengths remain unchanged [that is, 18.75 in.] 
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ANALYTICAL SHAPE PREDICTIONS 
 The shape prediction analysis in the present technical publication report is called analytical shape 
prediction analysis. Namely, instead of using experimentally measured surface strains, the Structural 
Performance And Resizing (SPAR) finite-element computer program (ref. 14) was used to analytically 
calculate the surface strains for input to the Displacement Transfer Functions for shape calculations. Also, 
for estimations of shape prediction errors of different Displacement Transfer Functions, the SPAR-
generated slopes and deflections were used as reference yardsticks. 

FINITE ELEMENT ANALYSIS 

 The purpose of the finite-element analysis is to generate input surface strains, and to calculate the slopes 
and deflections, which were used as the reference yardsticks in the shape prediction error analysis.  

Finite-Element Model 

 The SPAR finite-element model generated for the tapered cantilever tubular beam has the following 
numbers of nodes and elements: 
 3673 nodes = 3636 nodes for the tube wall (101 axial nodes  36 circumferential nodes) + 
         37 nodes on the beam-tip disk  
 3636 four-node elements = 3600 elements for the tube wall + 
           36 elements for beam-tip disk outer region 
 36 three-node elements for beam-tip disk central region 
  

The upward point load of 300P lb (or 600P lb) was applied at the beam-tip disk central node of 
the SPAR model.  

 
 Figure 4 shows the undeformed and deformed shapes of the SPAR model generated for the tapered 
cantilever tubular beam subjected to beam-tip load of 300P lb (or 600P lb). Note that for the loading 
case of 300P lb, the beam-tip deflection reached ny 141.6 in., and the beam-tip slope reached as large 
as n  48 deg.  For the doubled loading case of 600P lb, the beam-tip deflection was doubled to ny  
283.2 in. (because of linear elasticity), however, the beam-tip slope was not doubled, but only increased by 
1.375 times to n 66 deg (=1.375 48 deg).  
 
 It must be mentioned that the SPAR model has 100 elements in the axial direction (fig. 3). For 16n  
strain-sensing domains, the even number of strain sensing stations can be either coincidental with SPAR 
nodes or at the midpoints between two adjacent SPAR axial nodes. However, the odd numbers of strain-
sensing stations are not precisely at the SPAR nodes. Therefore, the shape prediction errors were based on 
the actual prediction errors at the even numbers of strain-sensing stations. 

Analytical Surface Strains 

 In the present paper, the surface strains, i ),....,3,2,1,0( ni , for inputs to the Displacement Transfer 
Functions were calculated analytically (not actually measured) by using the SPAR program. Namely, finite 
elements were used to simulate actual strain gages. The surface bending strains, i ),....,3,2,1,0( ni , at the 
i-th strain-sensing stations (fig. 1) were generated by converting the nodal or element axial stresses into 
axial strains, i  (bending strains), through stress-strain relationship.  
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 It must be mentioned that the surface strain, i , can also be obtained from the span-wise nodal 
displacement differentials of the SPAR elements. However, it was found that in the beam-tip regions of the 
highly bent tapered beams (large deformations), the axial strains became negative because the output nodal 
displacements were the projected displacements along the original beam axis, and not along the deformed 
beam axis to reflect true span-wise displacements. Therefore, this displacement method was not used.  
 
 Figure 5 shows the plots of SPAR-generated surface strains for the two loading cases, P {300, 600} 
lb. Note that the strain level doubled when the applied load was increased from P 300 lb to P 600 lb 
because of linear elasticity used in the SPAR program. Note that the surface strains for the two loading 
cases increased practically linearly from the fixed ends and reached their respective peaks in the outboard 
region, and then decreased rapidly toward the beam tip (because of decreasing depth factor), and finally 
reached small nonzero values at the beam tip. Theoretically the beam-tip strains should be zero. Because 
of finite length, the beam-tip finite element (simulated strain gage), which has one end at the beam tip, but 
the other end is slightly off from the beam tip, gave small nonzero strains. By reducing the element sizes, 
the small nonzero beam-tip strains could be reduced. Keep in mind that if an actual strain gage is installed 
at the beam tip, the strain output could also be nonzero because of finite length of the strain gage.  

Criteria of Prediction Errors 

 The SPAR-calculated surface strain data of figure 5 were then input to the Displacement Transfer 
Functions (constant-domain and variable-domain cases) to calculate the slopes and deflections. The shape 
prediction errors of the Displacement Transfer Functions were estimated by comparison with the SPAR-
calculated slopes and deflections, which were used as reference yardsticks. The prediction errors are then 
defined as the percent of normalized differences (signs neglected) between the predicted slopes and 
deflections, {( )Pred.,(yi )Pred.} , and the corresponding SPAR-generated slopes and deflections,

})(,){( SPARSPAR. iy . Namely, 
 

           Slope ( i ) prediction error ( i )Pred. ( i )SPAR

( i )SPAR

100%     ;     1,2,3,…..,n                   (23)    
 

    Deflection ( iy ) prediction error (yi )Pred. (yi )SPAR

(yi )SPAR

100%      ;     1,2,3,…..,n                   (24) 

SELECTED DISPLACEMENT TRANSFER FUNCTIONS  
 Because the cantilever tubular beam is highly tapered, the following four Displacement  
Transfer Functions for nonuniform beams were chosen in the prediction accuracy analysis.  
 

Based on piecewise-linear strain representations:  
1. Equations (5)  constant-domain Nonuniform Displacement Transfer Functions formulated for 

nonuniform beams based on piecewise-linear strain representations. 
2.  Equations (13)  variable-domain Nonuniform Displacement Transfer Functions formulated for 

nonuniform beams based on piecewise-linear strain representations. 
Based on piecewise-nonlinear strain representations:  
3.  Equations (7)  constant-domain Improved Displacement Transfer Functions formulated for 

nonuniform beams based on piecewise-nonlinear strain representations. 
4.  Equations (17)  variable-domain Improved Displacement Transfer Functions formulated for 

nonuniform beams based on piecewise-nonlinear strain representations. 
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The above four Displacement Transfer Functions were used to calculate both slopes and deflections for 

comparison with the corresponding SPAR-calculated values. 

NUMERICAL RESULTS 
 The SPAR-generated surface strain data of figure 5 were then input into equations (5a), (5b), (5c), 
(13a), (13b), and (13c) (piecewise-linear strain representations), and equations (7a), (7b), (7c), (17a), (17b), 
and (17c) (piecewise-nonlinear strain representations) for the calculations of both slopes and deflections. 
The slope and deflection prediction errors were then calculated respectively from the prediction error 
equations (23), and (24). 

Calculated Slope Data 

 The slopes, i , calculated from the slope equations (5a), and (13a) (based on piecewise-linear strain 
representations) and slope equations (7a), and (17a) (based on piecewise-nonlinear strain representations 
for the two loading cases, P {300, 600} lb, are listed below. The percent slope prediction errors were 
calculated from the slope prediction error equation (23).  

For Piecewise-Linear Strain Representations: 
The slope prediction errors based on piecewise-linear strain representations are listed in tables 2 and 3 

for loading cases of P {300, 600} lb.  
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Table 2. Comparisons of slopes, i , calculated from SPAR and from constant and variable-domain slope 
equations [(5a), (13a)] (piecewise-linear strain representations); tapered cantilever tubular beam                        
( 300l  in., 40c in., 1nc in.) subjected to tip load of 300P lb; 16n , 75.18l in., fine 

75.18)( il in., coarse 50.37)( il in. 
 

 SPAR Constant-domain [eq. (5a)] Variable-domains [eq. (13a)] 
i i , deg i , deg Percent error i , deg Percent error 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 2.1815 2.0895 4.2174 2.0895 4.2174 
2 4.3526 4.3460 0.1502 4.3460 0.1502 
3 7.0977 6.7873 4.3742 6.7873 4.3742 
4 9.4255 9.4213 0.0447 ---------- ---------- 
5 12.3764 12.2534 0.9943 12.2542 0.9876 
6 15.2999 15.2918 0.0525 15.2926 0.0473 
7 18.9492 18.5395 2.1623 18.5403 2.1582 
8 21.9903 21.9831 0.0326 ---------- ---------- 
9 25.1656 25.5988 1.7214 25.5937 1.7013 

10 29.3683 29.3544 0.0474 29.3497 0.0634 
11 33.0596 33.1950 0.4097 33.1907 0.3966 
12 37.0656 37.0367 0.0780 ---------- ---------- 
13 40.9426 40.7621 0.4409 40.6960 0.6024 
14 44.2216 44.1650 0.1278 44.1057 0.2620 
15 46.8926 46.8405 0.1112 46.7865 0.2262 
16 48.2679 48.0961 0.3559 48.0446   0.4625* 

* 30-percent increase from constant-domain case.  
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Table 3. Comparisons of slopes, i , calculated from SPAR and from constant and variable-domain 
non-uniform slope equations [(5a), (13a)] (piecewise-linear strain representations); long tapered cantilever 
tubular beam ( 300l in., 40c in., 1nc in.) subjected to tip load of 600P lb, 16n , 75.18l in.; 
fine 75.18)( il in., coarse 50.37)( il in. 
 

 SPAR Constant-domain [eq. (5a)] Variable-domains [eq. (13a)] 
i i , deg i , deg Percent error i , deg Percent error 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 4.0121 4.1735 4.0242 4.1735 4.0242 
2 8.6553 8.6426 0.1463 8.6426 0.1463 
3 13.5897 13.3892 1.4750 13.3892 1.4750 
4 18.3669 18.3591 0.0424 -------- -------- 
5 23.2829 23.4785 0.8400 23.4800 0.8462 
6 28.6842 28.6712 0.0453 28.6726 0.0407 
7 34.0679 33.8507 0.6375 33.8519 0.6340 
8 38.9263 38.9162 0.0260 -------- -------- 
9 43.6006 43.7767 0.4039 43.7703 0.3891 

10 48.3787 48.3626 0.0332 48.3571 0.0446 
11 52.7958 52.6120 0.3481 52.6075 0.3567 
12 56.4976 56.4700 0.0490 -------- -------- 
13 59.7895 59.8850 0.1597 59.8269 0.0626 
14 62.8071 62.7611 0.0732 62.7127 0.1502 
15 65.0539 64.8797 0.2679 64.8381 0.3318 
16 65.9637 65.8349 0.1954 65.7962   0.2540* 

* 30-percent increase from constant-domain case.  
 
Note from tables 2, and 3 (piecewise-linear strain representations) that, by removing three strain-

sensing stations at i = 4, 8, 12 to change the constant-domain cases into variable-domain cases, the beam-
tip slope ( n ) prediction errors increased from 0.3559 percent to 0.4625 percent (30-percent increase) for 
loading case of 300P lb (table 2), and from 0.1954 percent to 0.2540 percent (also a 30-percent increase) 
for loading cases of 600P lb (table 3). However, the slope prediction errors are still in the negligible 
levels. Note also that by increasing the load from 300P lb to 600P lb, the beam-tip slope ( n ) 
prediction errors decreased from 0.3559 percent (table 2) down to 0.1954% (table 3) (45-percent reduction) 
for the constant-domain cases, and decreased from 0.4625 percent (table 2) down to 0.2540 percent (table 
3) (also a 45-percent reduction) for the variable-domain cases. 

For Piecewise-Nonlinear Strain Representations: 
The slope prediction errors based on piecewise-nonlinear strain representations are listed in tables 4 

and 5 for loading cases of P {300, 600} lb.  
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Table 4. Comparisons of slopes, i , calculated from SPAR and from constant and variable-domain slope 
equations [(7a), (17a)] (piecewise-nonlinear strain representations); tapered cantilever tubular beam                 
( 300l in., 40c in., 1nc in.) subjected to tip load of 300P lb; 16n , 75.18l in., fine 

75.18)( il in., coarse 50.37)( il in. 
 

 SPAR Constant-domain [eq. (7a)] Variable-domains [eq. (17a)] 
i i , deg i , deg Percent error i , deg Percent error 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 2.1815 2.0884 4.2683 2.0884 4.2683 
2 4.3526 4.3447 0.1813 4.3447 0.1813 
3 7.0977 6.7862 4.3890 6.7862 4.3890 
4 9.4255 9.4201 0.0571 -------- --------  
5 12.3764 12.2516 1.0089 12.2655 0.8964 
6 15.2999 15.2903 0.0629 15.3038 0.0258 
7 18.9492 18.5391 2.1644 18.5522 2.0953 
8 21.9903 21.9837 0.0300 -------- --------  
9 25.1656 25.6010 1.7301 25.6218 1.8130 

10 29.3683 29.3606 0.0262 29.3801 0.0400 
11 33.0596 33.2072 0.4467 33.2252 0.5010 
12 37.0656 37.0587 0.0184 -------- --------  
13 40.9426 40.8057 0.3343 40.7581 0.4506 
14 44.2216 44.2497 0.0636 44.2071 0.0328 
15 46.8926 46.9762 0.1784 46.9376 0.0959 
16 48.2679 48.2910 0.0479 48.2543   0.0283* 

* 41-percent reduction from constant-domain case. 
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Table 5. Comparisons of slopes, i , calculated from SPAR and from constant and variable-domain slope 
equations [(7a), (17a)] (piecewise-nonlinear strain representations); tapered cantilever tubular beam                
( 300l in., 40c in., 1nc in.) subjected to tip load of 600P lb; 16n , 75.18l in., fine      

18.75 in., coarse 37.50  in. 
 

 SPAR Constant-domain [eq. (7a)] Variable-domains [eq. (17a)] 
i i , deg i , deg Percent error i , deg Percent error 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 4.0121 4.1713 3.9690 4.1713 3.9690 
2 8.6553 8.6400 0.1771 8.6400 0.1771 
3 13.5897 13.3872 1.4898 13.3872 1.4898 
4 18.3669 18.3569 0.0542 -------- -------- 
5 23.2829 23.4753 0.8263 23.4999 0.9317 
6 28.6842 28.6686 0.0545 28.6911 0.0238 
7 34.0679 33.8501 0.6393 33.8702 0.5803 
8 38.9263 38.9170 0.0238 -------- -------- 
9 43.6006 43.7796 0.4104 43.8063 0.4716 

10 48.3787 48.3698 0.0183 48.3924 0.0284 
11 52.7958 52.6249 0.3237 52.6438 0.2879 
12 56.4976 56.4911 0.0116 -------- -------- 
13 59.7895 59.9232 0.2237 59.8815 0.1538 
14 62.8071 62.8299 0.0364 62.7953 0.0188 
15 65.0539 64.9841 0.1073 64.9544 0.1530 
16 65.9637 65.9811 0.0263 65.9536   0.0154* 

* 41-percent deduction from constant-domain case.  
 
Note from tables 4, and 5 (piecewise-nonlinear strain representations) that, by removing three strain-

sensing stations at i = 4, 8, 12 to change the constant-domain cases into variable-domain cases, the beam-
tip slope ( n ) prediction errors decreased from 0.0479 percent  down to 0.0283 percent  (41-percent  
reduction) for the loading case of 300P lb (table 4), and from 0.0263 percent down to 0.0154 percent 
(also a 41-percent  reduction) for loading case of 600P lb (table 5) [remember, 30-percent increase for 
stepwise linear strain representations (tables 2, and 3)]. 

 
Also note that by increasing the load from 300P lb to 600P lb, the beam-tip slope ( n ) prediction 

errors decreased from 0.0479 percent (table 4) down to 0.0263 percent (table 5) (45-percent  reduction) for 
the constant-domain cases, and decreased from 0.0283 percent (table 4) down to 0.0154 percent (table 5) 
(also a 45-percent reduction) for the variable-domain cases.  

 
 It is important to mention that by changing the piecewise-linear strain representations (tables 2, and 3) 
into piecewise-nonlinear strain representations (tables 4, and 5), the beam-tip slope ( n ) prediction errors 
for both loading cases, P {300, 600} lb, were reduced by as large as 87 percent for the constant-domain 
cases, and by 94 percent for the variable-domain cases. Note from tables 4 and 5 that nonlinear strain 
representations reducing the number of domains (that is, increasing domain lengths) could somewhat 
improve the beam-tip slope ( n ) prediction accuracies. Such domain-length-dependent shape prediction 
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accuracies of the Displacement Transfer Functions were also observed in the experimental shape-prediction 
accuracy studies (ref. 13).  

Calculated Slope Curves 

Figures 6 and 7 respectively show the slope ( i ) curves generated using the slope data of tables 2 and 
3 (piecewise-linear strain representations), and tables 4 and 5 (piecewise-nonlinear strain representations). 
Note from figures 6 and 7 that the slope-curves are slightly s-shaped, and the values of i  did not double 
when the load was increased from 300P lb to 600P lb. Namely, i  is not a linear function of P. 
Because of infinitesimal slope prediction errors, the predicted slope curves for all the constant and variable-
domain cases pictorially fell on top of the corresponding SPAR slope curves, showing remarkable 
accuracies of the Displacement Transfer Functions formulated based on piecewise approaches. 

Calculated Deflection Data 

  The deflections, iy , calculated from the deflection equations (5b), (5c), (13b), and (13c) (based on 
piecewise-linear strain representations) and deflection equations (7b), (7c), (17b), and (17c) (based on 
piecewise-nonlinear strain representations) for the two loading cases, P {300, 600} lb are listed below. 
The percent deflection prediction errors were calculated from the deflection prediction error equation (24).  

For Piecewise-Linear Strain Representations:   

 The deflections, yi , calculated from the deflection equations (5b), (5c) (13b), and (13c)] (based on 
piecewise-linear strain representations) for the loading cases, P {300, 600} lb are listed respectively in 
tables 6, and 7.  
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Table 6. Comparisons of deflections, iy , calculated from SPAR and from constant and variable-domain 
deflection equations [(5b, 5c), (13b, 13c)] (piecewise-linear strain representations); tapered cantilever 
tubular beam ( 300l in., 40c in., 1nc in.) subjected to tip load of 300P lb, 16n , 75.18l in., 
fine 18.75 in., coarse 37.50  in. 
 

 SPAR Constant domain [eqs. (5b,5c)] Variable domains [eqs. (13b,13c)]
i 

iy , in. iy , in. Percent error 
iy , in. Percent error 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.3223 0.3377 4.7845 0.3377 4.7845 
2 1.4029 1.3871 1.1270 1.3871 1.1269 
3 3.3148 3.2096 3.1741 3.2096 3.1741 
4 5.8910 5.8746 0.2789 --------- -------- 
5 9.3147 9.4591 1.5503 9.4594 1.5533 
6 14.0737 14.0501 0.1678 14.0506 0.1638 
7 20.0231 19.7479 1.3747 19.7487 1.3705 
8 26.6907 26.6659 0.0928 -------- -------- 
9 34.5995 34.9302 0.9558 34.9294 0.9533 

10 44.7190 44.6814 0.0841 44.6785 0.0906 
11 56.6063 56.0742 0.9399 56.0693 0.9486 
12 69.3198 69.2690 0.0734 -------- -------- 
13 83.8382 84.4150 0.6880 84.3710 0.6355 
14 101.7093 101.6065 0.1010 101.5248 0.1813 
15 121.7164 120.7512 0.7930 120.6318 0.8910 
16 141.6016 141.3056 0.2090 141.1485 0.3199*

* 53-percent increase from constant-domain case. 
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Table 7. Comparisons of deflections, iy , calculated from SPAR and from constant and variable-domain 
deflection equations [(5b, 5c), (13b, 13c)] (piecewise-linear strain representations); tapered cantilever 
tubular beam ( 300l in., 40c in., 1nc in.) subjected to tip load of 600P lb, 16n , 75.18l in., 
fine 18.75 in., coarse 37.50  in. 
 

 SPAR Constant domain [eqs. (5b,5c)] Variable domains [eqs. (13b,13c)] 
i 

iy , in. iy , in. Percent error 
iy , in. Percent error 

0      0.0000 0.0000 0.0000 0.0000 0.0000 
1       0.6446 0.6755 4.7845 0.6755 4.7845 
2       2.8058 2.7742 1.1270 2.7742 1.1270 
3       6.6296 6.4192 3.1741 6.4192 3.1741 
4        11.7821 11.7492 0.2789 -------- -------- 
5        18.6294 18.9182 1.5503 18.9187 1.5533 
6        28.1474 28.1001 0.1678 28.1013 0.1638 
7        40.0463 39.4957 1.3747 39.4974 1.3705 
8        53.3814 53.3319 0.0928 -------- -------- 
9        69.1991 69.8605 0.9558 69.8587 0.9533 

10        89.4381 89.3628 0.0841 89.3570 0.0906 
11      113.2126 112.1485 0.9399 112.1386 0.9486 
12      138.6397 138.5379 0.0734 -------- -------- 
13      167.6765 168.8301 0.6880 168.7421 0.6355 
14      203.4186 203.2131 0.1010 203.0497 0.1813 
15      243.4327 241.5024 0.7930 241.2637 0.8910 
16      283.2032 282.6112 0.2090 282.2971   0.3199* 

* 53-percent increase from constant-domain case. 
 

Note from tables 6, and 7 (piecewise-linear strain representations) that deflections ( yi ) were doubled when 
the load was doubled from P 300 lb to P 600 lb because yi  are linear functions of P. Note also that 
the yi -prediction percent errors under the two loading cases, P {300, 600} lb, (tables 6, and 7) are 
identical for both constant and variable-domain cases, and are independent of the loading magnitude of P. 

As shown in tables 6, and 7, by removing three strain-sensing stations at i = 4, 8, 12, to change the 
constant-domain cases to variable-domain cases, the beam-tip deflection ( yn ) prediction errors increased 
from 0.2090 percent (constant-domain cases) to 0.3199 percent (variable-domain cases) (53-percent 
increase) for both loading cases, P {300, 600} lb. 
For Piecewise-Nonlinear Strain Representations: 

 The deflections, iy , calculated from the deflection equations (7b), (7c) (17b), and (17c) (based on 
piecewise-nonlinear strain representations) for the loading cases, P {300, 600} lb are listed respectively 
in tables 8, and 9. 
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Table 8. Comparisons of deflections, iy , calculated from SPAR and from constant and variable-domain 
deflection equations [(7b, 7c), (17b, 17c)] (piecewise-nonlinear strain representations); tapered cantilever 
tubular beam ( 300l in., 40c in., 1nc in.) subjected to tip load of 300P lb, n = 16, fine 

75.18)( il in., coarse 50.37)( il in. 
 

 SPAR Constant domain [eqs. (7b,7c)] Variable domains [eqs. (17b,17c)]
i iy , in. iy , in. Percent error iy , in. Percent error 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.3223 0.3376 4.7284 0.3376 4.7284 
2 1.4029 1.3865 1.1688 1.3865 1.1688 
3 3.3148 3.2086 3.2038 3.2086 3.2038 
4 5.8910 5.8732 0.3019 -------- -------- 
5 9.3147 9.4572 1.5303 9.4619 1.5800 
6 14.0737 14.0476 0.1853 14.0570 0.1184 
7 20.0231 19.7451 1.3887 19.7592 1.3179 
8 26.6907 26.6632 0.1032 -------- -------- 
9 34.5995 34.9280 0.9494 34.9554 1.0286 

10 44.7190 44.6810 0.0851 44.7168 0.0051 
11 56.6063 56.0780 0.9333 56.1222 0.8552 
12 69.3198 69.2812 0.0557 -------- -------- 
13 83.8382 84.4453 0.7241 84.4750 0.7595 
14 101.7093 101.6760 0.0327 101.6786 0.0302 
15 121.7164 120.8950 0.6749 120.8703 0.6951 
16 141.6016 141.5683 0.0235 141.5165 0.0601* 

* 156-percent increase from constant-domain case. 
  



 

28 

Table 9. Comparisons of deflections, iy , calculated from SPAR and from constant and variable-domain 
deflection equations [(7b, 7c), (17b, 17c)] (piecewise-nonlinear strain representations); tapered cantilever 
tubular beam ( 300l in., 40c in., 1nc in.) subjected to tip load of 600P lb, 16n , fine 

75.18)( il in., coarse 50.37)( il in. 
 

 SPAR Constant domain [eqs. (7b,7c)] Variable domains [eqs. (17b,17c)] 
i iy , in. iy , in. Percent error iy , in. Percent error 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
1 0.6446 0.6751 4.7282 0.6751 4.7282 
2 2.8058 2.7730 1.1688 2.7730 1.1688 
3 6.6296 6.4172 3.2038 6.4172 3.2038 
4 11.7821 11.7465 0.3019 -------- -------- 
5 18.6294 18.9145 1.5303 18.9237 1.5800 
6 28.1474 28.0952 0.1853 28.1140 0.1184 
7 40.0463 39.4901 1.3887 39.5185 1.3179 
8 53.3814 53.3264 0.1032 -------- -------- 
9 69.1991 69.8560 0.9494 69.9109 1.0286 

10 89.4381 89.3619 0.0851 89.4335 0.0051 
11 113.2126 112.1560 0.9333 112.2443 0.8552 
12 138.6397 138.5624 0.0557 -------- -------- 
13 167.6765 168.8907 0.7241 168.9500 0.7595 
14 203.4186 203.3521 0.0327 203.3571 0.0302 
15 243.4327 241.7899 0.6749 241.7406 0.6951 
16 283.2032 283.1367 0.0235 283.0330   0.0601* 

* 156-percent increase from constant-domain case.  
 
Note from tables 8 and 9 (piecewise-nonlinear strain representations) that deflections ( iy ) were doubled 
when the load was doubled from P 300 lb to P 600 lb because yi  are linear functions of P. It is 
important to note that the yi -prediction errors are identical under the two loading cases, P {300, 600} lb, 
(tables 8 and 9) for both constant and variable-domain cases and are, therefore, invariant to the loading 
magnitude of P. 
 

By removing three strain-sensing stations at i = 4, 8, 12, to convert the constant-domain cases to 
variable-domain cases, the beam-tip deflection ( ny ) prediction errors increased from 0.0235 percent 
(constant-domain cases) to 0.0601 percent (156-percent increase) for both loading cases,                          
P {300, 600} lb. [Remember, there is only a 53-percent increase for piecewise-linear strain 
representations (tables 6, and 7)].  

Calculated Deflection Curves 

Figures 8 and 9 respectively show the deflection ( iy ) curves generated using the deflection data of 
tables 6, and 7 (piecewise-linear strain representations) and tables 8, and 9 (piecewise-nonlinear strain 
representations). Note from figures 8 and 9 that the iy -curves are shallow bow-shaped, and the values of 
yi  were doubled when the load was increased from P 300 lb to 600P lb. Namely, yi  is a linear 
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function of P. Because of infinitesimal deflection prediction errors, the predicted deflection curves for all 
the constant and variable-domain cases practically fell on top of the corresponding SPAR deflection curves, 
showing amazing high accuracies of the Displacement Transfer Functions formulated based on piecewise 
formulations. 

SHAPE PREDICTION ERROR ANALYSIS 
This section compares the shape prediction errors of constant and variable-domain Displacement 

Transfer Functions formulated using linear or nonlinear strain representations. The slope and deflection 
prediction errors were calculated respectively from the shape prediction error equations (23) and (24). 

Slope Prediction Error Curves 

Figures 10 and 11 respectively show the slope ( i ) prediction error curves for loading cases of            
P {300, 600} lb based on the slope data listed in tables 2 and 3 (piecewise-linear strain representations). 
The beam-tip slope ( n ) prediction errors (in percent) are also indicated in figures 10 and 11. Those 

i -error curves were plotted by using only the actual prediction error data at the even strain-sensing stations 
which are either coincidental with SPAR nodes or at the midpoints between two adjacent SPAR axial nodes. 
The larger prediction errors at the odd strain-sensing stations (tables 2 and 3) cannot represent the true 
prediction errors because the odd strain-sensing stations are not precisely at the SPAR nodes and, therefore, 
were not plotted in figures 10 and 11. 

 
The constant-domain cases and variable-domain cases are shown respectively with solid curves (with 

solid circular symbols), and dashed curves (with open square symbols). The larger errors near the inboard 
regions are due to small numbers divided by other small numbers. The variable-domain cases have slightly 
larger errors in the outboard regions (figs. 10 and 11).  

 
Note from figures 10 and 11 that, doubling the load from 300P lb to 600P lb, the i -prediction 

errors in the outboard regions came down considerably (45-percent error reduction at the beam tip for both 
constant-domain and variable-domain cases).  

 
Figures 12 and 13 respectively show the predicted slope ( i ) error curves for loading cases of             

P {300, 600} lb based on the slope data listed in tables 4 and 5 (piecewise-nonlinear strain 
representations). The constant-domain cases and variable-domain cases are shown respectively with solid 
curves (with solid circular symbols), and dashed curves (with open square symbols). The amounts of the 
beam-tip slope ( n ) prediction errors are also shown in figures 12 and 13. 

 
Note from figures 12 and 13 that, doubling the load from 300P lb to 600P lb, the i -prediction 

errors in the outboard regions came down considerably, and at the beam tip, the prediction errors also 
decreased by 45 percent for both constant-domain and variable-domain cases. 

 
It is very important to mention that by changing the piecewise-linear strain representations (figs. 10 and 

11) into piecewise-nonlinear strain representations (figs. 12 and 13), the beam-tip slope ( n ) prediction 
errors for both loading cases, P {300, 600} lb could be reduced remarkably. Namely, reducing from 
{0.3559 percent, 0.1954 percent} (figs. 10 and 11) down respectively to {0.0479 percent, 0.0263 percent} 
(87-percent error reduction) (figs. 12 and 13) for the constant-domain cases, and reducing from 
{0.4625 percent, 0.2540 percent} (figs. 10 and 11) down respectively to {0.0283 percent, 0.0154 percent} 
(94-percent error reduction) (figs. 12 and 13) for the variable-domain cases.  
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Deflection Prediction Error Curves 

Figures 14 and 15 respectively show the predicted deflection ( iy ) error curves based on the deflection 
error data at even strain-sensing stations listed in tables 6 and 7 (piecewise-linear strain representations) 
and tables 8 and 9 (piecewise-nonlinear strain representations). The predicted deflection ( iy ) error curves 
are identical for both loading cases, P {300, 600} lb. The constant-domain cases and variable-domain 
cases are shown respectively with solid curves (with solid circular symbols), and dashed curves (with open 
square symbols). Again, the large errors (figs. 14 and 15) near the fixed end are due to a small number 
divided by another small number.  

 
As shown in figures 14 and 15, changing from piecewise-linear strain representations into 

piecewise-nonlinear strain representations, the iy -prediction errors could be reduced considerably in the 
outboard region. For example, the beam-tip deflections ( ny ) prediction errors for both loading cases,                          
P {300, 600} lb could be reduced from 0.2090 percent down to 0.0235 percent (89 percent error 
reduction) for the constant-domain cases, and from 0.3199 percent down to 0.0601 percent (81 percent error 
deduction) for the variable-domain cases.  

EXPERIMENTAL VALIDATIONS OF SHAPE-PREDICTION 
ACCURACIES 

 In the process of writing the present report,  large-scale ground loads tests of the Global Observer wing 
(175-ft. wingspan) were carried out at NASA Dryden (now Armstrong) Flight Research Center Flight Loads 
Laboratory (Edwards, California) (ref. 14). The experimentally measured strains obtained from the ground 
tests were then used to validate the Displacement Transfer Functions accuracies. The Global Observer wing 
is slightly tapered and consisted of several sections joined together. Therefore, the strain-sensing stations 
had to be properly distributed in order to avoid positioning them at the connection junctures, and thus 
creating the variable-domain case. The surface strains were measured by using four fiber-optic 
strain-sensing lines, with two lines on the wing upper surface, and another two lines on the wing lower 
surface. The whole wing was loaded from 0 percent up to 100 percent Design Limit Load (DLL) at which 
the wing-tip slope exceeded 20 degrees, and wing-tip deflection reached nearly 14 ft. The variable-domain 
Displacement Transfer Function (14c), developed for the slightly nonuniform beam, was used for the wing 
shape calculations. Using the measured surface strain data, the wing deflections were calculated from 
equation (14c), and were compared with the photogrammetry data, which were used as yardsticks to 
estimate the shape prediction errors.  
 
 Figures 16, and 17 (duplications of figures 11 and 12 of ref. 14) respectively show the plots of the 
predicted and measured wing deflections along the strain-sensing lines Number 3 and Number 4. Note that 
the strain data points are not uniformly distributed because of variable-domains. Amazingly, the measured 
data points practically fell on top of the corresponding predicted deflection curves for the whole range of 
loading levels (0 100-percent DLL). The wing-tip deflection prediction errors based on Number 3 and 
Number 4 strain-sensing lines are respectively in the small ranges of (0.09 1.72 percent) and 
(0.25 1.45 percent) at 100-percent DLL, depending on the strain-sensing domain distances used (ref. 14).  
 

In this ground test, it was found that by increasing the domain length from 1)( il in. to 
12)( il  in., the averaged wing-tip deflection prediction errors at 100-percent DLL could be reduced 

from 1.92 percent down to 0.27 percent (a remarkable 86-percent error reduction). This particular case 
certainly violates the principle that reducing the strain-sensing domains (that is, increasing the number of 
strain-sensing stations) can improve the shape prediction accuracies. Because of noisy strain data, 
increasing the number of strain-sensing stations caused more errors to be accumulated (fig. 10 of ref. 14). 
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This large-scale ground test results thus reinforced the previous finite-element analytical validation results 
(refs. 1–9), and give confidence in the shape prediction accuracies of the Variable-Domains Displacement 
Transfer Functions.   

FACTORS AFFECTING SHAPE PREDICTION ACCURACIES 
 The surprising high accuracies of analytical deformed shape predictions could be attributed to the 
piecewise (or recursive) formulations of the Displacement Transfer Functions. The major factors affecting 
the shape prediction accuracies of the Displacement Transfer Functions can be listed as:  
 1. Domain lengths (that is, intervals of strain-sensing stations along each strain-sensing line), 
 2. Accuracies of piecewise-linear representations of depth-factor distributions, 
 3. Accuracies of piecewise-linear or piecewise-nonlinear representations of strain distributions, 
 4. Accuracies of the input surface strains, 
 5. Accuracies of depth factors determined from surface strains. 

CONCLUDING REMARKS 
 The variable-domain Displacement Transfer Functions were formulated through piecewise integrations 
of the shifted curvature-strain differential equation. Using a long tapered cantilever tubular beam, the shape 
prediction accuracies of the variable-domain Displacement Transfer Functions were compared with the 
shape prediction accuracies of the constant-domain Displacement Transfer Functions formulated earlier. 
 
 Finite-element analysis was used to analytically generate surface strains. Also, the finite-element 
calculated slopes and deflections were used as reference yardsticks in the shape prediction error estimations. 
Some key results are listed below: 
 1. The slope and deflection equations in recursive forms developed for the constant-domain cases could 
be converted to those for the variable-domain cases by simply replacing the constant-domain lengths with 
variable-domain lengths.  
 2. The variable-domain Displacement Transfer Functions are highly accurate like the constant-domain 
Displacement Transfer Functions in shape predictions.  
 3. The shape prediction errors (slopes and deflections) are in the negligible ranges, with beam-tip slope 
( n ) prediction errors in the ranges of {(0.0263 0.3559 percent) and (0.0154 0.4625 percent)} respectively 
for the constant-domain and variable-domain cases; and the beam-tip deflection ( ny ) prediction errors in 
the ranges of {(0.0253 0.2090 percent) and (0.0601 0.3199 percent)} respectively for the constant-domain 
and variable-domain cases. 
 4. Based on either piecewise-linear or piecewise-nonlinear strain representations, the deflection 
prediction errors of the constant-domain and variable-domain Displacement Transfer Functions are 
invariant to the loading magnitudes. However, the slope prediction errors decreased with increasing loading 
magnitude. 

5. For piecewise-linear strain representations, changing from constant-domain cases into variable-
domain cases, the beam-tip slope and deflection ,{ n }ny  prediction errors increased by {30 percent and 
53 percent} respectively, regardless of loading magnitude.  

6. For piecewise-nonlinear strain representations, changing from constant-domain cases into variable-
domain cases, regardless of loading magnitude, the beam-tip slope ( n ) prediction errors decreased by 
41 percent, however, the beam-tip deflection )( ny  prediction errors increased by 156 percent. 

7. By changing from the piecewise-linear strain representations to piecewise-nonlinear strain 
representations, the beam-tip slope ( n ) prediction errors could be reduced by 87 percent for the constant-
domain cases, and reduced by 94 percent for the variable-domain cases.   
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8. By changing from the piecewise-linear strain representations to piecewise-nonlinear strain 
representations, the beam-tip deflection ( ny ) prediction errors could be reduced by 89 percent for the 
constant-domain cases, and reduced by 81 percent for the variable-domain cases.    
  



 

 33

FIGURES 

 
 

Figure 1. Embedded beam (cross section of structure, including a tubular beam) along strain-sensing line 
with evenly distributed strain-sensing stations. 
 

 
 

Figure 2. Piecewise linear and piecewise nonlinear representations of variable domain surface strain 
distribution. 
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Figure 3. Segment of deformed embedded beam used for geometrically relate lower and upper surface 
strains, { i , i}, to lower and upper depth factors, {ci , ci} .  
 
 
 

 
 

Figure 4. Large deformations of tapered cantilever tubular beam (SPAR finite-element model) subjected to 
upward tip load of P = 300 lb (or P = 600 lb); l = 300 in.,  = 4 in.,  = 1 in. 
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Figure 5. SPAR-generated surface strain curves for tapered cantilever tubular beam subjected to to upward 
tip load of P = 300 lb (or P = 600 lb); l = 300 in.,  = 4 in.,  = 1 in. 
 

 
 

Figure 6. Slopes, , of tapered cantilever tubular beam calculated from constant domain and variable 
domain slope equations [(5a), and (13a)] (piecewise linear strain representations); l = 300 in.,  = 4 in., 

 = 1 in.; P = {300, 600} lb. 
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Figure 7. Slopes, , of tapered cantilever tubular beam calculated from constant domain and variable 
domain slope equations [(7a), and (17a)] (piecewise nonlinear strain representations); l = 300 in.,  = 4 in., 

 = 1 in.; P = {300, 600} lb. 
 

 
 

Figure 8. Deflections, , of tapered cantilever tubular beam calculated from constant domain and variable 
domain deflection equations [(5b, (5c), (13b), and (13c)] (piecewise linear strain representations); 
l = 300 in.,  = 4 in.,  = 1 in.; P = {300, 600} lb. 
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Figure 9. Deflections, , of tapered cantilever tubular beam calculated from constant domain and variable 
domain deflection equations [(7b), (7c), (17b), and (17c)] (piecewise nonlinear strain representations); 
l = 300 in.,  = 4 in.,  = 1 in.; P = {300, 600} lb. 
 

 
 
Figure 10. Comparison of slope ( ) prediction errors of constant domain and variable domain slope 
equations [(5a), and (13a)] (piecewise linear strain representations); tapered cantilever tubular beam; 
l = 300 in,  = 4 in.,  = 1 in.; P = 300 lb. 
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Figure 11. Comparison of slope ( ) prediction errors of constant domain and variable domain slope 
equations [(5a), and (13a)] (piecewise linear strain representations); tapered cantilever tubular beam; 
l = 300 in,  = 4 in.,  = 1 in.; P = 600 lb. 
 

 
 
Figure 12. Comparison of slope ( ) prediction errors of constant domain and variable domain slope 
equations [(7a), and (17a)] (piecewise nonlinear strain representations); tapered cantilever tubular beam; 
l = 300 in,  = 4 in.,  = 1 in.; P = 300 lb. 
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Figure 13. Comparison of slope ( ) prediction errors of constant domain and variable domain slope 
equations [(7a), and (17a)] (piecewise nonlinear strain representations); tapered cantilever tubular beam; 
l = 300 in,  = 4 in.,  = 1 in.; P = 600 lb. 
 

 
 
Figure 14. Comparisons of deflection ( ) prediction errors of constant domain and variable domain 
deflection equations [(5b), (5c), (13b), and (13c))] (piecewise linear strain representations); tapered 
cantilever tubular beam; l = 300 in,  = 4 in.,  = 1 in.; P = {300, 600} lb. 
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Figure 15. Comparisons of deflection ( ) prediction errors of constant domain and variable domain 
deflection equations [(7b), (7c)), (17b), and (17c)] (piecewise linear strain representations); tapered 
cantilever tubular beam; l = 300 in,  = 4 in.,  = 1 in.; P = {300, 600} lb. 
 

 
 
Figure 16. Comparison of predicted and measured wing deflections along No. 3 strain-sensing line for 
different loading levels (duplication of figure 11, ref. 14). 
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Figure 17. Comparison of predicted and measured wing deflections along No. 4 strain-sensing line for 
different loading levels (duplication of figure 12, ref. 14).  
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APPENDIX A 
DERIVATION OF STRAIN FUNCTION FOR VARIABLE DOMAIN  

PIECEWISE-NONLINEAR STRAIN REPRESENTATIONS  
 Let )( 1ixx be the local axial coordinate measured from the strain-sensing station, xi 1 (fig. 2), 
and let the distribution of strain, )( , within the two adjacent domains, xi 1 x xi  and xi x xi 1, be 
presented by the following nonlinear function (quadratic equation) (fig. 2): 
  
              ( ) a b e 2      ;     1ixx                  (A1) 
 
where a, b, and e are coefficients, which are to be determined in terms of three strains, 1{ i , i , }1i  
respectively at three strain-sensing stations, 1{ ix , ix , }1ix . 
 
At 0 (i.e., at strain-sensing station, 1ix ), we have 1)0( i , and equation (A1) gives: 
 
                       1ia                 (A2) 
 
At il)(  (that is, at strain-sensing station, ix ), we have iil ])[( , then in view of equation (A2), 
equation (A1) can be written as equation (A3): 
 
                    2

1 )()( iiii lelb             (A3) 
 
which can be rewritten as equation (A4): 
 

                   
i

ii
i l

leb
)(

)( 1                     (A4) 

 
At 1)()( ii ll (that is, at strain-sensing station, 1ix ), we have 11 ])()[( iii ll . Then in 
view of equation (A2), equation (A1) can be written as equation (A5): 
 
              i 1 i 1 b[( l)i ( l)i 1] e[( l)i ( l)i 1]2                  (A5) 
 
which can be rewritten as equation (A6): 
 

               b e[( l)i ( l)i 1] i 1 i 1

( l)i ( l)i 1

            (A6) 

 
Subtracting equation (A4) from (A6), one can eliminate b and obtain the expression for e as equation (A7): 
 

         

e( l)i 1
i 1 i 1
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i i 1
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            ( l)i ( i 1 i 1) [( l)i ( l)i 1]( i i 1)
( l)i[( l)i ( l)i 1]
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( l)i i 1 ( l)i i 1 [( l)i ( l)i 1] i [( l)i ( l)i 1] i 1

( l)i[( l)i ( l)i 1]           
(A7) 

 
From equation (A7), e can be written as: 
 

       e ( l)i 1 i 1 [( l)i ( l)i 1] i ( l)i i 1

( l)i ( l)i 1[( l)i ( l)i 1]
                  (A8) 

 
Substitution of equation (A8) into equation (A4) yields equation (A9): 
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After grouping terms, one obtains the expression for b as equation (A10): 
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In view of equations (A2), (A8), and (A10), equation (A1) can be written as equation (A11): 
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           (A11)  

 
which is equation (11) in the text. 
 
For the constant-domain case, llll iii 11 )()()( , equation (A11) can be simplified as 
equation (A12): 
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Equation (A12) is identical to equation (4a) in the text.  
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APPENDIX B 
DERIVATION OF VARIABLE-DOMAIN DISPLACEMENT TRANSFER 

FUNCTIONS FOR NONUNIFORM EMBEDDED BEAMS  
(Based on Piecewise-Linear Strain Representations) 

 The slope equation (13a) and the deflection equation (13b) for nonuniform beams, based on piecewise-
linear representations of both depth factors and surface strains, are duplicated below as equations (B1) and 
(B2). 
 
 Slope equation: 
 

     tan i ( l)i
i 1 i

ci 1 ci

i 1ci ici 1

(ci 1 ci )
2 loge
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                    ),....,3,2,1( ni  
 
 Deflection equation: 
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 Writing out equation (B2) for different indices, i ),....,3,2,1( n , and considering the indicial 
relationships expressed in equations (B1) and (B2), one obtains equation (B3): 
 
 For 1i :  
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For i 2: 
 

               tan)()(log
)()(2

)( 12121
1

2
23

21

1221

21

212
22 lycc

c
cc

cc
cc

cc
ly e  

                  )(log
)()(2

)( 21
1

2
23

21

1221

21

212
2 cc

c
cc

cc
cc

cc
l e   

          

                      tanlog
)(

)()(

     tan)()(log
)()(2

)(

   1

1

tan

0
0

1
2

10

0110

10

10
12

01010
0

1
13

10

0110

10

102
1

c
c

cc
cc

cc
ll

lycc
c
cc

cc
cc

cc
l

e

y

e

       (B4)  

 
After grouping terms, equation (B4) becomes:  
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 For i 3:   
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After grouping terms, equation (B6) becomes equation (B7): 
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For i 4:  
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After grouping terms, equation (B8) becomes equation (B9): 
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 Based on the indicial progression patterns in equations (B3), (B5), (B7), and (B9), the generalized form 
of the deflection equation can be written in dual summation forms (with different summation limits) as:  
 

  

  

                           (B10) 
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Equation (B10) can be rewritten in a more compact form as: 
 

 

             (B11) 

                    ),....,3,2,1( ni  
 
 Equation (B11) is identical to equation (13c) in the text, and is called the Variable-Domain Nonuniform 
Displacement Transfer Function in dual summation form for nonuniform embedded beams based on 
piecewise-linear strain representations. 
 
 For constant-domain lengths, llll .....)()()( 321 , equation (B11) degenerates into: 
 

                     (B12) 

                    ),....,3,2,1( ni  
 
Equation (B12) is identical to equation (5c) in the text, and is called the Constant-Domain Nonuniform 
Displacement Transfer Function in dual summation form for nonuniform embedded beams based on 
piecewise-linear strain representations. 
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APPENDIX C 
DERIVATIONS OF VARIABLE-DOMAIN IMPROVED DISPLACEMENT 

TRANSFER FUNCTION FOR NONUNIFORM EMBEDDED BEAMS 
  (Based on Piecewise-Nonlinear Strain Representations) 

 Appendix C presents the details of integrations of the beam curvature equation (1) to obtain the 
improved slope and deflection equations for the formulation of variable-domain Improved Displacement 
Transfer Functions for nonuniform embedded beams based on piecewise-nonlinear strain representations. 

Improved Slope Equations 

 The slope, )(tan x , of the nonuniform beam in the small domain, ii xxx 1 , between the two 
adjacent strain-sensing stations, 1{ ix , }ix , can be obtained by integrating equation (1) as equation (C1): 
 

        ;     )( 1 ii xxx             (C1) 

 
 The distributions of the beam depth factor, )(xc  [eq. (9)], and bending strain, )(x  [eq. (11)], in the 
small domain, ii xxx 1 , between the two adjacent strain-sensing stations, 1{ ix , }ix , are respectively 
duplicated below as equations (C-2) and (C-3). 
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Let },,,{ iii CBA  be defined respectively with equations (C4), (C5), (C6), (C7) as  
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then the last three terms of equation (C1) can be written as: 
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After carrying out integration of equation (C8), one obtains (ref. 15): 
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After simplifying, equation (C9) becomes: 
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At the strain-sensing station, ix , we have iii lxx )(1 , then equation (C10) gives the slope 

)](tan[tan ii x  at ix  as: 
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In view of iiii lccC )/()( 1 [eq. (C6)], equation (C11) takes on the form: 
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After grouping terms, equation (C12) becomes:  
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                    ),....,3,2,1( ni  
 
Equation (C13) is identical to equation (17a) in the text, the variable-domain improved slope equation for 
nonuniform beams in recursive form based on nonlinear strain representations. 
  



 

 53

Improved Deflection Equations 

 The deflection, )(xy , can be obtained by integrating the slope equation (C10) as (ref. 15).   
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 At the strain-sensing station, xi , we have iii lxx )(1 , and equation (C14) gives the deflection 

)]([ ii xyy  as: 
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In view of iiii lccC )/()( 1  [eq. (C6)], equation (C15) becomes: 
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After grouping terms, equation (C16) becomes: 
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 Equation (C17) is identical to equation (17b) in the text, the variable-domain improved deflection 
equation for nonuniform beams in recursive form based on nonlinear strain representations. 

Improved Displacement Transfer Function 

 Substitution of slope equation (C13) into deflection equation (C17), and using similar mathematical 
steps of Appendix B, one can write the deflection equation in dual summation form as: 
 

               

           (C18)     

                           ),....,3,2,1( ni  
 
 Equation (C18) is identical to equation (17c) in the text, and is called the Variable-Domain Improved 
Displacement Transfer Function in dual summation form for nonuniform embedded beams based on 
piecewise-nonlinear strain representations.            
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Degeneration into Constant-Domain Case 

 This section is to prove that when the variable-domain lengths become constant, the variable-domain 
slope and deflection equations [(C13), (C17)] will degenerate respectively into the constant-domain slope 
and deflection equations [(5a), (5b)].  
 
 For the constant-domain case, ,.....)()()( 321 llll  the coefficients, iA [eq. (C4)] and iB
[eq. (C5)] become equations (C19) and (C20) respectively:  
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Slope Equations 
In view of equations [(C19), (C20)], the slope equation (C13) can be written as: 
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                               (C21) 

 
After grouping terms, equation (C21) becomes: 
 

            

tan i
l

2(ci ci 1)3 (2ci ci 1)(ci i 1 2ci 1 i ) cici 1 i 1 loge
ci
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               (C22) 

 
Equation (C22) is identical to the improved slope equation (7a) for the constant-domain case.  

Deflection Equations 
 In view of equations [(C19), (C20)], the deflection equation (C17) can be written as: 
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( l)2

2(ci ci 1)4

(2ci
2 4cici 1 2ci 1

2 ) 3(ci ci 1)ci 1 ci 1
2

i 1

4(ci ci 1)ci 1 2ci 1
2

i

(ci ci 1)ci 1 ci 1
2

i 1

ci loge
ci

ci 1

(ci ci 1)

                       ( l)2

12(ci ci 1)2

9(ci ci 1) (ci 4ci 1) i 1

12(ci ci 1) 2(ci 4ci 1) i

3(ci ci 1) (ci 4ci 1) i 1

yi 1 ( l)i tan i 1
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        (C23) 

 
After grouping terms, equation (C23) becomes: 
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( l)2

2(ci ci 1)4 (2ci ci 1)(ci i 1 2ci 1 i ) cici 1 i 1 ci loge
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(ci ci 1)

    ( l)2
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               (C24) 

 
Equation (C24) is identical to the improved deflection equation (7b) for the constant-domain case.  
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Displacement Transfer Function 

 Combining equations (C22), (C24), and after grouping terms, one obtains the deflection equation in 
dual summation form as: 
 

           

         (C25) 

                    ),....,3,2,1( ni   
 
Equation (C25) is identical to equation (7c), the Constant-Domain Improved Displacement Transfer 
Function in dual summation form for nonuniform beams based on piecewise-nonlinear strain 
representations. 
  



 

 59

APPENDIX D 
DERIVATIONS OF THE VARIABLE-DOMAIN LOG-EXPANDED 

DISPLACEMENT TRANSFER FUNCTION FOR SLIGHTLY 
NONUNIFORM EMBEDDED BEAMS 

(Based on Piecewise-Nonlinear Strain Representations) 

 Appendix D presents the mathematical derivations of the slope equation (18a), deflection equation 
(18b), and Displacement Transfer Function (18c) for slightly nonuniform beams through expansions of 
logarithmic functions. 

Log-Expanded Slope Equations 

 The slope equation (17a) is duplicated below as equation (D1).  
 

              

tan i
( l)i

(ci ci 1)3 (ci ci 1)2
i 1 Ai ( l)i ci 1(ci ci 1) Bi ( l)i

2 ci 1
2 loge

ci

ci 1

              ( l)i

2(ci ci 1)2 2Ai ( l)i (ci ci 1) Bi ( l)i
2 (ci 3ci 1) tan i 1

        (D1) 

 
For slowly changing )(xc  [that is, ], the logarithm term, )/(log 1iie cc , in the slope equation 
(D1) can be expanded in series form up to the third order term as (ref. 15):  
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....
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2 ....

              ci ci 1

6ci 1
3 6ci 1

2 3ci 1(ci ci 1) 2(ci ci 1)2 ....
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6ci 1
3 6ci 1

2 (ci ci 1) 3ci 1 2(ci ci 1) ....

  

                                                  
ci ci 1

6ci 1
3 6ci 1

2 (ci ci 1)(2ci 5ci 1) ....               (D2) 
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In view of equation (D2), equation (D1) can be written as: 
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(ci ci 1)3 (ci ci 1)2
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3 (ci ci 1) 3Bi ( l)i
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Ai ( l)i ci 1(ci ci 1)2 (2ci 5ci 1)....
2Bi ( l)i

2 ci 1
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After cancelling (ci ci 1)2  terms, equation (D3) becomes: 
 

                        
tan i

( l)i

6ci 1
3

6ci 1
2 (ci ci 1)(2ci 5ci 1) i 1

Ai ( l)i ci 1(2ci 5ci 1) 2Bi ( l)i
2 ci 1

2
tan i 1                       (D4) 

 
Equation (D4) is the Log-expanded slope equation (18a) in the text. 
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For uniform beam ( ci 1 ci c), equation (D4) becomes: 
 

            tan i
( l)i

c i 1
Ai

2
( l)i

Bi

3
( l)i

2 tan i 1                                              (D5) 

which is identical to equation (E8) in Appendix E. 

Log-Expanded Deflection Equations 

 The deflection equation (17b) is duplicated below as equation (D6).  
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2
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              (D6) 

   

  

  
For slowly changing )(xc  [that is, ], the logarithm term, )/(log 1iie cc , in the deflection 
equation (18b) can be expanded in series form up to the fourth order term as equation (D7) (ref. 15):  
 

  
loge
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ci 1

ci

ci 1

1 1
2

ci

ci 1

1
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1
3
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ci 1

1
3

1
4

ci

ci 1

1
4

....

              ci ci 1

12ci 1
4 12ci 1

3 6ci 1
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                          (D7) 

 
Then the term, )()/(log 11 iiiiei ccccc , in equation (D6) can then be written as: 
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In view of equation (D8), equation (D6) can be rewritten as: 
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Ai ( l)i ci 1 4ci 1(ci ci 1) 2ci 1
2 3ci (ci ci 1)

Bi ( l)i
2 ci 1

2 (4ci 1 3ci )
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                       (D9) 

 
Term L in equation (D9) can be rewritten as: 
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In light of equation (D10), equation (D9) takes on the final form as:  
 

          yi
( l)i

2

12ci 1
4

6ci 1
3 ci 1(10ci 3ci 1)(ci ci 1) 3(ci

3 ci 1
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Equation (D11) is the Log-expanded deflection equation (18b) in the text. 
For uniform beam ( ci 1 ci c), equation (D11) becomes equation (D12): 
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( l)i
2

2c i 1
Ai

3
( l)i

Bi

6
( l)i

2 yi 1 ( l)i tan i 1  
               (D12) 

which is identical to equation (E11) in Appendix E.  

Log-Expanded Displacement Transfer Function 

Combining equations (D4) and (D11) and using similar mathematical steps to Appendix B, one can write: 

 

               
(D13) 

 
Equation (D13) is equation (18c) in the text, the Variable-Domain Log-expanded Displacement Transfer 
Functions in dual summation form for slightly nonuniform (including uniform) embedded beams based on 
piecewise-nonlinear strain representations. 

Degeneration into Constant Domain Cases 

 For constant-domain length, llll .....)()()( 321 , coefficients iA  [eq. (C4)] and iB  
[(eq. (C5)] become equations (D14) and (D15): 
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    Bi
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Slope Equation [( l)i l] 

 In view of equations (D14) and (D15), slope equation (D4) can be written as: 
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After grouping terms, equation (D16) becomes: 
 

            tan i
l

12ci 1
3 5ci 1

2 4(ci ci 1)2
i 1 8ci 1 ci 2ci 1 i ci 1(2ci 3ci 1) i 1 tan i 1    (D17) 

 
Equation (D17) is identical to equation (8a) in the text, and thus confirming the mathematical accuracy of 
the Log-expanded slope equation (D4). 
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Deflection Equation [( l)i l] 
 In view of equations (D14) and (D15), deflection equation (D11) can be written as: 
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(D18)  

Ther terms {F1, F2, F3} in equation (D18) can be rewritten as: 
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Substitutions of equations (D19), (D20) (D21) into equation (D18) yields: 
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Equation (D22) is identical to equation (8b) in the text, and thus confirming the mathematical accuracy of 
the Log expanded deflection equation (D11). 

 
Displacement Transfer Function [( l)i l] 

 Combining equations (D17) and (D22), and after grouping terms, one obtains the displacement transfer 
function in dual summation form as: 
 

                       

        (D23) 

 
Equation (D23) is identical to equation (8c) in the text, the Constant-Domain Log-expanded Displacement 
Transfer Functions in dual summation form for slightly nonuniform (including uniform) embedded beams 
based on piecewise-nonlinear strain representations. 
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APPENDIX E 
DERIVATIONS OF VARIABLE-DOMAIN IMPROVED DISPLACE 

TRANSFER FUNCTIONS FOR UNIFORM BEAMS 
 (Based on Piecewise-Nonlinear Strain Representations) 

 Appendix E presents the derivations of the slope and deflection equations for the special case of the 
uniform beam based on piecewise-nonlinear strain representations. 

Slope Equations ])([ cxc  

 The slope, )(tan x , of the uniform beam ])([ cxc  in the small domain, ii xxx 1 , between the 
two adjacent strain-sensing stations, 1{ ix , }ix , can be obtained by integrating both sides of equation (E1):  
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 The piecewise-nonlinear equation (16) representing the bending strain, )(x , within the small domain, 

ii xxx 1 , between the two adjacent strain-sensing stations, 1{ ix , }ix , is duplicated below as equations 
(E2) –(E5): 
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Let,  
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In view of equation (E2), (E3), (E4), and (E5), the last three terms of equation (E1) can be written as:  
                       

         10

2
1 tan)(1)(tan iiii dBA

c
x      ;     ])(0[ il                     (E6) 

 
After carrying out integration of equation (E6), one obtains (ref. 15): 
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At the strain-sensing station, ix , we have iii lxx )(1 , then equation (E7) gives the slope, 

)](tan[tan ii x  at ix  as: 
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Equation (E8) is the slope equation in recursion form. 

Deflection Equation ])([ cxc  

Deflection can be obtained by integrating the slope equation (E7) as: 
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                    ])(0[ il  
 
Carrying out integration of equation (E9), one obtains: 
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At the strain-sensing station, ix , we have iii lxx )(1 , and the deflection, )]([ ii xyy  at ix , is 
given by equation (E10) in the form: 
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Equation (E11) is the deflection equation in recursion form. 

Displacement Transfer Function ])([ cxc  

Substitution of slope equation (E8) into deflection equation (E11), and following the mathematical 
steps presented in Appendix B, one obtains the deflection equation written in dual summation form as: 
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                                        ),....,3,2,1( ni  
 
 Equation (E12) is called the variable-domain Improved Displacement Transfer Function in dual 
summation form for uniform beams based on piecewise-nonlinear strain representations.  

Degeneration into Constant-Domain Cases 

 For constant-domain length, llll .....)()()( 321 , coefficients iA  [eq. (E3)] and iB  
[(eq. (E4)] become equations (E13) and (E14): 
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Slope equation ])([ cxc : 

 In view of equations (E13) and (E14), slope equation (E8) can be written as: 
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After grouping terms, equation (E15) becomes: 
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Equation (E16) is the degenerated form of equation (8a) in the text for ci 1 ci c . 
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Deflection Equation ])([ cxc  

 In view of equations (E13) and (E14), deflection equation (E11) becomes: 
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After grouping terms, equation (E17) becomes: 
 

                        1111

2

tan)67(
24

)(
iiiiii ly

c
ly      ;     ),....,3,2,1( ni      (E18) 

 
Equation (E18) is the degenerated form of equation (8b) in the text for ci 1 ci c . 

Displacement Transfer Function ])([ cxc  

Combining equations (E16) and (E18) into one equation, and after grouping terms, one obtains: 
 

                     (E19) 

                    (i 1,2,3,....,n) 
 
 Equation (E19) is the degenerated form of equation (8c) in the text for ci 1 ci c .  

Special Case 
 For a special case when the strain distribution along the uniform beam is linear, one can write equation 
(E20),  
 
          11 iiii              (E20) 
 
or equation (E21), 
 
          11 2 iii              (E21) 
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In light of equation (E21), the slope equation (E16) becomes: 
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After grouping terms, equation (E22) becomes: 
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Equation (E23) is the degenerated form of equation (6a) for ci 1 ci c . 
 
Also, in view of equation (E21), the deflection equation (E18) becomes: 
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After grouping terms, equation (E24) becomes:  
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Equation (E25) is the degenerated form of equation (6b) for ci 1 ci c . 
 
Finally, in view of equation (E21), the deflection equation (E19) becomes: 
 

                   (E26) 
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After grouping terms, equation (E26) becomes: 
 

   

                        (E27)  

                    ),....,3,2,1( ni  
 
Equation (E27) is the degenerated form of equation (6c) for ci 1 ci c . 
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