Comparison of Computational Aeroacoustics Prediction of Acoustic Transmission through a 3D Stator with Experiment

R. Hixon NASA GRC/VPL/University of Toledo E. Envia M. Dahl D. Sutliff NASA Glenn Research Center

Acknowledgments

- This work is supported by the Fixed Wing Project of the NASA Fundamental Aeronautics Program.
- The technical monitor for this work is Dr. Edmane Envia of the NASA Glenn Research Center.

Background

- Computational Aeroacoustics (CAA) is concerned with the accurate numerical prediction of unsteady flow and noise.
- To accomplish this goal, high-accuracy timemarching schemes are combined with highresolution spatial differencing methods to reduce the number of grid points necessary to resolve unsteady flow features.
- Accurate boundary conditions are vitally important in order to reduce the computational domain as much as possible.

NASA GRC BASS1.5 Code

- The NASA GRC BASS1.5 code is a general-purpose nonlinear CAA solver:
 - 2D/3D Navier-Stokes or Euler equations.
 - Curvilinear coordinates with grid motion for topological flexibility.
 - Block-structured grids for efficient computation of complex geometries.
 - Up to 6th order compact differencing in space.
 - 4th order optimized explicit time marching.
 - Blended 2nd/10th order shock capturing artificial dissipation.
 - Fortran 2003, MPI-2 parallelization.
 - Verified for unsteady nonlinear temporal and spatial accuracy solving the 3D Euler equations on curvilinear grids (EVA-III).

Previous Validation Work

- Previously, the BASS code has been validated for 2D acoustic transmission cases using the LINSUB linearized flat plate method of Whitehead (1987):
 - Stators: AIAA Paper 2012-0836, January 2012.
 - Rotors: AIAA Paper 2012-2286, June 2012

3D Stator Transmission

- Recently, an experimental stator transmission database has been obtained at NASA GRC:
 - D. Sutliff, 'A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources'
- The database was acquired on the Advanced Noise Control Fan (ANCF) testbed.
- The Configurable Fan Artificial Noise System (CFANS) was used to generate and control circumferential (m) and radial modes (n) in the absence of a mean flow.
- These modes were measured at the inlet using the Rotating Rake mode measurement system.

Experimental Setup

Experimental Errors

- There are two primary sources of error in the experimental measurements:
 - Error in the physical measurement ($\pm 1 \text{ dB}$).
 - Modeling error, arising from the postprocessing.
 - The current rotating rake has one row of microphones, and cannot distinguish between the modes transmitted through the stator and its reflection from the inlet of the duct.
 - A new dual-microphone method has been developed, which will reduce or eliminate the modeling error:
 - Dahl, M.D., Hixon, R., and Sutliff, D. L., 'Further Development of Rotating Rake Mode Measurement Data Analysis, AIAA 2013-2246.

Test Cases

- For each input mode, three stator geometries were tested:
 - 'Clean': no stator in the duct.
 - 14 stator vanes at a 45° stagger angle.
 - 28 stator vanes at a 20° stagger angle.
- Three representative cases were chosen from the database:
 - 480 Hz: m = ± 2 , n = 0.
 - 960 Hz: m = ± 6 , n = 0
 - 480 Hz: m = ± 4 , n = 0.

Computational Domain

Computational Grid

- Three structured multiblock grids were generated, one for each stator configuration.
- Program Development Company's GridPro structured grid generator was used.
- Each stator grid was generated for the vanes at zero stagger angle.
- The AFRL/GridWarp grid deformation tool of Reid Melville was used to rotate the stators to the desired stagger angle after the grids were generated.
- A minimum of 10 grid points per wavelength was used, minimizing dispersion errors.

Inflow/Outflow Boundary Conditions

- In the current BASS formulation, the boundary conditions are split into three components:
 - 1. Mean flow BC (not used for these cases)
 - 2. Nonreflecting BC (Giles)
 - 3. Imposed flow BC (Acoustic mode)

$$\frac{\partial Q}{\partial t}\Big|_{boundary} = \frac{\partial Q}{\partial t}\Big|_{MFBC} + \frac{\partial Q}{\partial t}\Big|_{Nonreflecting} + \frac{\partial Q}{\partial t}\Big|_{imposed}$$

Calculation Procedure

- The acoustic transmission calculation procedure for a given input mode followed these steps:
 - Set a reference mode amplitude of 1.4 Pa at the driver location
 - Calculate the unsteady mode propagation through each stator configuration.
 - Run until converged.
 - Postprocess the 'clean' configuration data to obtain the mode power level at the measurement location.
 - Determine the mode power level at the driver location.
 - Scale all three mode amplitudes using this scaling factor.

Numerical Errors

- There are three primary sources of numerical errors that may occur in the calculations:
 - Incorrect wave speeds due to numerical dispersion.
 - The grids had a minimum of 10 grid points per wavelength, which is well within the accuracy range of the DRP scheme.
 - Incorrect imposition of the incoming acoustic modes.
 - For well cut-on modes, the input mode power level was accurate to within ±0.3 dB.
 - In the worst case (nearly cut-off modes), the input mode power level was accurate to within ±1 dB.
 - Nonphysical reflections of modes from the Giles boundary condition at the imposition plane.

- In most cases, the reflections were low amplitude.

Test Case 1: Mode (2,0), 480 Hz

- Cutoff ratio at driver location: 2.01
- Cutoff ratio at inlet location: 1.77
- Mode power level at inlet: 111.1 dB (measured)
- Mode power level at driver location: 111.1 dB (predicted)
- Reflected mode power level at inlet: 90.7 dB (predicted)
 - 0.03 dB difference due to reflections.

Test Case 1: Mode (+2,0), 480 Hz

111 . 1 dB	110.9 dB	111.1 dB
111.1 dB	111.3 dB	110.7 dB

Test Case 1: Mode (-2,0), 480 Hz

111.1 dB	110.9 dB	111.1 dB
111.1 dB	111.3 dB	110.7 dB

Test Case 2: Mode (6,0), 960 Hz

- Cutoff ratio at driver location: 1.45
- Cutoff ratio at inlet location: 1.44
- Mode power level at inlet: 106.6 dB (measured)
- Mode power level at driver location: 106.6 dB (predicted)
- Reflected mode power level at inlet: 79.1 dB (predicted)
 - 0.007 dB difference due to reflections

Test Case 2: Mode (+6,0), 960 Hz

106.2 dB	106.2 dB	106.1 dB
106.2 dB	105.8 dB	105.5 dB

Test Case 2: Mode (-6,0), 960 Hz

106.6 dB	103.7 dB	105.4 dB
106.6 dB	103.6 dB	106.2 dB

Scattered Mode (8,0)

- Tyler-Sofrin theory predicts the possibility of a counter-rotating circumferential mode 8 for the case of 14 stator vanes.
- Mode (8,0) is cut-on for these conditions, so it will propagate if present.
- Both the experimental and numerical results show a strong (+8,0) mode in the (-6,0) test case, and a weak (-8,0) mode in the (+6,0) test case.

Test Case 2: Scattered Mode 8

Input Mode (-6,0) Scattered Mode (+8,0)

Input Mode (+6,0) Scattered Mode (-8,0)

98.3 dB 97.1 dB 79.9 dB 91.0 dB

Numerical Issues

• In the results for mode (+8,0), strong nonphysical reflections from the boundary conditions may be affecting the predicted result at the inlet by as much as 2 dB, depending on the transmission losses through the stator:

Test Case 3: Mode (4,0), 480 Hz

- Cutoff ratio at driver location: 1.04
- Cutoff ratio at inlet location: 1.02
- Mode power level at inlet: 113.0 dB (measured)
- Mode power level at driver location: 115.1 dB (predicted)
- Reflected mode power level at inlet: 108.7 dB (predicted)
 - 1.4 dB difference due to reflections.

Test Case 3: Mode (+4,0), 480 Hz

11 3.5 dB	111.4 dB	111.8 dB
113.5 dB	107.1 dB	102.4 dB

Test Case 3: Mode (-4,0), 480 Hz

113.0 dB	110.9 dB	111.3 dB
113.0 dB	106.8 dB	103.0 dB

Conclusions

- In this work, the NASA BASS code has been extended for the prediction of acoustic transmission through 3D stator geometries.
- Parametric studies have been performed to test the effect of changes in stator vane count and stagger angle.
- The results compare well with the experimental data, for well cut-on modes.
- In future work, the BASS code will be used to predict acoustic transmission through 3D rotor geometries.