NASA/TM-2015-218206

Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System

P.D. Torres Marshall Space Flight Center, Huntsville, Alabama

The NASA STI Program...in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results...even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov>
- E-mail your question via the Internet to <help@sti.nasa.gov>
- Phone the NASA STI Help Desk at 757–864–9658
- Write to: NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681–2199, USA

NASA/TM-2015-218206

Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System

P.D. Torres Marshall Space Flight Center, Huntsville, Alabama

National Aeronautics and Space Administration

Marshall Space Flight Center • Huntsville, Alabama 35812

March 2015

Acknowledgments

The author wishes to acknowledge the following supporters:

Marshall Space Flight Center

EM32 (Metal Joining & Processes Branch): C. Russell, R. Hickman, H. Gill, R. Lee (ESSSA), and S. Hudson (retired) EM30 (Metals Engineering Division): T. Vaughn EM31 (Failure Analysis and Metallurgy Branch): B. Panda, G. Jerman, W. DeWeese, and J. Hastings EM60 (Materials Selection & Control and Small Projects Branch): L. Foreman, D. Griffin, T. Wegrich, T. Miller, T. Malone, J. Davis, and E. Ordoñez (in ES13 now) ES62 (ECLSS Development Branch): D. Carter, D. Long, D. Terrell, and J. Pruitt EE04 (Flight Programs & Partnerships Chief Engineers Office): R. Mize and B. Mitchell FP10 (ISS Office): K. Presson and W. Spearman EM01 (Materials and Processes Laboratory): S. Singhal and M. Prince EM02 (Resource Management Team): D. Mahieux, J. Smith, T. Bili, and C. Cunningham EM10 (Materials Test Branch): A. Girgis, L. Sharff, W. Tilson, C. Harris, D. Wingard, G. Gordon, J. Perkins, E. Davis, and T. Malone ES23 (Mechanical Fabrication Branch): J. Clounch AS10 (Environmental Engineering & Occupational Health Office): J. Troy, S. Adkins, P. Buckelew, and W. Carter AS42 (Transportation & Logistics Engineering Office): A. Richardson ES11 (Project Engineering Branch): J. Gaines and D. Crump ES60 (Systems Development, Integration & Test Division): R. Graves ES21 (Structural & Mechanical Design Branch): A Howard (ESSSA) and M. Perry (ESSSA) Scientific and Technical Information Group: Susan Burrer, Vicki Hocutt, and Mary Vaughn

Johnson Space Center

JSC-OB311: L. Shaw JSC-EC311: A. Chambers

TRADEMARKS

Trade names and trademarks are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Available from:

NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681–2199, USA 757–864–9658

This report is also available in electronic form at http://www.sti.nasa.gov

TABLE OF CONTENTS

1. INTRODUCTION	1
2. DEFINITION	2
2.1 Stress Corrosion	2
3. EXPERIMENTAL PROCEDURE	3
3.1 Materials Evaluated3.2 Test Matrix	3 4
3.3 Specimen Configurations	5
3.4 Tensile Tests of Specimens As Received	5
3.6 Test Environments and Equipment	6 8
4. RESULTS AND DISCUSSION	10
5. CONCLUSIONS	27
APPENDIX A—MATERIALS CERTIFICATIONS	28
APPENDIX B—TENSILE DATA FOR NONEXPOSED SPECIMENS	34
APPENDIX C—FORMULAS FOR PREPARING PRETREATED URINE	40
C.1 International Space Station Baseline—Current Pretreatment C.2 Proposed Alternate Pretreatment	40 40
APPENDIX D—TENSILE DATA FOR EXPOSED SPECIMENS	41
REFERENCES	51

LIST OF FIGURES

1.	Round tensile specimen configurations	6
2.	Stressing device and accessories: (a) Stressing device and (b) constant strain round specimen and frame assembly	7
3.	Representative assembled and loaded stress corrosion specimens before test	7
4.	Testing methods: (a) Total immersion in the ECLSS fluids to determine acceptability, (b) total immersion in DI water, (c) 3.5% NaCl alternate immersion tester (not the actual specimens—for illustrative purpose only), and (d) 5% salt spray chamber	9
5.	Representative specimens before and during exposure to pretreat	13
6.	Representative specimens before and during exposure to brine	14
7.	Representative specimens during exposure to DI water	15
8.	Specimens after exposure to pretreat for 365 days	16
9.	Specimens after exposure to brine for 365 days	16
10.	Cronidur 30 specimens during and after exposure to various complementary environments: (a) C30-24, C30-27, and C30-30 after 139 days in various environments, (b) after 313 days of exposure to various environments, and (c) 359-day exposure described in table 5	17
11.	Photomicrographs of Inconel 625 initially stressed to 75% YS (58.3 ksi) and exposed for 365 days in (a) pretreat (sample 625-6) and (b) brine (sample 625-10)	18
12.	Photomicrographs of Hastelloy C276 initially stressed to 75% YS (50.3 ksi) and exposed for 365 days in (a) pretreat (sample C276-6) and (b) brine (sample C276-10)	19
13.	Photomicrographs of TiCP initially stressed to 75% YS (68.6 ksi) and exposed for 365 days in (a) pretreat (sample TiCP-6) and (b) brine (sample TiCP-10)	20
14.	Photomicrographs of Ti-6A-4V initially stressed to 75% YS (103.9 ksi) and exposed for 365 days in (a) pretreat (sample Ti-64-6) and (b) brine (sample Ti-64-10)	21

LIST OF FIGURES (Continued)

15.	Photomicrographs of Ti-6-4 ELI initially stressed to 75% YS (104 ksi) and exposed for 365 days in (a) pretreat (sample ELI-6) and (b) brine (sample ELI-10)	22		
16.	Photomicrographs of Cronidur 30 initially stressed to 20% YS (50 ksi) and exposed for 341 days in (a) pretreat (sample C30-6) and (b) brine (sample C30-16)	23		
17.	Stress corrosion specimens exposed to (a) phosphoric acid-based pretreat, (b) brine, and (c) DI water without failing and subsequently tensile tested. Specimens shown were exposed for 365 days, except Cronidur 30 specimens, which were exposed for 341 days	26		
18.	Inconel 625 material certification	28		
19.	Hastelloy C276 material certification	29		
20.	TiCP material certification	30		
21.	Ti-6-4 material certification	31		
22.	Ti-6-4 ELI material certification	32		
23.	Cronidur 30 material certification	33		
24.	Inconel 625 stress-strain curves and tensile data for as-received specimens	34		
25.	Hastelloy C276 stress-strain curves and tensile data for as-received specimens	35		
26.	TiCP stress-strain curves and tensile data for as-received specimens	36		
27.	Ti-6-4 stress-strain curves and tensile data for as-received specimens			
28.	Ti-6-4 ELI stress-strain curves and tensile data for as-received specimens			
29.	Cronidur 30 steel stress-strain curves and tensile data for as-received specimens	39		
30.	Inconel 625 stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine	42		

LIST OF FIGURES (Continued)

31.	Hastelloy C276 stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine	43
32.	TiCP stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine	44
33.	Ti-6-4 stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine	45
34.	Ti-6-4 ELI stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine	46
35.	Cronidur 30 steel stress-strain curves and tensile data after a 341-day exposure to ECLSS pretreat and brine	47
36.	Cronidur 30 steel stress-strain curves and tensile data after a 359-day exposure to mixed environments of 5% salt spray, high humidity, and 3.5% NaCl alternate immersion	50

LIST OF TABLES

1.	Description of the test materials	3
2.	Stress corrosion test matrix	4
3.	Averaged tensile data for the test materials	5
4.	Stress corrosion test results in various environments	11
5.	Supplementary SCC test results for hardened Cronidur 30 steel in mixed environments and residual tensile strength	12
6.	Posttest evaluations for metals exposed to phosphoric acid-based ECLSS pretreat, brine, and DI water	24
7.	Test conditions for exposed Cronidur 30 steel specimens	48
8.	Average tensile data for nonexposed Cronidur 30 steel specimens	48
9.	SSC test conditions for Cronidur 30 steel specimens	49

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

	surface finish (arithmetic average roughness value)		
A/C	air cool		
Al	aluminum		
AMS	Aerospace Material Specification		
ASTM	American Society for Testing and Materials		
ATI	Allegheny Technologies Incorporated		
Bi	bismuth		
С	carbon		
Cb	columbium		
Co	cobalt		
Cr	chromium		
Cu	copper		
DI	deionized (water)		
E	modulus of elasticity (Young's Modulus)		
ECLSS	Environmental Control and Life Support System		
EL	elongation		
ELI	extra low interstitial		
Fe	iron		
Gr	grade		
Н	hydrogen		
HRC	Rockwell C hardness		
ISS	International Space Station		
Mg	magnesium		

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (Continued)

MIL	military		
Mn	manganese		
Мо	molybdenum		
MSFC	Marshall Space Flight Center		
Msi	megapounds per square inch		
Ν	nitrogen		
NaCl	sodium chloride		
Nb	niobium		
Ni	nickel		
0	oxygen		
Р	phosphorus		
Pb	lead		
pretreat	pretreatment		
R	radius		
RA	reduction in area		
S	sulfur		
SCC	stress corrosion cracking		
Si	silicon		
Sn	tin		
Та	tantalum		
Ti	titanium		
Ti-6-4	Ti-6Al-4V		
TiCP	titanium commercially pure		
UPA	Urine Processing Assembly		
UTS	ultimate tensile strength		

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS (Continued)

UTS _f	final ultimate tensile strength (after exposure)
UTS _i	initial ultimate tensile strength (average for nonexposed specimens)
V	vanadium
VAR	vacuum arc remelting
W	tungsten
Y	yttrium
YS	yield strength (0.2% offset)
Zr	zirconium

TECHNICAL MEMORANDUM

STRESS CORROSION EVALUATION OF VARIOUS METALLIC MATERIALS FOR THE INTERNATIONAL SPACE STATION WATER RECYCLING SYSTEM

1. INTRODUCTION

The high cost of carrying water into space to be used at the International Space Station (ISS) generated the need to manufacture a water-recycling system to process urine and make it suitable for human consumption. For years, the Environmental Control and Life Support System (ECLSS) Urine Processing Assembly (UPA) has used sulfuric acid as one of the ingredients to pretreat the urine. However, the formation of crystals, believed to be associated with the use of this acid, was causing some problems. Phosphoric acid was then considered as a candidate to replace sulfuric acid.

Because of this change in formulation of the pretreatment for processing the urine, a test program was undertaken at the Marshall Space Flight Center (MSFC) Materials and Processes Laboratory to perform various types of materials evaluations, including a stress corrosion characterization of six metallic materials: Inconel® 625, Hastelloy® C276, titanium commercially pure (TiCP), titanium 6Al-4V (Ti-6-4), Ti-6-4 extra low interstitial (ELI), and Cronidur® 30. The goal of this work was to determine if these materials have adequate stress corrosion resistance when exposed to the ECLSS UPA fluids.

The first five listed were found resistant to stress corrosion based on no failures, metallography, and no reduction in load-carrying ability. As for Cronidur 30, though no failures occurred and metallography did not indicate stress corrosion cracking (SCC), several specimens experienced reduction in load-carrying ability (up to 42% in the brine). This deficiency is not expected to have an influence on the performance of this alloy as long as it is used in compression, but there are some limitations on its use for applications where sustained tensile stresses are involved.

2. DEFINITION

2.1 Stress Corrosion

Stress corrosion may be defined as the combined action of sustained tensile stress and corrosion to cause premature failure of a susceptible material. Certain metallic materials are more susceptible than others. If a susceptible material is placed in service in a corrosive environment under tension of sufficient magnitude, and the duration of service is sufficient to permit the initiation and growth of cracks, failures can occur at a stress lower than the material would normally be expected to withstand.

3. EXPERIMENTAL PROCEDURE

3.1 Materials Evaluated

A description of the alloys evaluated in this test program is presented in table 1. This information was obtained from the materials certifications (shown in app. A) and includes applicable specifications for the materials, form, heat treatment, alloy producer, heat number, hardness, and heat chemistry.

Table 1.	Descri	ption of	the test	materials.

Inconel 625 (Pyromet 625): Applicable specifications: AMS 5666 Rev F, ASTM B446-03 (2008) (grade 1) Form: 0.375-in-diameter bar Heat treat: Hot isostatic temperature alloy annealed ground Company: Carpenter Heat No.: 600213 Hardness as shipped: 29 HRC Heat chemistry (wt%): 0.04C, 0.06Mn, 0.09Si, 0.004P, 0.001S, 22.34Cr, 60.69Ni, 8.81Mo, 0.06Co, 0.15Al, 0.28Ti, 3.58Cb, 0.01Ta, 3.59Cb, 3.78Fe
Hastelloy C276 (Nickelvac C-276): Applicable specifications: AMS 5750C, ASTM B574-2006-1 Form: 0.375-in-diameter round bar, centerless ground surface Heat treat: 2050 °F, 30 minutes, water quenched (solution annealed) (heat treat code 2050A) Company: ATI Allvac Heat No.: 91KF Hardness as shipped: 23 HRC Heat chemistry (wt%): 0.004C, <0.0003S, 0.51Mn, 0.02Si, 15.07Cr, 15.22Mo, 0.02Co, <0.01Ti, 0.18Al, <0.01Zr, 6.32Fe, 0.02Cu, 59.14Ni, <0.004P, 0.03Cb, <0.01Ta, 3.24W, 0.20V, 0.04Cb, 0.19(Ti+Al), 59.16(Ni+Co) Traces: <0.00001Bi, <0.0001Pb, <0.0005Sn, <0.001O, 0.0047N
 TiCP (Titanium Commercially Pure): Applicable specifications: AMS 4921 Rev L, ASTM B348, Gr4, Rev: 09, MIL-T-9047 Gr4 Rev: G Form: Centerless ground 0.375-in-diameter round bar (melt method was 2-VAR) Heat treat: Annealed 1300 °F 1 hour A/C (per MIL-H-81200)—as shipped Company: Dynamet (A Carpenter company); melt source was Timet Heat No.: H16512 Hardness: 24 HRC Heat average chemistry (top and bottom values were averaged) (wt%): 0.048C, 0.135Fe, 0.375O, 0.008N, <0.05 others each, <0.20 others total, balance Ti
 Ti-6-4 (Titanium 6AI-4V): Applicable specifications: AMS 4928 (2007), ASTM F 136 Rev 12, AMS 4930 Rev G, ASTM B348 Gr 23 Rev 11, AMS 6932 Rev A, MIL-T-9047 Rev G, AMS 6931 Rev B, ASTM F 1472 Rev 08 Form: 0.375-in centerless ground round bar (melt method was 3-VAR) Heat treat: Material was annealed in accordance with MIL-H-81200B Company: Dynamet (A Carpenter Company); melt source was Timet Heat No.: H18003 Hardness: 34 HRC Heat average chemistry (top and bottom values were averaged) (wt%): 6.035AI, 0.030C, 0.185Fe, 0.0095N 0 115O 4.08V <0.0004Y Others each <0.10 Others total <0.30 Balance Ti

Table 1. Description of the test materials (Continued).

 Ti-6-4 ELI (Ti-6-4 extra low interstitial): Applicable specifications: AMS 6932 Rev A, ASTM F136 Rev 12, ASTM B348 Gr23 Rev 11, AMS 4930 Rev G, MIL-T-9047 Rev G Form: 0.375-in-diameter centerless ground bar (melting method was 3-VAR) Heat treat: Material was annealed in accordance with MIL-H-81200B Company: Dynamet (A Carpenter company); melt source was Timet Heat No.: H18826 Hardness: 35 HRC Heat average chemistry (top and bottom values were averaged) (wt%): 6.07AI, 0.0285C, 0.18Fe, 0.0065N, 0.13O, 4.13V, <0.0004Y, 0.0022H, Others each <0.10, Others total <0.30, Balance Ti
 Cronidur 30: Applicable specifications: AMS 5898 Form: 0.7165-in-diameter rod Heat treatment (per AMS 5898A, sections 3.4.6 to 3.4.6.1): Harden at 1925 ± 25 °F/30 ± 3 min in a neutral atmosphere, quench in oil to room temperature, temperature at 350 ± 10 °F/60 min ± 5, subzero cool to -100 ± 20 °F/2 ± 0.25 hours, warm in air to room temperature Heat No.: 32012 Hardness: >58 HRC Chemistry per AMS 5898A (wt%): 0.28–0.34C, 0.30–0.60Mn, 0.30–0.80Si, 0.020PMax, 0.010SMax, 14.5–16.0Cr, 0.95–1.10Mo, 0.35–0.44N, 0.30NiMax

Note: Alternate name shown in parentheses.

3.2 Test Matrix

A stress corrosion test matrix showing number of specimens and how they were allocated to various types of tests is presented in table 2.

Material	No. of Samples	Remarks
Inconel 625, Hastelloy C276, TiCP, Ti 6-4, and Ti-6-4 ELI	60 (12 samples/alloy per figure 1(a))	For each alloy: 3 for tensile data 4 in pretreat (3 @ 75% YS, 1 @ 0% YS) 4 in brine (3 @ 75% YS, 1 @ 0% YS) 1 in DI water
Cronidur 30 (hardened to Rockwell C 58 minimum, as for bearings)	33 samples per figure 1(b)	3 for tensile data 10 in pretreat (3 @ 50 ksi, 3 @ 25 ksi, 3 @ 15 ksi, and 1 w/o stress) 10 in brine (3 @ 50 ksi, 3 @ 25 ksi, 3 @ 15 ksi, and 1 w/o stress) 3 for salt fog test @ 25 ksi (for comparison) 3 for 3.5% NaCl alternate immersion test at 25 ksi (for comparison) 3 for high humidity test at 25 ksi (for comparison) 1 in Dl water

Table 2. Stress corrosion test matrix.

Total number of round tensile specimens: 93

3.3 Specimen Configurations

For the first five alloys listed in table 2, 12 specimens per alloy were fabricated per figure 1(a). Since Cronidur 30 was expected to be more susceptible than the rest of the materials, 33 specimens were fabricated for a more thorough evaluation. Configuration shown in figure 1(b) was used for machining the Cronidur 30 specimens. This configuration has a bigger size of threads than the configuration used for the other materials, which can prevent failures in the threaded portion of the specimen. The shoulder is also larger to prevent failures out of the gauge length.

3.4 Tensile Tests of Specimens As Received

Three specimens from each alloy were tensile tested as received and the results obtained are summarized in table 3. Detailed results of the tensile tests are presented in appendix B. If the results of elongation and reduction in area are used to sort the alloys from most ductile to least ductile, the metals can be arranged in the following order: Hastelloy C276, Inconel 625, TiCP, Ti-6-4 ELI, Ti-6-4, and Cronidur 30. Notice the low ductility values of Cronidur 30, 2.2% elongation and 1.6% reduction in area, compared to the values for other alloys. Averaged Cronidur 30's ultimate tensile strength and yield strength (YS) values of 300.4 ksi and 252.7, respectively, are significantly higher than the values for the rest of the materials included in this evaluation. The Rockwell C hardness (HRC) for this material after hardening was more than 58.

Alloy Designation	UTS (ksi)	YS (ksi)	EL (%)	RA (%)	E (Msi)
Inconel 625	136.0	77.7	61.3	48.5	28.1
Hastelloy C276	120.7	67.0	69.1	60.4	31.8
TiCP	110.9	91.4	37.4	42.8	15.1
Ti-6-4	156.3	138.5	17.3	33.4	15.1
Ti-6-4 ELI	157.2	138.7	19.6	36.2	16.0
Cronidur 30	300.4	252.7	2.2	1.6	29.3

Table 3. Averaged tensile data for the test materials.

Notes:

• Values shown are the averages of three samples.

 Tensile data were obtained at MSFC (EM10) and presented in appendix B for individual samples.

• UTS: ultimate tensile strength, YS: yield strength, EL: % elongation, RA: % reduction in area, E: modulus of elasticity (Young's Modulus)

• Heat treatment is shown in table 1.

(b)

Notes:

- (1) Tolerances: ±0.005 in, except otherwise specified.
- (2) Surface finish (arithmetic average roughness value): 16 µin for the reduced section, 32 µin for the rest.
- (3) Thread dimensions must be as specified. Measurement by fabricator is mandatory.
- (4) No undercutting of radii permitted.
- (5) Gauge section to be concentric with axis within 0.002 in total indicator reading (gauge section of the tensile cannot have more than 0.002 in total run-out) and parallel.
- (6) No file marks or nicks permitted within gauge section.
- (7) Drawing not to scale.
- (8) Configuration (a) was used for five of the six materials tested. Configuration (b) was used for Cronidur 30 in order to obtain a larger size of threads and shoulder.

Figure 1. Round tensile specimen configurations.

3.5 Stressing of the Specimens

After obtaining the tensile data, the strain corresponding to the desired stress levels shown in table 2 were obtained and the specimens were stressed by using the stressing device shown in figure 2(a). The various components of the stressing fixtures are identified in the schematic diagram shown in figure 2(b). The document associated with this testing technique is the American Society for Testing and Materials (ASTM) G49 (Standard Practice for Preparation and Use of Direct Tension Stress-Corrosion Test Specimens).¹ In this method, the specimen is assembled into the stressing fixtures and an extensometer component is attached on the specimen reduced section. Two sidebars are then pushed toward the center by means of the device (see fig. 2(b)). The strain is measured by obtaining the difference between the initial and final readings. Representative stress corrosion specimens after they were loaded and before exposure are presented in figure 3.

Figure 2. Stressing device and accessories: (a) Stressing device and (b) constant strain round specimen and frame assembly.

Figure 3. Representative assembled and loaded stress corrosion specimens before test.

3.6 Test Environments and Equipment

The stress corrosion testing was conducted using both phosphoric acid-based ECLSS pretreatment (pretreat) and brine solutions. The pretreat, which contains phosphoric acid and small amounts of chromic acid, has a pH in the vicinity of 2. Appendix C shows the formulas used for preparation of the reformulated pretreat and the baseline pretreat. The brine was obtained by distillation of the pretreat, which removed part of the water resulting in a more concentrated solution. One control sample from each alloy was exposed to deionized (DI) water. Exposure to the three environments—pretreat, brine, and DI—was carried out by completely immersing the specimens in the liquids contained in plastic containers and exposing them up to 1 year.

Cronidur 30, a bearing material, was expected to exhibit some degree of susceptibility because of its high hardness (HRC 58), therefore this material was further evaluated in three additional environments:

(1) High humidity in a cabinet that maintained a relative humidity within an approximate range of 85% to 95% at 95 ± 3 °F (Filter & Pump Manufacturing Co. Corrosion Test Cabinet Type 411.1 ACD, serial No. S-6310, NASA property No. 1535092).

(2) 5% salt spray at 95±3 °F per ASTM B117² (by using Filter & Pump Manufacturing Co. Corrosion Test Cabinet type 411.1 ACD, serial No. 6198, NASA property No. G80024).

(3) 3.5% NaCl alternate immersion per ASTM G44³ by using an in-house-built Ferris wheel type apparatus. The Ferris wheel apparatus allows the specimens to stay in the salt solution for 10 minutes of every hour, followed by a 50-minute drying cycle. These cycles are repeated for the duration of the test.

The alternate immersion method is the preferred method to evaluate metallic materials for stress corrosion cracking to eventually rate them in MSFC-STD-3029,⁴ which is the baseline document used by NASA and contractors. For additional details about the 5% salt spray and 3.5% NaCl alternate immersion methods, see ASTM B117 and G44, respectively. Photographs related to the test methods described are represented in figure 4.

Figure 4. Testing methods: (a) Total immersion in the ECLSS fluids to determine acceptability, (b) total immersion in DI water, (c) 3.5% NaCl alternate immersion tester (not the actual specimens—for illustrative purpose only), and (d) 5% salt spray chamber.

4. RESULTS AND DISCUSSION

The stress corrosion results are presented in table 4. As shown in the table, no failures occurred in the pretreat, brine, or any of the supplementary tests performed. The maximum length of exposure for the materials evaluated was 1 year.

The Cronidur 30 specimens that survived 313 days of exposure to 3.5% NaCl alternate immersion, salt spray, and high humidity at 25 ksi (10% YS) stress level (last three rows in table 4) were unloaded and reloaded to a higher stress, as shown in table 5.

The Cronidur 30 specimens were not stressed initially to high percentages of the yield strength because this material, as hard as it was tested, was expected to show some susceptibility to stress corrosion. Surprisingly, they did not fail, even after increasing the stress as seen in table 5.

Appearance of the specimens before and during exposure is presented in figures 5 through 10. Note that Cronidur 30 specimens are not shown in figure 9 as they were removed from test at a later date.

At the end of the exposures, the specimens were cleaned and unloaded. Representative specimens were subjected to metallography and the results are presented in figures 11 through 16. As seen, metallography did not indicate any corrosion or stress corrosion attack on the materials.

The remaining stress corrosion specimens were tensile tested to determine any reduction in tensile strength and the results are presented in table 6. Detailed postexposure tensile tests data are presented in appendix D. Appendix D also shows initial average tensile data for comparison, as well as the stress corrosion test conditions.

Inconel 625, Hastelloy C276, TiCP, Ti-6-4, and Ti-6-4 ELI did not experience reduction in tensile strength. One Cronidur 30 specimen out of 10 exposed to pretreat experienced an 8% reduction in tensile strength (specimen No. C30-4). That sample was originally stressed to 50 ksi (20% of YS). Three of 10 specimens exposed to brine experienced reduction in tensile strength: (1) Specimen C30-19, 40% reduction (originally stressed to 25 ksi (10% YS)), (2) specimen C30-20, 42% reduction (originally stressed to 15 ksi (6% YS)), and (3) specimen C30-23, 16% reduction (tested with no applied stress). Of the six alloys tested, Cronidur 30 has the highest tensile strength (300.4 ksi) and hardness (HRC 58), and it was expected to be more susceptible than the rest of the materials tested. It must be mentioned that this material is expected to be used in bearing applications in the water recovery system. For this application, the material will be mostly in compression.

Alloy	Test Environment	Stress Level (% YS)	Stress Level (ksi)	Failure Ratio	Days to Fail
Inconel 625	Pretreat	75	58.3	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	Brine	75	58.3	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	DI water	75	58.3	0/1	NF in 316 days
Hastelloy C276	Pretreat	75	50.3	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	Brine	75	50.3	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	DI water	75	50.3	0/1	NF in 316 days
TiCP	Pretreat	75	68.6	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	Brine	75	68.6	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	DI water	75	68.6	0/1	NF in 316 days
Ti-6-4	Pretreat	75	103.9	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	Brine	75	103.9	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	DI water	75	103.9	0/1	NF in 316 days
Ti-6-4 ELI	Pretreat	75	104.0	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	Brine	75	104.0	0/3	NF in 365 days
		0	0	0/1	NF in 365 days
	DI water	75	104.0	0/1	NF in 316 days
Cronidur 30	Pretreat	6	15.0	0/3	NF in 341 days
(hardened,		10	25.0	0/3	NF in 341 days
higher)		20	50.0	0/3	NF in 341 days
		0	0	0/1	NF in 341 days
	Brine	6	15.0	0/3	NF in 341 days
		10	25.0	0/3	NF in 341 days
		20	50.0	0/3	NF in 341 days
		0	0	0/1	NF in 341 days
	DI water	10	25.0	0/1	NF in 316 days
	5% salt spray	10	25.0	0/3	NF in 313 days
	High humidity	10	25.0	0/3	NF in 313 days
	3.5% NaCl Al	10	25.0	0/3	NF in 313 days

TT 1 1 4	C ·	•		1.	•	•	•	
Table 4	Stress	corrosion	test	results	1n	various	environme	nts
14010 1.	501055	0011001011	iest	results	111	various	chrynonnie	1100.

*NF = no failures

Specimen No.	Initially Tested at 25 ksi in the Environments Shown Below Without Failing	Removed, Unloaded, Reloaded, and Subjected to the Following Environment	Stress Level for the Final Exposure (% YS)	Stress Level for the Final Exposure (ksi)	Result	Residual Tensile Strength (UTS _f) (ksi)	UTS _f / UTS _i *
C30-24	5% salt spray at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	20	50	Survived 359 days total exposure	304.9	1.01
C30-25	5% salt spray at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	20	50	Survived 359 days total exposure	298.6	0.99
C30-26	5% salt spray at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	30	75	Survived 359 days total exposure	308.5	1.03
C30-27	High humidity at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	30	75	Survived 359 days total exposure	299.7	1.00
C30-28	High humidity at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	40	100	Survived 359 days total exposure	319.7	1.06
C30-29	High humidity at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	40	100	Survived 359 days total exposure	290.8	0.97
C30-30	3.5% NaCl alternate immersion for 313 days	3.5% NaCl alternate immersion for 46 days	50	126	Survived 359 days total exposure	303.6	1.01
C30-31	3.5% NaCl alternate immersion for 313 days	3.5% NaCl alternate immersion for 46 days	50	126	Survived 359 days total exposure	295.3	0.98
C30-32	3.5% NaCl alternate immersion for 313 days	3.5% NaCl alternate immersion for 46 days	66	166	Survived 359 days total exposure	287.5	0.96

Table 5. Supplementary SCC test results for hardened Cronidur 30 steelin mixed environments and residual tensile strength.

 $*UTS_i = 300.4$ ksi (averaged initial ultimate tensile strength obtained from nonexposed specimens).

Figure 5. Representative specimens before and during exposure to pretreat.

Figure 6. Representative specimens before and during exposure to brine.

C30-33 After 114 Days in DI Water

Figure 7. Representative specimens during exposure to DI water.

Figure 8. Specimens after exposure to pretreat for 365 days.

Figure 9. Specimens after exposure to brine for 365 days.

(a) C30-30 After 139 Days in 3.5% NaCl Alternate Immersion

(b)

Figure 10. Cronidur 30 specimens during and after exposure to various complementary environments: (a) C30-24, C30-27, and C30-30 after 139 days in various environments, (b) after 313 days of exposure to various environments, and (c) 359-day exposure described in table 5.

 \times 20 Magnification, Unetched

× 100 Magnification, Etched (15 mL HCl, 10 mL Acetic Acid, 10 mL HNO₃)

imes 20 Magnification, Unetched

 \times 100 Magnification, Etched (15 mL HCl, 10 mL Acetic Acid, 10 mL HNO_3)

Figure 11. Photomicrographs of Inconel 625 initially stressed to 75% YS (58.3 ksi) and exposed for 365 days in (a) pretreat (sample 625-6) and (b) brine (sample 625-10).

× 20 Magnification, Unetched

× 100 Magnification, Etched (30 mL HCl, 5 mL HF, 10 mL HNO₃)

 \times 20 Magnification, Unetched

× 100 Magnification, Etched (30 mL HCl, 5 mL HF, 10 mL HNO₃)

Figure 12. Photomicrographs of Hastelloy C276 initially stressed to 75% YS (50.3 ksi) and exposed for 365 days in (a) pretreat (sample C276-6) and (b) brine (sample C276-10).

 \times 20 Magnification, Unetched

× 100 Magnification, Etched (Kroll's Reagent)

Figure 13. Photomicrographs of TiCP initially stressed to 75% YS (68.6 ksi) and exposed for 365 days in (a) pretreat (sample TiCP-6) and (b) brine (sample TiCP-10).

× 20 Magnification, Unetched

× 100 Magnification, Etched (Kroll's Reagent)

Figure 14. Photomicrographs of Ti-6A-4V initially stressed to 75% YS (103.9 ksi) and exposed for 365 days in (a) pretreat (sample Ti-64-6) and (b) brine (sample Ti-64-10).

 \times 20 Magnification, Unetched

× 100 Magnification, Etched (Kroll's Reagent)

Figure 15. Photomicrographs of Ti-6-4 ELI initially stressed to 75% YS (104 ksi) and exposed for 365 days in (a) pretreat (sample ELI-6) and (b) brine (sample ELI-10).

imes 20 Magnification, Unetched

× 100 Magnification, Etched (Kalling's Reagent)

Figure 16. Photomicrographs of Cronidur 30 initially stressed to 20% YS (50 ksi) and exposed for 341 days in (a) pretreat (sample C30-6) and (b) brine (sample C30-16).

Specimen No. ⁽¹⁾	Alloy	Test Environment	Stress Level (% YS)	Stress Level (ksi)	Test Duration	UTS _i ⁽²⁾ (ksi)	UTS _f ⁽³⁾ (ksi)	UTS _f /UTS _i	Evaluation Performed
625-4	In 625	Pretreat	75	58.3	365	136.0	134.8	0.99	Tensile
625-5	In 625	Pretreat	75	58.3	365	136.0	137.6	1.01	Tensile
625-6	In 625	Pretreat	75	58.3	365	136.0	-	-	Metall.
625-7	In 625	Pretreat	0	0	365	136.0	137.2	1.01	Tensile
625-8	In 625	Brine	75	58.3	365	136.0	135.9	1.00	Tensile
625-9	In 625	Brine	75	58.3	365	136.0	137.3	1.01	Tensile
625-10	In 625	Brine	75	58.3	365	136.0	-	-	Metall.
625-11	In 625	Brine	0	0	365	136.0	136.0	1.00	Tensile
625-12	In 625	DI water	75	58.3	316	136.0	137.4	1.01	Tensile
276-4	C276	Pretreat	75	50.3	365	120.7	122.5	1.01	Tensile
276-5	C276	Pretreat	75	50.3	365	120.7	123.1	1.02	Tensile
276-6	C276	Pretreat	75	50.3	365	120.7	-	-	Metall.
276-7	C276	Pretreat	0	0	365	120.7	122.0	1.01	Tensile
276-8	C276	Brine	75	50.3	365	120.7	120.0	0.99	Tensile
276-9	C276	Brine	75	50.3	365	120.7	122.4	1.01	Tensile
276-10	C276	Brine	75	50.3	365	120.7	-	-	Metall.
276-11	C276	Brine	0	0	365	120.7	123.6	1.02	Tensile
276-12	C276	DI water	75	50.3	316	120.7	123.4	1.02	Tensile
TiCP-4	TiCP	Pretreat	75	68.6	365	110.9	114.2	1.03	Tensile
TiCP-5	TiCP	Pretreat	75	68.6	365	110.9	112.8	1.02	Tensile
TiCP-6	TiCP	Pretreat	75	68.6	365	110.9	-	-	Metall.
TiCP-7	TiCP	Pretreat	0	0	365	110.9	112.8	1.02	Tensile
TiCP-8	TiCP	Brine	75	68.6	365	110.9	112.4	1.01	Tensile
TiCP-9	TiCP	Brine	75	68.6	365	110.9	111.9	1.01	Tensile
TiCP-10	TiCP	Brine	75	68.6	365	110.9	_	-	Metall.
TiCP-11	TiCP	Brine	0	0	365	110.9	111.7	1.01	Tensile
TiCP-12	TiCP	DI water	75	68.6	316	110.9	114.6	1.03	Tensile
Ti-64-4	Ti-6-4	Pretreat	75	103.9	365	156.3	159.5	1.02	Tensile
Ti-64-5	Ti-6-4	Pretreat	75	103.9	365	156.3	157.8	1.01	Tensile
Ti-64-6	Ti-6-4	Pretreat	75	103.9	365	156.3	-	-	Metall.
Ti-64-7	Ti-6-4	Pretreat	0	0	365	156.3	158.2	1.01	Tensile
Ti-64-8	Ti-6-4	Brine	75	103.9	365	156.3	157.1	1.01	Tensile
Ti-64-9	Ti-6-4	Brine	75	103.9	365	156.3	154.5	0.99	Tensile
Ti-64-10	Ti-6-4	Brine	75	103.9	365	156.3	-	-	Metall.
Ti-64-11	Ti-6-4	Brine	0	0	365	156.3	156.7	1.00	Tensile
Ti-64-12	Ti-6-4	DI water	75	103.9	316	156.3	159.9	1.02	Tensile
ELI-4	Ti-6-4 ELI	Pretreat	75	104.0	365	157.2	161.7	1.03	Tensile
ELI-5	Ti-6-4 ELI	Pretreat	75	104.0	365	157.2	162.2	1.03	Tensile
ELI-6	Ti-6-4 ELI	Pretreat	75	104.0	365	157.2	-	-	Metall.
ELI-7	Ti-6-4 ELI	Pretreat	0	0	365	157.2	163.5	1.04	Tensile
ELI-8	Ti-6-4 ELI	Brine	75	104.0	365	157.2	163.6	1.04	Tensile
ELI-9	Ti-6-4 ELI	Brine	75	104.0	365	157.2	162.6	1.03	Tensile

Table 6. Posttest evaluation for metals exposed to phosphoric acid-basedECLSS pretreat, brine, and DI water.

Specimen No. ⁽¹⁾	Alloy	Test Environment	Stress Level (% YS)	Stress Level (ksi)	Test Duration	UTS _i ⁽²⁾ (ksi)	UTS _f ⁽³⁾ (ksi)	UTS _f /UTS _i	Evaluation Performed
ELI-10	Ti-6-4 ELI	Brine	75	104.0	365	157.2	_	-	Metall.
ELI-11	Ti-6-4 ELI	Brine	0	0	365	157.2	161.7	1.03	Tensile
ELI-12	Ti-6-4 ELI	DI Water	75	104.0	316	157.2	162.7	1.03	Tensile
C30-4	Cronid. 30	Pretreat	20	50.0	341	300.4	277.1	0.92	Tensile
C30-5	Cronid. 30	Pretreat	20	50.0	341	300.4	295.5	0.98	Tensile
C30-6	Cronid. 30	Pretreat	20	50.0	341	300.4	-	-	Metall.
C30-7	Cronid. 30	Pretreat	10	25.0	341	300.4	306.2	1.02	Tensile
C30-8	Cronid. 30	Pretreat	10	25.0	341	300.4	305.7	1.02	Tensile
C30-9	Cronid. 30	Pretreat	10	25.0	341	300.4	320.4	1.07	Tensile
C30-10	Cronid. 30	Pretreat	6	15.0	341	300.4	314.1	1.05	Tensile
C30-11	Cronid. 30	Pretreat	6	15.0	341	300.4	314.8	1.05	Tensile
C30-12	Cronid. 30	Pretreat	6	15.0	341	300.4	295.9	0.99	Tensile
C30-13	Cronid. 30	Pretreat	0	0	341	300.4	294.1	0.98	Tensile
C30-14	Cronid. 30	Brine	20	50.0	341	300.4	302.7	1.01	Tensile
C30-15	Cronid. 30	Brine	20	50.0	341	300.4	309.7	1.04	Tensile
C30-16	Cronid. 30	Brine	20	50.0	341	300.4	-	-	Metall.
C30-17	Cronid. 30	Brine	10	25.0	341	300.4	308.7	1.03	Tensile
C30-18	Cronid. 30	Brine	10	25.0	341	300.4	300.9	1.00	Tensile
C30-19	Cronid. 30	Brine	10	25.0	341	300.4	179.9	0.60	Tensile
C30-20	Cronid. 30	Brine	6	15.0	341	300.4	174.1	0.58	Tensile
C30-21	Cronid. 30	Brine	6	15.0	341	300.4	295.0	0.98	Tensile
C30-22	Cronid. 30	Brine	6	15.0	341	300.4	288.5	0.96	Tensile
C30-23	Cronid. 30	Brine	0	0	341	300.4	251.6	0.84	Tensile
C30-33	Cronid. 30	DI Water	10	25.0	316	300.4	312.8	1.04	Tensile

Table 6. Posttest evaluation for metals exposed to phosphoric acid-basedECLSS pretreat, brine, and DI water (Continued).

⁽¹⁾ Samples 1–3 of each metal were used for obtaining initial tensile data without exposure.

 $^{(2)}$ UTS_i = initial average ultimate tensile strength of nonexposed specimens.

⁽³⁾ UTS_f = final ultimate tensile strength of exposed specimens.

Representative samples that were tensile tested are shown in figure 17. A neck-down effect (localized area reduction of the specimen during plastic deformation) can be observed for all the specimens except for Cronidur 30. That can be explained by the low ductility of this material when it is in the hard condition.

The stress corrosion specimens that were exposed to mixed environments were also tensile tested and the final strength compared with the initial strength. Those results are presented in the last two columns of table 5. The ratio of final-to-average initial strength values ranged from 0.96 to 1.06, and the average value was 1. These results are significantly better than expected for this material in NaCl and high humidity environments.

Figure 17. Stress corrosion specimens exposed to (a) phosphoric acid-based pretreat,(b) brine, and (c) DI water without failing and subsequently tensile tested.Specimens shown were exposed for 365 days, except Cronidur 30 specimens, which were exposed for 341 days.

5. CONCLUSIONS

All the stress corrosion specimens exposed to the phosphoric acid-based ECLSS pretreat and brine solutions survived exposures of up to 1 year. Therefore, they passed the first stage of this evaluation, consisting of exposing the samples to the fluids under a sustained tensile stress.

The following stage consisted of performing posttest evaluations that included metallography to examine the microstructure and tensile tests to determine residual strength. Inconel 625, Hastelloy C276, TiCP, Ti-6-4, and Ti-6-4 ELI did not show corrosion or stress corrosion cracks in the metallographic analysis and did not experience reduction in tensile strength as a result of the exposure to the ECLSS fluids. Therefore, these alloys, as tested, can be considered resistant to stress corrosion and corrosion in the brine and pretreat.

Cronidur 30 steel exposed to the ECLSS fluids did not show corrosion or stress corrosion cracks in the metallographic analysis, but several specimens suffered reductions in the tensile strength. That reduction was moderate in the pretreat (1 specimen out of 10 suffered an 8% reduction) and significant in brine (3 specimens out of 10 suffered reductions of 16%, 40%, and 42%). Even when reductions in strength were found, the results are still better than expected for this highhardness (HRC >58), high-strength (300.4 ksi UTS) material. This material could be used successfully under compression, such as for bearings; however, sustained tensile stresses on this material should be avoided, or at least maintain them as low as possible.

Supplementary tests performed on Cronidur 30 in mixed environments of high humidity, salt spray, and salt water alternate immersion did not produce any failures, and tensile test results after exposure were also acceptable.

APPENDIX A-MATERIALS CERTIFICATIONS

Materials certifications are shown for Inconel 625 (fig. 18), Hastelloy C276 (fig. 19), TiCP (fig. 20), Ti-6-4 (fig. 21), Ti-6-4 ELI (fig. 22), and Cronidur 30 (fig. 23).

CERTIFICATE OF TESTS A CERT SERIAL® 000756584	BNAHMEPRUE	FZEUGNIS	CERTIFICAT D	E CONTROL
Carpenter Technology Corporation 101 West Bern Street, Reading, Pa. 19601 Tel. 4610) 201-2000 (1800) 331-4592	 Int accessing of a second second secon	LIC FIGTREDOS CO PARIS I FICANI ANDRE FILMELE IN TOWN TO ANDRE FILMELE IN TOWN TO ANDRE FILMELE IN TOWN TO ANDRE FILMELE IN THE ANDRE FILMELE INTERNATION OF ANDRE FILMELE INTERNATIONE ANDRE FILMELE INTERNATIONE ANDRE FILMELE INTERNATIONE A	The statements on statements backed internets of statements of the statement of the st of the statement of the officer at the above of statement of the above of	C IN THE BOOME C IN THE BOOME C IN THE INFORMATION RECEIVENTION CONCE
CL MILLER & SON, INC. LMS METAL SALES 606 TRIANA BLVD. HUNTSVILLE, AL 35805		STILLE	REAUTER / YENDEURPA	RAN
contrar access his to a man community	CASHENTER NO 1666	IS NO OF DE ROUDENCE INTE	eve us a system part	Tar sear ta attorn anoth
46209-6 S# 19680		W78565	12/29/10	2052.000
HEAT M MRER / SCHMELZEAR, / N. DE COULFE :	60021	3		
PRODUCT DESCRIPTION: PYROMET 6	25 HI TEMP A	LLOY ANNEALED	GROUND	
ASTM-B446-03(20 GE S-1000 (03/0 DPARS 1998 EDT GE S-400 (10/10 SIZE 0.375000 IN.(9.53 MM)	008) GRADE 1 22/10) TON 1000 0/08) RD BAR	IN	GOT 4	
PRIMARY HEAT CHEMISTRY (WT%) ; (TEST METHOD	IS SHOWN IN P.	ARENTHESIS)	
C (COM) MN (XRF) 0.04 0.06	0.09 (XRF)	P (OES) 0.004	LT .001 (COM)	CR (XRF) 22.34
NI(XRP) MO(XRP) 60.69 8.81	0.06 (XRF)	AL (OES) 0.15	0.28 (XRF)	CB(XRF) 3.58
TA (OES) CB+TA 0.01 3.59	FE(XRP) 3.78			
GEAG SUPPLIER CODE - 21100/CAR HARDNESS AS SHIPPED 279HB (29	PENTER HRC)			
YIELD STRENGTH, (0.20 %) KSI (TENSILE STRENGTH, KSI (MPA) ELONGATION IN 1.54*, %	MPA) 105.0(138.0(51.0	724) 951)		
GRAIN SIZE PER ASTM E112, 9 5 ML H202(30%), 100 ML HCL				
MATERIAL PRODUCED ON THIS ORDE MATERIAL HAS BEEN MELTED IN US MENTS 252.225-7014 WITH ALTERN SUPERSEDED BY DPARS REQUIREMEN CARPENTER'S QUALITY MANAGEMENT THE REQUIREMENTS OF ISO 9001:2 REVIEW INSTITUTE. CERTIFICATE 3.1 OF EN 10204 (DIN 50049). W IN ACCORDANCE WITH THE PURCHAS	R WAS MELTED A OR QUALIPY ATE 1 FOR QU TS DFARS 252 SYSTEM WAS 000 APPROVAL OF TEST IS P E HEREBY CER E ORDER AND	AND MANUFACT ING COUNTRY TY ALIFYING COUN 225-7008 AND REGISTERED AS CERTIFICATE REPARED IN ACC TIFY THAT THE SPECIFICATION	URED IN THE U D DPARS REQUI (RY 225.872.1 252.225-7009 OP NOVEMBER 07-0869 BY PE CORDANCE WITH ABOVE TEST D REQUIREMENTS	.S.A. RE- 24, 2007 TO RFORMANCE PARAGRAPH ATA ARE
(a)	DA AD CA	ISY L TALBOT MINISTRATOR - RPENTER TECHNO	OUALITY	TION CON

Figure 18. Inconel 625 material certification.

Tra	weler(s)	Heat #	ingot#	CERT	FICATE O	TEST					
50305	λ	91KP								Pag	e i of s
ATI A 4374 Richbo Phone	11*ac Lancaster Hi urg. SC 297 (803) 789-3	ghway 29 595							Prof	1	Aw 1
Custoe	T FADA			Purchase O	der		Size	Alloy	0.076		
LMS MET 606 TRIAN HUNTSVI	AL SALES NA BLVD. LLE, AL 35805			PCS	630 We	ight		NICKELVAC	(-276		
			Ame	nd Dele: 09/13/2012 COND 1	Cusity Audit	PED	Bradiay Bo	ry Bra	1		
SURP	ACE: Center)	ess Ground		HEAT TREA	T: 2050 F. (Soluti	30 mi on Ann	aled)		,		

toorocron America

SPECIFICATIONS

ANS 5750	c	ASME II SB-574 2010
ASTN BS74	2006-1	S-1000 08/01/2011
8-100	10/10/2008	

B*Corrected certification to correct tensile test results.

					CHEM	ISTRY		CR EQ - Chr	nium Equir	0.	No
с	5	Mn	Si	CE	CR EQ	Мо	Co	Ti	Al	ъ	Zr
.004	<.0003	.51	.02	15.07	-	15.22	.02	<.01	.18	-	<.01

Trave	elecisi	Hea	a Inge	100								
50305	A	919	OF	A	Alivec 4	274 Lancestor Highw	en al an	Follows.	SC 24729	Phane (885) 789-	3965	Page 2 of 5
	24	Cu	Ni	P	СЪ	Тя	×	v	Cb+7s	Ti+Al	N1+Co	r
	6.32	.02	59.14	<.001	.03	<.01	3.24	.20	.04	.19	59.16	-
						CHEMISTRY	TRAC	(3)				

Bi	Pb	Sn	0	N	O/N Tested At	

.

<.00001 <.0001 <.0005 <.001 .0047 ALLVAC LOCKPORT</p>

CHEMISTRY METHOD

 GAS-Q/N
 O.N

 WET-P8
 P8

 WET-BI
 BI

 WET-SN
 SN

 CS-CS
 C,S

 XRF-NI(NIBAL)
 MO,W,CR.CO,FE,CU,P,MB,TA,ZR,MN,V,TLAL,SU,MI

ELEMENTS TESTED BY METHOD

Chemistry tested at ATI ALLVAC unless otherwise noted.

CHEMISTRY ANALYTICAL METHODS

CS - Combustion/IR Detection

GAS - Inert Gas Pusion

OES . Spark Optical Emission

XRF = X-Ray Fluorescence

HET = Mass Spectroscopy(PB.BI)

Purch Specu Descri	ased from Pr AMS 4921L Iption: CP Gi	esident Titat k-4 0.375* 1	aium by: L Round Bar 5	MILLER & S 4"	SONS		,	P.O.: 23871 Fotal Weight:	Date: 0	4 04/2013
	YNA	ME ter Co	T. mpanj	y.	195 Manuar / Hisologian, A Phone 734,22 Fitz 734,22	lood A 15307 L 1600 L 4785	WORK O	ICT CE RDER 18834	SALES O	CATION RDER / RU 033121 /
								Qual to ISO	ly System is 2001:2006 an	ogislared d AS9100:200
CUSTOMER P.O. 22589	cu	STOMER P	ART		QUANTITY 526 Ib	coil.s/7/	35 LADING 000499	NO 840	SH5 07/	MENT DATE
PART DEFORMAT TI CP4 Standa Specifications T-9047 Gr4 Re Size: 0.3750" Length: 10' to	ton:041DD and Grade a: AMS 492 av: G Dia, +/- 0.0 12" Rando	2APD037 CG Bar - (21 Rev: L; 005" om Lengt	50 0.3750" Di ASTM B	a. 348 Gr4 R	ev: 09; AST	W F 67 Gr	4 Rev: 06;	ISO 5832-	2 Gr4 Rev:	99; MIL-
				Chemic	al Report (M	1.%)				
Heat H16512 Ti BAL	C T .049	СВ .048	Fo T .14	Fe S .13	0 T .38	0 B .37	и т 800.	Я К 800.	Ot 5 <.05	TOE <.20
				Hydrog	en (As Ship	oed)				
Hydrogen (% 0.0030)									
				As Shh	oped Proper	tles				
UTS #1 (pel) 111700 UTS #2 (psl) 111500 Hardness (Hi 24	łC)	78 (78 (0.2% #1 (j 94900 0.2% #2 (j 94700	pel) pel)	EL.#1 21 EL.#2 21	(%) (%)		RA #1 47 RA #2 46	(%) (%)	
				Metallo	graphy Res	ults				
Grain Size (A 7.5	stin)	·					7	DA DA	APPROVED OR INVENTO TE 07/26	

Figure 20. TiCP material certification.

	YN/ Carpe	AME	Tompany	1	195 Microup Wathingson, P Pourse 724.22 Fax 724.22	Məəd YA 15301 12.1000 Y2.4195	PRODU WORK O	RDER 0566	SALES	CATION ORDER / RI 043069 / 00
SOLD TO Titaniur	n Indest	ries. Inc						Quality S to 180 9	ystem is rogi to 1,2008 and	TI DA 4 stared AS9100,2009
CUSTOMER P O	5	CUSTOMER	PART			QUANTITY 302 Ibs	LADING NO 00059909		5	NPMENT DAT
PART INFORMA TI GAL 4V EL Specification Rev: 96; BS 7 Rev: 6; AMS 08e1; 2TA 11 Size: 0.375" D Length: 10 to	TION I CG Bar Is: ASTM 252 Rev 6931 Rev Rev: 74; Dia. +/- 0, 0 12' Ran	121DD2/ - 0.375" [I F 136 Ref : 1997; Mil v: B; AMS 2TA 12 Ri 0005" dom Leng	FEW03750 Dia. v: 12; AMS 4 L-T-9047 Ti 4928 Rev: 5 ev: 3	1930 Rev: 6-4ELI Re 3; SB 348	G; ASTM B v; G; 3.716 Gr 5 Rev: 2	348 Gr23 5 Rev: 293 010; ASTM	Rev: 11; AMS ; EN 10204 3, I 8 348 Gr6 F	8 6932 Re 1 Rev: 0 Rev: 11; A	IV: A; ISO 4; MIL-T-9 STM F 14	5832-3 047 TI 6-4 72 Rev;
				Chem	Ical Report	047 %1				
				Chern	Po F	Po B		V B	0.7	OB
H18003	6.05 V B	6.02 Y T	.032 Y B	.028 Ti	.19 Ot E	.18 TOE	.010	.009	.11	.12
4.10	4.06	<.0004	<.0004	BAL	<.10	<.30				
Hydrogen (*	6)			Hydro	ogen (As Sh	lpped}				
0.002				As S	hipped Proc	erties				
UTS #1 (psi) 15130 UTS #2 (psi) 15150 Hardness (H	0 0 (RC)	Y8 13 Y9 13	8 0.2% #1 () 35600 5 0.2% #2 () 85100	psi) psi)	EL 1 15 EL 1 14	#1 (%) #2 (%)		RA #1 47 RA #2 48	(%) ? (%)	
				Metal	lography R	esults				
Pub. ETTC 2 Microstru Pub. ETTC Apha Case Material F	C 2 Plate	lpha-Beta : A2 lpha Case								
					Material Dat	a				
Cttc307 (v6.0)					Page	of 2		Di	nte Printed	02/20/2013

Figure 21. Ti-6-4 material certification.

Our Order 59291-1-1 Your Order 23869

Packing List 71724-1 (4/4/2013) Img No 27667 (4/4/2013)

				PRODU	JCT C	ERTIF	ICATIO
MET ter Company		195 JAcomps Ra VieuNiesten, P3 Phare 374,338 Fez 724,328	16301 16301 1007 4195	WORK	ORDER 51847	SALES	ORDER / R
es, Inc							•
la Dept					Quality S to ISO 30	lytilen is regi 001:2008 and	etered AS9160 2003
USTOMER PART		d	UANTITY 309 Ibs	UADING N 0005018	0	1	03/06/201
121DD2ECD03750							
136 Rev: 12; ASTM 8 997; EN 19204 3.1 Re 005" ora Length	8 348 Gr23 v: 04; MIL	Rev: 11; IS -T-9047 Ti 6	0 6832-3 -4ELI Rev	Rav: 96; A r: G	MS 6932 F	lev: A; As	48 4930
	Chomic	al Report (WL%)				• • • • • • • • • • • • • • • • • • • •
A1 B C T 6.06 .028	C B .029	Ре Т .18	Fe 3 .18	кт .006	к в .007	0 T .13	ов .13
1 T XB <.0004 <.0004	T1 BAL	0E E <.10	<. 30				
	Hydrog	en (As Shi	(beed)				
	As Shi	noed Property	rties				
YS 0.2% #1 (pr 138100 YS 0.2% #2 (pr 137600	si) si)	EL #1 15 EL #2 15	(%) (%)		RA #1 45 RA #2 43	1 (%) 2 (%)	
	Metallo	oraphy Re	etitua				
ha-Bela Pub. ETTC 2	Plate: A2						
	M	aterial Data					
		Page 1 o	12		04	nte Printicol.	63/06/2013
		10					
	MET ter Company s, inc la Dept USTOMER PART 121DD2ECD03760 0.375° Dia. 136 Rev: 12, ASTM 1 997; EN 10204 3.1 Re 005° 007° Com Length AL B C T 6.06 .028 Y T Y B c.0004 <.0004 YS 0.2% #1 (pi 138100 YS 0.2% #2 (pi 137600	MET ter Company s, inc a Dept USTOMER PART 121DD2ECD03760 0.375° Dia. 136 Rev: 12, ASTM B 348 Gr21 997; EN 10204 3.1 Rev: 04; MiL 005° 007° Cranter Charter AL B C T C B 6.06 .026 .029 Y T Y B Ti c.0004 <.0004 BAL Hydrog As Shi YS 0.2% #1 (psi) 138100 YS 0.2% #2 (psi) 137600 Metalic ha-Beta Pub. ETTC 2 Plate: A2 ha Case M	MET Methodston, Fill ter Company Fill Manufatton, Fill Fill Fer Company Fill Fill Fill Ist Dept Fill Fill Fill Fill USTOMER PART O 121DD2EC003760 0.375° Dia. 138 Rev: 12, ASTM B 348 Gr23 Rev: 11; IS Sef7; EN 10204 3.1 Rev: 04; MIL-T-9047 Ti 6 Option Chemical Report (P Al B C.T C.B Y T Y B Ti Ot 2 Y T Y B Ti Ot 2 Y S 0.25% #1 (psi) EL #1 138 Rev. 25% #2 (psi) EL #2 138 Rev. 12, ASTM B 348 Gr23 Rev: 11; IS Shipped Prope As Shipped Prope Solo Y S 0.25% #1 (psi) EL #1 138 Rev. 12, Plate: A2 As Metallography Res Material Data	MET J85 Massam Rand Weather Fill (530) ter Company Factor 34 / 53 (100) rs, Inc is Dept Factor 34 / 53 (100) USTOMER PART CHANTITY 303 Ibs 121D02ECD03760 0.375° Dis. 138 Rav: 12, ASTM B 348 Gr23 Rav: 11; ISO 6832.3 997; EN 19204 3.1 Rev: 04; MIL-T-9047 Ti 8-4ELI Rev 005° Chemical Report (WL%) A1 B C.T Chemical Report (WL%) A1 B C.T C.0004 .025 VS 0.25% #1 (psi) EL #1 (%) 138100 YS 0.25% #1 (psi) EL #1 (%) 138100 Metallography Results ha-Beta Pub. ETTC 2 Plate: A2 ha Case Material Data	MET ter Company Its Maxim Ray Number A 18001 Prev 1724 328 4780 PRODU WORK (0 number part Number part 0 USTOMER PART OLIVETTY LADING IN 303 Ibs 0005018 135 Rev: 12, ASTM B 348 Gr23 Rev: 11; ISO 6832-3 Rev: 98; A 697; EN 10204 3.1 Rev: 04; MILT-5947 Ti 6-4ELI Rev: G 0 136 Rev: 12, ASTM B 348 Gr23 Rev: 11; ISO 6832-3 Rev: 98; A 697; EN 10204 3.1 Rev: 04; MILT-5947 Ti 6-4ELI Rev: G 0 136 Rev: 12, ASTM B 348 Gr23 Rev: 11; ISO 6832-3 Rev: 98; A 697; EN 10204 3.1 Rev: 04; MILT-5947 Ti 6-4ELI Rev: G 0 136 Rev: 12, ASTM B 348 Gr23 Rev: 11; ISO 6832-3 Rev: 98; A 607; EN 10204 3.1 Rev: 04; MILT-5947 Ti 6-4ELI Rev: G 0 005 en Langth Chemical Report (WL%) 18 136 Rev: 12, ASTM B 348 Gr23 Rev: 14; ISO 6832-3 Rev: 98; A 607; EN 10204 3.1 Rev: 04; MILT-5947 Ti 6-4ELI Rev: G 0 136 Rev: 12, ASTM B 348 Gr23 Rev: 14; ISO 6832-3 Rev: 98; A 607; EN 10204 3.1 Rev: 04; MILT-5947 Ti 6-4ELI Rev: G 0 136 Rev: 12, ASTM B 348 Gr23 Rev: 14; ISO 6832-3 Rev: 98; A 137 600 18 0 138 Rev: 12, ASTM B 348 Gr23 Rev: 14; ISO 6832-3 Rev: 98; A 137 600 18 0 Material Data Material Data Material Data Material Data Material Data Page 1 0/2	MET ter Company Jis Mamma Ray Management, Al 16301 PRODUCT Cl WORK ORDER 051847 Is Dept Dept 051847 WORK ORDER 051847 Is Dept Custor in 10000 MD Custor in 10000 MD Custor in 10000 MD USTOMER PART Custor in 10000 MD Custor in 10000 MD Custor in 10000 MD USTOMER PART Custor in 10000 MD Custor in 10000 MD Custor in 10000 MD 138 Rev: 12, ASTM B 348 Gr23 Rev: 11; ISO 6832.3 Rev: 98; AMS 6932 In 10000 MD State of the custor in 10000 MD State of the custor in 10000 MD 138 Rev: 12, ASTM B 348 Gr23 Rev: 11; ISO 6832.3 Rev: 98; AMS 6932 In 10000 MD State of the custor in 10000 MD N T N B A1 B C T C B T O C S T N B State of the custor in 10000 MD State of the cus	MET ter Company Mid Manun Rum Mandation, ris 18301 PRODUCT CERTIF WORK ORDER 051847 SALES 051847 n, inc is Dept Aux 24,282,000 for 724,292,0750 Outly System is regiment to 500 5007,2008 and 00050012008 and 000500012008 and 0005000012008 and 0005000000000000000000000000000000000

SOLD TO: INFOPRO PO# P-20259 SO# 55599 PACKING LIST# 49075

Figure 22. Ti-6-4 ELI material certification.

omer Name		C	ustom	er PO#				Ship	per No		leat N	lumbe	er
PRO CORPORATI	ON	P.	20149					11		3	2012		
	Energ	ietec	:hnik	Esse	enl	Abra Inspe Nr she Adress Oray 2	Bhm ction	epru -Cen 130410	ficate s se	gnis 9 / C me/Pag	ertiti • 1	EN cat d w	10204/3.1 6 réception micilia 16 liem 1+2
L. MILLER LMS MET P. O. DRA HUNTSVI	& SON. IN AL SALES WER 1207 LE, AL 35	C. 807				Under AMS	5998	A A	e xcomdeco	e HC2	0028	-	
ListerLateration Idens 2: rollog Listers 2: rollog	bled, solt and	nesiod led. dra	way Big	In International	stu	ckkenn	en per	ung/M	larking/	ident (de pier	*	ETE
Question		Anna A			Auge space	Pon - 16.	540		A. 1		-		Futority
1 she 12 29	el 180 x 172 ug's	nvn O		1	5302 item	010		20235		CRO	NIDUF 4108	1 30	
1 01	8,2 mm x / j's	andom	length		6302 iten	2		32018		CRO	4108	1 30	
Thursday 1	~			1		_	(-
Scheretz 4	Zutamm	I	ung in	%/CM	midel An	Wysis %	1000	noosite	on chim	addine a			
Country Ma	10	20		1.	8	\$	-	MA	H				
26236 32012	0,29	0.63	0.38	0.015	0.002	15,29 15,28	0,96	0,15	0,37 0,35				
Protergebo	isse / Insp	noction.	10 suits	Resul	tals des	195348					1	1	
Heat no.:					26235	Kem 1		32	012 Ke	m 2			
Hardenabà Gran size : Cienclin size Macrosinus Hardingssize	IV (HRC); Is per AST Infe as per Infe as per Bis	ME 11	2. A 604	Claus	59 Bith, C	10h, D11 3-, 4-	r	-60 9 91 4A 26	th. C10	. D1%	th		
All per Alas All per Alas Ab decarba The produc	2300 nization www.	kaoka d don fr	idalijon. Networ	k	F = 0.0 S = 0.0	0/sq in 0/sq.in	ich i	F	0.00/	54 AG	ћ ћ		
To show building	an de Union	-		an dar bar			-						
real restors the			Training and			-	10100 100	Sumaire -	Charles Office	re Ordnak	-2.63	/	
DolanovCar	Essen, Ca	-11-201	3						6	2	1	0/	

Figure 23. Cronidur 30 material certification.

APPENDIX B—TENSILE DATA FOR NONEXPOSED SPECIMENS

Tensile data for nonexposed specimens are shown for Inconel 625 (fig. 24), Hastelloy C276 (fig. 25), TiCP (fig. 26), Ti-6-4 (fig. 27), Ti-6-4 ELI (fig. 28), and Cronidur 30 (fig. 29).

Figure 24. Inconel 625 stress-strain curves and tensile data for as-received specimens.

Figure 25. Hastelloy C276 stress-strain curves and tensile data for as-received specimens.

Mech	hanical st Facilities	Smo	eth Tensi	M10 le Task Re Version 43	sults	(VASA
MSFC Work	Order 2013-0495	Average	Data Acquisition Rate (Ho	88		Material Ti Alic	y: Commencially Pure Ti
Work Orde Testing Organi	r Task 1 bation MMTV		Control Mod Initial Test Rate (In/min	e Stroke 0.05	No	ninal Temperature ('Y)	72 8
Customer Work Test Sta	Order N/A adard EM30 Tensile Testing Guid	eines Ext	Final Test Rate (in/min insometer Gage Length (in	0.05 0.50		Test Frame	75-7
	+10						
	130-				18049900	- 2	
1	100-				130489303	- A	I
1	8-1						I
1	60				1		I
1	0 7						I
1	2 ~						I
1	8 00						I
	8x 30						I
	30- 30- 10-	0 40 50 eb 70		2 0 4 5			
			Strain (%)				
atistics	000 ks 24 s		Strain (%)			Std Deviation	Confidential
atistics	st Results	Maximum	Minimum	Median	Mean	Std. Deviation	Coefficient of Variation (%)
atistics Terro Terro	st Results Je Stress (KSI)	Maximum 111.15	Minimum 110.82	Median 110.82	Mean 110.93	Std. Deviation (sample) 0.19	Coefficient of Variation (%) 0.17
atistics Ters Yeek	st Results le Stress (KSI) d Stress (KSI)	Maximum 111.15 91.59	Minimum 110.82 91.27	Median 110.82 91.43	Mean 110.93 91.43	Std. Deviation (sample) 0.19 0.16	Coefficient of Variation (%) 0.17 0.18
atistics Ter Tens Yiek Modulun	st Results ic Stress (KS) of Electricity (MS)	Maximum 111 15 91.59 15.97	Minimum 110.82 91.27 14.26	Median 110.82 91.43 15.04	Mean 110.93 91.43 15.09	Std. Deviation (sample) 0.19 0.36 0.86	Coefficient of Variation (%) 0.17 0.18 5.68
atistics Te Teo Viek Modulus Fracture	st Results fe Stress (KS) of Elasticity (MS) to Dispation (Ks) to of dear (Ks)	Maximum 111.15 91.59 15.97 19.41 49.02	Minimum 110.82 91.27 14.26 13.93 42.23	Median 110.82 91.43 15.04 38.76 48.07	Mean 110.93 91.43 15.69 33.37 43.79	Std. Deviation (sample) 0.19 0.16 0.86 2.99 0.99	Coefficient of Variation (%) 0.17 0.18 5.68 8.00 1.15
atistics Tero Yeek Modulun Fractur Reduct	st Results le Stress (KSI) 6 Stress (KSI) 6 Elasticity (MS5) e Bongation (%) tion of Area (%)	Maximum 111.15 91.59 15.97 19.41 43.07	Minimum 110.82 91.27 14.26 13.93 42.22	Median 110.82 91.43 15.04 38.76 43.07	Mean 110-93 91-43 15:09 37:37 42:39	Std. Deviation (sample) 0.19 0.16 0.86 2.99 0.49	Coefficient of Veriation (%) 0.17 0.18 5.68 8.00 1.15
atistics Tero Yeek Modulus Fracture Reduct	st Results le Stress (KS) d Stress (KS) d Elanticity (MS0) e Eorgation (%) tion of Area (%)	Maximum 111.13 91.59 15.97 19.41 43.07	Minimum 10.82 91.27 14.26 33.93 42.22 Visid Steeper	Median 110.82 91.43 15.04 38.76 45.07 5000 km of	Mean 110.93 91.43 15.09 37.37 42.79 * Matalang	Std. Deviation (sample) 0.19 0.16 0.86 2.99 0.49 0.49	Coefficient of Variation (%) 0.17 0.18 5.68 8.00 1.15
atistics Ter Tero Viek Modulus Fractur Reduct	st Results le Stress (KS) of Elesticity (MS) of Elesticity (MS) tion of Area (%) Other Space (%)	Maximum 111.13 91.59 15.97 29.41 43.07 Tensile Stress (CD)	Minimum 110.82 91.27 14.26 33.93 42.22 Yield Stress or Stress	Median 110.82 91.43 15.04 38.76 43.07 Modulus of Elastein (1601)	Mean 110.93 93.43 55.09 33.37 42.79 Fracture Excention (%)	Std. Deviation (sample) 0.19 0.36 0.86 2.99 0.49 electron of Area Reduction of Area	Coefficient of Variation (%) 0.17 0.18 5.68 8.00 1.15
atistics Ter Teros Viek Modulus Fractur Reduct Secures EM10 Specimen ID Unsecor	st Results leistness (KS) of Elasticity (MS) e Bongation (Ks) tion of Area (N) Other Specimen ID Specimen ID	Maximum 111.15 91.59 15.97 19.41 43.07 Tensile Stress (KSI) 10.92	Minimum 110.82 91.27 14.26 13.93 42.22 Yield Stress (KSI) 61.43	Median 110.82 91.43 15.04 38.76 43.07 Modulus of Elasticity (MSI)*	Mean 110.93 91.43 15.09 37.37 42.79 Fracture Elongation (%)	Std. Deviation (sample) 0.19 0.16 0.86 2.99 0.49	Coefficient of Variation (%) 0.17 0.18 5.68 8.00 1.15
atistics Term Yeek Modulus Fractur Fractur Reduct sults EM10 Specimen ID 130495002	st Results le stress (KS) 6 Stress (KS) 6 Elasticity (MS) e Bongation (%) tion of Area (%) Other Specimen ID TSCP-1 TSCP-1	Maximum 111.15 91.59 15.97 19.41 43.07 Tensile Stress (KSI) 110.82 111.15	Minimum 100.82 91.27 14.26 33.93 42.22 Yield Stress (KSI) 91.43 91.55	Median 10.82 91.43 15.04 38.75 43.07 Modulus of Elasticity (MSI)' 14.25 15.04	Mean 110.93 91.43 15.09 37.37 42.79 Fracture Elongation (%) 39.41 39.41	Std. Deviation (sample) 0.19 0.16 0.86 2.99 0.49 0.49 Reduction of Area (%) 2.91 43.07 42.27	Coefficient of Variation (%) 0.17 0.18 5.68 8.00 1.15

Figure 26. TiCP stress-strain curves and tensile data for as-received specimens.

Mechany	cal aciities	Smoo	EN oth Tensil	110 e Task Re Version 4.3	sults		NAS
MSFC Work Order Work Order Task Testing Organization Customer Work Order Test Standard	2013-0496 1 MMTF N/A EM10 Tensile Testing Guidelines	Average D	lata Acquisition Rate (Hz) Control Mode Initial Test Rate (In/min) Final Test Rate (In/min) someter Gage Length (In)	5 Stroke 0.05 0.05 0.05 0.50	3	Materia iominal Temporature (F) Nominal Pressure (prig) Test Frame	Ti Alloy: Ti 6A/4V 72 0 T3-7
	160 150 140 100 100 100 100 100 100 100 100 10				13049400		
atistics	9.9-1 1 1 1 30 10 20 30 4	a so aa 7a 8 St	train (%)	2345			
tatistics	ao La zo so 4	A 50 68 78 8	train (%) Minimum	Median	Mean	Std. Deviation (sample)	Coefficient o
tatistics Ten	0.0-1 i i i 0.0 1.0 2.0 3.0 4 est Results	0 3.0 6.0 7.0 1 St Maximum 256.70	Minimum 155.64	Median	Mean 156.27	Std. Deviation (sample) 0.55	Coefficient of Variation (% 0.35
tatistics Ta Femi Yie	0.0-1 i i i 0.0 1.0 2.0 3.0 4 Host Results He Stress (KSI) H Stress (KSI)	0 50 68 78 8 Si Maximum 156.70 138.94	Minimum 155.64 137.96	Median 136.46 138.41	Mean 156-27 138-50	Std. Deviation (sample) 0.55 0.50	Coefficient o Variation (% 0.35 0.36
tatistics Te Tem Yie Modular	0.0-1 i i i 0.0 1.0 2.0 3.0 4 htt Results lie Stress (KSI) of (Tasticity (MSI)	Maximum 256.70 138.94 15.46	Minimum 155.64 137.96 14.60	Median 136.46 138.61 13.15	Mean 156-27 138:50 15-07	Std. Deviation (sample) 0.55 0.50 0.44	Coefficient o Variation (% 0.35 0.36 2.90
tatistics Ten Yie Modula Fractur	0.0-1 i i i 0.0 1.0 2.0 3.0 4 est Results lie Stress (KSI) 14 Stress (KSI) 14 Stress (KSI) 10 f Lasticity (MSI) re (Longation (%)	Maximum 156,70 138,94 15,46 18,17	Minimum 155.64 137.96 14.60 16.71	Median 136.46 138.61 15.15 16.94	Mean 136-27 138-50 15-07 17-27	Std. Deviation (sample) 0.55 0.50 0.44 0.79	Coefficient of Variation (% 0.35 0.36 2.90 4.55
tatistics Te Modul Fractur Reduc	0.0-1 1 1 0.0 1.0 2.0 3.0 4 est Results lie Stress (KSI) lid Stress (KSI) id Stress (KSI) re (Longation (K) tion of Area (K)	Maximum 156.70 118.94 15.46 18.17 36.00	Minimum 155.64 137.96 14.60 16.71 28.27	Median 136.46 138.61 15.15 16.94 36.00	Mean 156-27 138-50 15-07 17-27 33-42	Std. Deviation (sample) 0.55 0.50 0.44 0.79 4.46	Coefficient (Variation (% 0.35 0.36 2.90 4.55 13.34
tatistics Te Yiel Modula Fractur Reduc esults	0.0-1 1 1 0.0 1.0 2.0 3.0 4 est Results est Results est Results ile Stress (KSI) of Elangaticity (MSI) to f Clongaticity (MSI) tion of Area (%)	Maximum 156.70 138.94 15.46 18.17 36.00	Minimum 155.64 137.96 14.60 16.71 28.27	Median 136.46 138.61 15.15 15.94 36.00	Mean 156-27 138-50 15.07 17.27 33.42 * Medica of electricity color (c)	Std. Deviation (sample) 0.55 0.50 0.44 0.79 4.46	Coefficient of Variation (% 0.35 0.36 2.90 4.55 13.34 draw reported for born
tatistics Te Modula Fractur Reduc esults EM10	0.0-1 i i i 3.0 1.0 2.0 3.0 4 est Results de Stress (KSI) di Stress (KSI) di Stress (KSI) e Elasticity (MSI) re Elasticity (MSI) re Elasticity (MSI) cof Area (%)	Maximum 256.70 138.94 15.46 18.17 36.00 Tensile Stress	Minimum 155.64 137.96 14.60 16.71 28.27 Yield Stress	Median 156.46 138.61 15.15 15.94 36.00 Modulus of	Mean 156-27 138-50 15-07 17.27 33.42 * Models of desirative sider ick Fracture	Std. Deviation (sample) 0.55 0.50 0.44 0.79 4.46 Reduction of Area	Coefficient (Variation (% 0.35 0.36 2.90 4.55 13.34
tatistics Te Iem Yee Modular Fractur Fractur Reduct EM10 Specimen ID	0.0-1 i i i 3.0 L0 2.0 3.0 4 https://www.commonstationality.commonstations/ ide Stress (KSI) ide Stress (KSI	Maximum 156-70 118-94 15-46 18.17 36.00 Tensile Stress (KGI)	Minimum 155.64 137.96 14.60 16.71 28.27 Yield Stress (KSI)	Median 156.46 136.41 15.15 16.94 36.00 Modulus of Elasticity (MSI)*	Mean 156-27 138-50 15-07 17-27 33-42 * Medice of residence relation Fracture Elongation (%)	Std. Deviation (sample) 0.55 0.50 0.44 0.79 4.46 rentmer wirk Samth models to Reduction of Area (%)	Coefficient (Variation (% 0.35 0.36 2.90 4.55 13.34
tatistics Te Modua Fractu Reduc esults EM10 Specimen ID 13046001	0.0-1 i i i 3.0 1.0 2.0 3.0 4 est Results lie Stress (KSI) if Stress (KSI) of Elançatichy (MSI) tion of Area (%) Specimen ID Tr64-1	Maximum 156.70 118.94 15.46 18.17 36.00 Tensie Stress (KSI) 156.70	Minimum 155.64 137.96 14.60 16.71 28.27 Yield Stress (KSI) 138.94	Median 136.46 138.61 15.15 16.94 36.00 Modulus of Elasticity (MSI)* 15.46	Mean 156-27 138-50 15.07 17.27 33.42 * Meddes of destady refer (k) Fracture Elongation (%) 15.94	Std. Deviation (sample) 0.55 0.50 0.44 0.79 4.46 Reduction of Area (%) 28.27	Coefficient of Variation (% 0.35 0.36 2.90 4.55 13.34
tatistics Te Te Modulu Fractur Reduc EM10 Specimen ID 130496001 130496001	0.0-1 i i i 0.0 L0 2.0 3.0 4 inst Results de Stress (KSI) de Stress (KSI) i of Elasticity (MSI) re Elongation (N) Specimen (D) Ti64-1 Ti64-2	Maximum 15.45 15.46 15.46 15.46 15.46 15.46 15.46 15.60 Tensie Stress (KSI) 155.46	Minimum 155.64 137.96 14.60 16.71 28.27 Yield Stress (KSI) 138.94 138.61	Median 136.46 138.61 13.15 15.94 36.00 Modulus of Elasticity (MSI)* 15.46 14.60	Mean 156-27 138-50 15-07 17.27 33.42 * Media of desirator eder (c) Fracture Elongation (%) 16.94 18.17	Std. Deviation (sample) 0.55 0.50 0.44 0.79 4.46 Reduction of Area (%) 28.27 35.00	Coefficient Variation (* 0.35 0.36 2.90 4.55 13.34

Figure 27. Ti-6-4 stress-strain curves and tensile data for as-received specimens.

Mecha	rical Facilities	Smo	EN oth Tensil	110 e Task Re Version 43	sults		NAS
MSFC Work Or Work Order T Testing Organizat Gustomer Work Or Test Stand	der 2013-0497 task 1 lion MMTF der N/A lard EM10 Tensie Teisting Guidelin	Average es Esta	Data Acquisition Rate (Hz) Control Mode Initial Test Rate (in/min) Final Test Rate (in/min) nsometer Gage Length (in)	5 Stroke 0.05 0.05 0.50	×	Material Iominal Temperature ('7) Nominal Pressore (psig) Test Frame	Ti Alloy: Ti 6AI-RV 72 0 T5-7
	2000 100 130 140 130 100 100 100 100 100 100 100 100 10	40 50 60 70		й D И В	13049700 13049700		
	0.0 1.0 2.0 3.0						
atistics	30 1.0 2.0 3.0	Maximum	Minimum	Median	Mean	Std. Deviation (sample)	Coefficient Variation (
atistics Ten Yie	30 1.0 2.0 3.0 101 Results #6 Stress (KSI) di Stress (KSI)	Maximum 157.52 139.10	Minimum 156.86 138.37	Median 157.35 138.69	Mean 157.24 138.72	Std. Deviation (sample) 0.34 0.37	Coefficient Veriation (* 0.22 0.26
atistics Ten Yee Modulur	3.0 1.0 2.0 3.0 est Results sile Stress (SSI) id Stress (KSI) of Eurotectwy (MSI)	Maximum 157.52 139.10 16.62	Minimum 156.86 138.37 14.67	Median 157.35 138.69 16.56	Mean 157.24 138.72 15.95	Std. Deviation (sample) 0.34 0.37 1.11	Coefficient Variation (* 0.22 0.26 6.94
atistics Ten Yee Modulu Fractu	3.0 1.0 2.0 3.0 ist Results site Stress (KSI) of Elasticity (MSG) re Elongation (%)	Maximum 157.52 139.10 16.62 20.96	Minimum 156.86 138.37 14.67 18.11	Median 157.35 138.69 16.56 19.65	Mean 157.24 138.72 15.95 19.57	Std. Deviation (sample) 0.34 0.37 1.11 1.42	Coefficient Variation (0.22 0.26 6.54 7.27
atistics Te Medulu Fractur Reduc sults EM10	340 1.0 2.0 3.0 est Results sile Stress (SSI) 4d Stress (KSI) so f Eutricity (MSI) re Elongation (%) tion of Area (%) Other	Maximum 157.52 139.10 16.62 20.96 36.46 Tensile Stress	Minimum 156.86 138.37 14.67 18.11 36.00 Yield Stress	Median 157.35 138.69 16.56 19.65 36.00 Modulus of	Mean 157,24 138,72 15.95 19.57 36.15 * Modula of database of or Fracture	Std. Deviation (sample) 0.34 0.37 1.11 1.42 0.26 Reduction of Area	Coefficient Variation (* 0.22 0.26 6.94 7.27 0.73
atistics Trem Yee Modului Fractuu Fractuu Reduc sults EM10 Specimen ID	340 1.0 2.0 3.0 est Results site Stress (KSI) id Stress (KSI) id Stress (KSI) re Elongation (KS) re Elongation (KS) tion of Area (Ks) Other Specimen (D	Maximum 157.52 179.10 16.62 20.96 36.46 Tensile Stress (KSI)	Minimum 156.86 138.37 14.67 18.11 36.00 Yield Stress (KSI)	Median 157,35 138,69 16,56 19,65 36,00 Modulus of Elasticity (MSI)*	Mean 157,24 138,72 15,95 19,57 36,15 * Modular of electropy roles (a) Fracture Elongation (%)	Std. Deviation (sample) 0.34 0.37 1.11 1.42 0.26 Its spinstar only, specific modules to Reduction of Area (%)	Coefficient Variation (1 0.22 0.26 6.94 7.27 0.73
atistics Ten Yee Modulu Fractur Reduc sults EM10 Specimen ID 130497001	30 1.0 2.0 3.0 est Results sile Stress (KSI) of Elasticity (MSI) r of Elasticity (MSI) tion of Area (%) Other Specimen ID EU T64-1	Maximum 157.52 189.10 16.62 20.96 36.46 Tensile Stress (K.SI) 156.86	Minimum 156.86 138.37 14.67 18.11 36.00 Yield Stress (KSI) 138.37	Median 157.35 138.69 16.56 19.65 36.00 Modulus of Elasticity (MSI)* 14.67	Mean 157.24 138.72 15.95 19.57 36.15 * Modula of dealbility order (c) Fracture Elongation (%) 20.96	Std. Deviation (sample) 0.34 0.37 1.11 1.42 0.26 Reduction of Area (%) 36.00	Coefficient Variation (0.22 0.26 6.34 7.27 0.73
atistics Tem Net ModuAu Fractur Reduc suits EM10 Specimen ID 130497001 130497002	30 1.0 2.0 3.0 est Results sile Stress (ISSI) ed Stress (ISSI) re Elongation (IS) tion of Area (IN) Other Specimen ID EU T64-1 EU T64-2	Maximum 157.52 139.10 16.62 20.96 36.46 Tensile Stress (KSI) 156.86 157.35	Minimum 156.86 138.37 14.67 18.11 36.00 Yield Stress (KSI) 138.37 139.10	Median 157.35 138.69 16.56 19.65 36.00 Modulus of Elasticity (MSI)* 14.67 16.62	Mean 157.24 138.72 15.95 19.57 36.15 * Modula of deatility other is) Fracture Elongation (%) 20.96 18.11	Std. Deviation (sample) 0.34 0.37 1.11 1.42 0.26 Reduction of Area (%) 36.00 36.465	Coefficien Variation 0.22 0.26 6.94 7.27 0.73

Figure 28. Ti-6-4 ELI stress-strain curves and tensile data for as-received specimens.

Mechanica Test Faci	lities	Smoo	EN o th Tensil	110 e Task Re verder 43	sults		NASA
MSPC Work Onder Work Order Task Testing Organization Test Standard	2013-0528 1 MMTF MIO Tensile Testing Guidelines	Average Exte	Data Acquisition Rate (Hz) Control Mode Initial Test Rate (In/min) Final Test Rate (In/min) resonneter Gage Length (In)	10 Stroke 0.05 0.55 0.50	8.	Material prinal Temperature (*) Nominal Pressure (pig) Test Frame Pre-Load (L85)	Fe Alloy: Cronidur 30 Ste 72 0 15-7 1
Stress (K3)					13452601 13652603	XXX	
	80- 80- 80- 90- 90- 90- 90- 90- 90- 90- 90- 90- 9	10.001.001.0 11 12 1 5	13 14 15 14 17 18 1 Strain (%)	0000000000	16 27 28		
atistics	80- 10- 10- 10- 10- 10- 10- 10- 1	Maximum	13 14 15 14 17 13 1 Strain (%) Minimum	9 20 21 22 23 24 23 Median	34 27 23 Mean	Std. Deviation (sample)	Coefficient of Variation (%)
atistics Test Re Tensile Stru	90- 10- 10- 10- 10- 10- 10- 10- 1	Maximum 208.12	13 14 15 16 17 13 1 Strain (%) Minimum 295.86	9 20 21 22 23 24 25 Median 297.33	24 27 28	Std. Deviation (sample) 6.70	Coefficient of Variation (%) 2.28
atistics Test Re Tersile Stre Wield Stre	90- 90- 90- 90- 90- 90- 90- 90-	Maximum 308.12 253.39	13 14 15 14 12 18 1 Strain (%) Minimum 295.86 251.47 251.47	Median 297.33 253.10 253.10	24 27 28 Mean 900.44 252.65	Std. Deviation (sample) 6-70 1.04	Coefficient of Variation (%) 2.28 0.41
atistics Tessie Stre Meddas of Lis Frence Dec	80- 10- 10- 10- 10- 10- 10- 10- 1	Maximum 10.60 1.0 1.1 1.2 1 5 Maximum 108.12 253.39 30.40 2.78	13 14 15 16 17 18 1 Strain (%) Minimum 295.86 251.47 28.66 1 25	Median 297.33 253.10 28.94 1.96	Mean 300.44 252.65 29.33 212	Std. Deviation (sample) 6.70 1.04 0.93 0.54	Coefficient of Variation (%) 2.28 0.41 3.18 25.13
atistics Test Re Testa Stre Modulus of La Fracture Elon Reduction of	80- 10- 10- 10- 10- 10- 10- 10- 1	Maximum 10.00 10 11 12 1 108.12 253.39 30.40 2.78 3.20	Minimum 295.86 251.47 28.66 1.75 0.81	Median 297,33 253,10 28,94 1,06 0,82	Mean 900.44 252.65 29.33 2.17 1.61	Std. Deviation (sample) 6.70 1.04 0.93 0.54 1.38	Coefficient of Variation (%) 2.28 0.41 3.18 25.51 85.62
atistics Test Re Tensie Stre Modulus of Its Practure Elen Reduction of Esults	80- 90- 90- 90- 90- 90- 90- 90- 9	Maximum 308.12 253.39 30.40 2.78 3.20 Tensile Stress	Minimum 295.86 251.47 28.66 1.75 0.83 Yield Stress	Median 20 21 22 23 24 25 27 33 253 10 28 94 1.36 0.82 Modulus of	Mean 900.44 252.65 29.33 2.17 1.61 * Makes d'electric Fracture Fracture	Std. Deviation (sample) 6.70 1.04 0.93 0.54 1.38 rester 5 for ofference only. Jacob Reduction of	Coefficient of Variation (%) 2.28 0.41 3.18 25.13 85.62 reades loss are repaired for in
atistics Test Re Test Re	suits suits story (MSI) gation (%) Conter (%) Specimen (0) Conter (%)	Maximum 308.12 253.39 30.40 2.78 3.20 Tensile Stress (KSI) (KSI)	Minimum 295.86 251.47 28.66 275 0.81 Yield Stress (KSI) 25.30	Median 29 20 21 22 23 24 25 25 10 28 94 1 96 0.82 Modulus of Elasticity (MSI)'	Mean 900.44 252.65 29.33 2.17 1.61 Fracture Elongation (%)	Std. Deviation (sample) 6.70 1.04 0.93 0.54 1.38 Reduction of Area (%) 320	Coefficient of Variation (%) 2.23 0.41 3.18 25.13 85.62
atistics Test Re Test Re Test Re Nodulo of Ea Fracture Ean Reduction of Esuits EM10 Solicimen ID 130528003	9UITS 9U	Maximum 306.12 253.39 30.40 3.278 3.20 Tensile Stress (KSI) 306.12 2.78 3.20	Alinimum 295.86 255.47 28.66 1.75 0.81 Yield Stress (K\$1) 253.39 251.10	Median 20 20 21 22 23 24 25 Median 207.33 253.10 28.94 1.96 0.82 Modulus of Elasticity (MSI)* 28.66 28.60	Mean 900.44 252.65 29.33 2.17 1.61 * Makes of relation Fracture Elongation (%) 2.78 2.78 2.75	Std. Deviation (sample) 6-70 1.04 0.93 0.54 1.38 Reduction of Area (%) 3.20 0.52	Coefficient of Variation (%) 228 0.41 3.18 25.13 85.62 endels last an implied for in

Figure 29. Cronidur 30 steel stress-strain curves and tensile data for as-received specimens.

APPENDIX C—FORMULAS FOR PREPARING PRETREATED URINE

C.1 International Space Station Baseline—Current Pretreatment

Add 15.9 mL of pretreat stabilizer (54.5% DI water, 9% chromium trioxide, and 36.5% sulfuric acid) and 265 mL of DI water to 1 L of urine.

C.2 Proposed Alternate Pretreatment

Add 17.5 mL of pretreat stabilizer and 265 mL of DI water to 1 L of urine. The pretreat stabilizer will contain 2.36 mL of 85% phosphoric acid and 0.94 mL of the 30% CrO₃ oxidizer solution. The formulas for preparing pretreated urine oxidizer solution is prepared by adding 300 gm of chromium trioxide in 700 gm of ultrapure DI water.

Notes:

(1) Per these procedures, the chromium concentration in the pretreated urine is $\approx 800 \text{ mg/L}$ and $\approx 5,000 \text{ mg/L}$ in the brine.

(2) In the baseline pretreated urine, the sulfate concentration is $\approx 8,000$ mg/L and $\approx 50,000$ mg/L in the brine.

(3) For the 'alternate' pretreated urine, the phosphate concentration is $\approx 20,000 \text{ mg/L}$ and the sulfate is $\approx 1,600 \text{ mg/L}$. In the alternate brine, the phosphate is $\approx 130,000 \text{ mg/L}$ and the sulfate is $\approx 10,000 \text{ mg/L}$.

(Private Communication, E-mail from Donald L. Carter, MSFC-ES62, dated April 10, 2013.)

APPENDIX D—TENSILE DATA FOR EXPOSED SPECIMENS

Tensile data for exposed specimens are shown for Inconel 625 (fig. 30), Hastelloy C276 (fig. 31), TiCP (fig. 32), Ti-6-4 (fig. 33), Ti-6-4 ELI (fig. 34), and Cronidur 30 (fig. 35). The stress corrosion test conditions are also shown, as well as the average tensile data for nonexposed specimens for comparison.

Statistics

Test Results	Maximum	Minimum	Median	Mean	Std. Deviation (sample)	Coefficient of Variation (%)
Tensile Stress (KSI)	137.60	134.79	137.15	136.57	1.04	0.76
Yield Stress (KSI)	78.53	76.66	78.09	77.71	0.76	0.97
Modulus of Elasticity (MSI)	83.32	25.65	28.70	28.73	2.41	8.37
Fracture Elongation (%)					-	-
Reduction of Area (%)	64.63	\$3.73	61.21	60.50	3.81	6.29
		100230.00	100 A 100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

EM10 Specimen ID	Other Specimen ID	Tensile Stress (KSI)	Yield Stress (KSI)	Modulus of Elasticity (MSI)*	Fracture Elongation (%)**	Reduction of Area (%)
140532001	625-4	134.79	76.76	29.52	> 15.0	61.21
140532002	625-5	137.60	78.53	28.02	> 20.0	62.68
140532003	625-7	137.15	77.47	25.65	> 20.0	57.16
140532004	625-8	135.85	78.15	25.99	> 20.0	53.73
140532005	625-9	137.26	78.31	28.70	> 20.0	63.23
140532006	625-11	136.00	76.66	28.89	> 20.0	60.88
140532007	625-12	137.37	78.09	33.32	> 15.0	64.63

SCC Test Conditions for Inconel 625

and a second and and the second second	scress cever burning sec rest, kar	Environment burning see rest
75	58.3	Pre-Treat
75	58.3	Pre-Treat
0	0	Pre-Treat
75	58.3	Brine
75	58.3	Brine
0	0	Brine
75	58.3	Deionized Water
	75 75 0 75 75 75 0 75 0 75	75 58.3 75 58.3 0 0 75 58.3 75 58.3 75 58.3 75 58.3 75 58.3 75 58.3 75 58.3 75 58.3 75 58.3

Averaged Tensile Data for Non Exposed Inconel 625 Specimens

136.00 77.71 28.07 61.34 48.47	UTS, ksi	YS, ksi	E, Msi	EL, %	RA, %
	136.00	77.71	28.07	61.34	48.47

Figure 30. Inconel 625 stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine.

EM10 **Smooth Tensile Task Results** Version 4.3

Statistics

Mechanical Test Facilities

Test Results	Maximum	Minimum	Median	Mean	Std. Deviation (sample)	Coefficient of Variation (%)
Tensile Stress (KSI)	123.61	120.10	122.46	122.44	1.19	0.97
Yield Stress (KSI)	68.11	65.15	67.50	67.26	1.03	1.53
Modulus of Elasticity (MSI)	32.39	25.79	28.06	28.70	2.07	7.21
Reduction of Area (%)	79.41	60.47	74.40	71.12	6.58	9.25
	1					1

* Modulus of electricity value is for

Results

Results					* Modulus of righticity value in ** fracture elongation values ex-	for reference only. Specific mod consided the collocation-limit for H	ulus tests are required for thus value to extensioneter used for this testing
EM10 Specimen ID	Other Specimen ID	Tensile Stress (KSI)	Yield Stress (KSI)	Modulus of Electicity (MSI)*	Fracture Elongation (%) **	Reduction of Area (%)	
140532008	276-4	122.46	67.50	27.99	> 20.0	74.40	1
140532009	276-5	123.08	67.17	25.79	> 20.0	75.20	1
140532010	276-7	122.00	66.95	30.05	> 20.0	74.60	1
140532011	276-8	120.10	65.15	28.06	> 20.0	65.82	1
140532012	276-9	122.42	68.11	28.81	> 20.0	79.41	1
140532013	276-11	123.61	68.08	27.81	> 20.0	67.95	1
140532014	276-12	123.44	67.86	32.39	> 20.0	60.47	-
140532013 140532014	276-11 276-12	123.61 123.44	68.08	27.81 32.39	> 20.0	67.95 60.47	1

SCC Test Conditions for Hastelloy C276

Sample	Stress Level During SCC Test, %YS	Stress Level During SCC Test, ksi	Environment During SCC Test
276-4	75	50.3	Pre-Treat
276-5	75	50.3	Pre-Treat
276-7	0	0	Pre-Treat
276-8	75	50.3	Brine
276-9	75	50.3	Brine
276-11	0	0	Brine
276-12	75	50.3	Deionized Water

Averaged Tensile Data for Non Exposed Hastelloy C276 Specimens

UTS, ksi	YS, ksi	E, Msi	EL, %	RA. %	
120.74	67.01	31.78	69.07	60.43	

Figure 31. Hastelloy C276 stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine.

Statistics

Maximum	Minimum	Median	Mean	(sample)	Variation (%)
114.55	111.74	112.80	112.92	1.08	0.96
102.23	92.17	99.65	98.47	4.23	4,29
17.12	14.64	15.28	15.50	0.77	4.99
55.83	42.55	47.90	48.09	4.74	9.86
	Maximum 114.55 102.23 17.12 55.83	Maximum Minimum 114.55 111.74 102.23 92.17 17.12 14.64 55.83 42.55	Maximum Minimum Median 114.55 111.74 112.80 102.23 92.17 99.65 17.12 14.64 15.28 55.83 42.55 47.90	Maximum Minimum Median Mean 114.55 111.74 112.80 112.92 102.23 92.17 99.65 98.47 17.12 14.64 15.28 15.50 55.83 42.55 47.90 48.09	Maximum Minimum Median Mean Site Deviation (sample) 114.55 111.74 112.80 112.92 1.08 102.23 92.17 99.65 59.47 4.23 17.12 14.64 15.28 15.50 0.77 55.83 42.55 47.90 48.09 4.74

					Transie and gener search entry	des per contractes and per
EM10	Other	Tensile Stress	Yield Stress	Modulus of	Fracture	Reduction of
ipecimen ID	Specimen ID	(KSI)	(KSI)	Elasticity (MSI)*	Elongation (%) **	Area (%)
140532015	TICP-4	114.21	101.59	15.65	> 20.0	47.90
140532016	TICP-5	112.81	101.53	14.64	> 20.0	51.77
140532017	TICP-7	112.80	92.79	15.28	> 20.0	43.91
140532018	TICP-8	112.42	99.36	15.24	> 20.0	55.83
140532019	TICP-9	111.90	99.65	17.12	> 20.0	44.88
140532020	TICP-11	111.74	92.17	15.24	> 20.0	42.55
140532021	TICP-12	114.55	102.23	15.37	> 20.0	49.80

SCC Test Conditions for Titanium Commercially Pure

Sample	Stress Level During SCC Test, %YS	Stress Level During SCC Test, ksi	Environment During SCC Test
TICP-4	75	68.6	Pre-Treat
TICP-5	75	68.6	Pre-Treat
TICP-7	0	0	Pre-Treat
TICP-8	75	68.6	Brine
TICP-9	75	68.6	Brine
TICP-11	0	0	Brine
TiCP-12	75	68.6	Deionized Water

Averaged Tensile Data for Non Exposed Titanium Commercially Pure Specimens

110.93 91.43 15.09 37.37 42.79	UTS, ksi	YS, ksi	E, Msi	EL, %	RA, %	
A DEC ADEC DECE	110.93	91.43	15.09	37.37	42.79	

Figure 32. TiCP stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine.

EM10 Smooth Tensile Task Results

Statistics

Test Results	Maximum	Minimum	Median	Mean	Std. Deviation (sample)	Coefficient of Variation (%)
Tensile Stress (KSI)	159.92	154.47	157.81	157.66	1.85	1.17
Yield Stress (KSI)	141.07	136.36	139.99	139.55	1.55	1.11
Modulus of Elasticity (MSI)	15.59	14.69	14.85	14.97	0.30	2.01
Fracture Elongation (%)	19.90	13.75	18.21	17.26	2.14	12.41
Reduction of Area (%)	45.84	32.22	39.17	38.95	4.12	10.58
		1				

Results

EM10 Specimen ID	Other Specimen ID	Tensile Stress (KSI)	Yield Stress (KSI)	Modulus of Elasticity (MSI)*	Fracture Elongation (%)	Reduction of Area (%)
140532022	Ti64-4	159.53	140.69	14.83	18.61	36.91
140532023	Ti64-5	157.81	140.09	14.86	18.21	40.76
140532024	Ti64-7	158.21	139.99	14.82	19.90	32.22
140532025	Ti64-8	157.05	139.24	14.69	15.82	37.95
140532026	Ti64-9	154.47	136.36	15.11	13.75	45.84
140532027	Ti64-11	156.65	139.42	15.59	15.97	39.81
140532028	Ti64-12	159.92	141.07	14.92	18.59	39.17

SCC Test Conditions for Titanium 6AI-4V

Sample	Stress Level During SCC Test, %YS	Stress Level During SCC Test, ksi	Environment During SCC Test
Ti64-4	75	103.9	Pre-Treat
Ti64-5	75	103.9	Pre-Treat
Ti64-7	0	0	Pre-Treat
Ti64-8	75	103.9	Brine
Ti64-9	75	103.9	Brine
Ti64-11	0	0	Brine
Ti64-12	75	103.9	Deionized Water

Averaged Tensile Data for Non Exposed Titanium 6AI-4V Specimens

UTS, ksi	YS, ksi	E, Msi	EL, %	RA, %
156.27	138.50	15.07	17.27	33.42

Figure 33. Ti-6-4 stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine.

EM10 Smooth Tensile Task Results

Statistics

Test Results	Maximum	Minimum	Median	Mean	Std. Deviation (sample)	Coefficient of Variation (%)
Tensile Stress (KSI)	163.59	161.71	162.61	162.57	0.76	0.47
Yield Stress (KSI)	145.56	142.51	143.73	144.02	1.20	0.83
Modulus of Elasticity (MSI)	16.18	14.83	15.01	15.20	0.46	3.01
Fracture Elongation (%)	20.32	18.63	19.56	19.55	0.66	3.38
Reduction of Area (%)	44.66	37.56	40.38	41.05	2.67	6.51

Results

EM10 Specimen ID	Other Specimen ID	Tensile Stress (KSI)	Yield Stress (KSI)	Modulus of Elasticity (MSI)*	Fracture Elongation (%)	Reduction of Area (%)
140532029	EU-4	161.73	142.85	14.83	20.03	37.56
140532030	ELI-5	162.19	143.73	14.99	19.56	42.54
140532031	EU-7	163.47	145.45	15.16	20.32	39.77
140532032	EU-8	163.59	145.56	15.26	19.43	44.66
140532033	ELI-9	162.61	144.50	16.18	18.63	43.77
140532034	EU-11	161.71	142.51	15.01	18.77	40.38
140532035	EU-12	162.70	143.50	14.94	20.11	38.63

SCC Test Conditions for Titanium 6AI-4V Extra Low Interstitial

Sample	Stress Level During SCC Test, %YS	Stress Level During SCC Test, ksi	Environment During SCC Test
EU-4	75	104	Pre-Treat
EU-S	75	104	Pre-Treat
EU-7	0	0	Pre-Treat
EU-8	75	104	Brine
ELI-9	75	104	Brine
EU-11	0	0	Brine
EU-12	75	104	Deionized Water

Averaged Tensile Data for Non Exposed Titanium 6AI-4V Extra Low Interstitial Specimens E

UTS, ksi	YS, ksi	E, Msi	EL, %	RA, %	
157.24	138.72	15.95	19.57	36.15	

Figure 34. Ti-6-4 ELI stress-strain curves and tensile data after a 365-day exposure to ECLSS pretreat and brine.

EM10 Smooth Tensile Task Results

inty. Specific modulus tests are required for true

MSFC Work Order	2014-0532	Average Data Acquisition Rate (Hz)	10	Material	Cranidur 30	- 1
Work Order Task	6	Control Mode	Stroke	Nominal Temperature ('F)	72	
Testing Organization	EM10	Initial Test Rate (in/min)	0.05	Nominal Pressure (psig)	0	T
Test Standard	ASTM E8	Final Test Rate (in/min)	0.05	Test Frame	T5-13	
1 1.12 1.02 1.02 1.02 1.02 1.02 1.02 1.0		Extensometer Gage Length (in)	0.50	Pre-Load (LBS)	10	

Statistics

Test Results	Maximum	Minimum	Median	Mean	Std. Deviation (sample)	Coefficient of Variation (%)
Tensile Stress (KSI)	320.37	174.10	300.86	286.69	41.68	14.54
Vield Stress (KSI)	265.96	248.47	258.10	258.77	5.49	2.12
Modulus of Elasticity (MSI)	28.96	26.81	28.36	28.14	0.60	2.15
Fracture Elongation (%)	2.70	0.67	2.37	2.09	0.60	28.62

Results

EM10 Specimen ID	Other Specimen ID	Tensile Stress (KSI)	Yield Stress (KSI)	Modulus of Elasticity (MSI)*	Fracture Elongation (%)
140532036	C30-4	277.08	-		
140532037	C30-5	295.46	248.47	28.84	2.22
140532038	C30-7	306.18	253.52	28.90	2.37
140532039	C30-8	305.67			pres-
140532040	C30-9	320.37	265.96	28.37	2.70
140532041	C30-10	314.06	264.56	28.02	2.57
140532042	C30-11	314.75	265.90	28.41	2.44
140532043	C30-12	295.88	254.20	26.81	2.16
140532044	C30-13	294.08	264.12	28.96	1.61
140532045	C30-14	302.67	(res)		1.00
140532046	C30-15	309.72	260.70	28.40	2.37
140532047	C30-17	308.66	256.61	27.97	2.64
140532048	C30-18	300.86	254.79	27.29	2.37
140532049	C30-19	179.85		28.47	0.67
140532050	C30-20	174.10	200		
140532051	C30-21	294.95	255.60	28.44	1.90
140532052	C30-22	288.49	258.10	27.73	1.70
140532053	C30-23	251.58		27.69	1.08
140532054	C30-33	312.78	261.48	27.87	2.61

Figure 35. Cronidur 30 steel stress-strain curves and tensile data after a 341-day exposure to ECLSS pretreat and brine.

Sample	Stress Level During SCC Test (%YS)	Stress Level During SCC Test (ksi)	Environment During SCC Test
C30-4	20	50	Pretreat
C30-5	20	50	Pretreat
C30-7	10	25	Pretreat
C30-8	10	25	Pretreat
C30-9	10	25	Pretreat
C30-10	6	15	Pretreat
C30-11	6	15	Pretreat
C30-12	6	15	Pretreat
C30-13	-	-	Pretreat
C30-14	20	50	Brine
C30-15	20	50	Brine
C30-16	20	50	Brine
C30-17	10	25	Brine
C30-18	10	25	Brine
C30-19	10	25	Brine
C30-20	6	15	Brine
C30-21	6	15	Brine
C30-22	6	15	Brine
C30-23	_	_	Brine
C30-33	10	25	Deionized water

Table 7. Test conditions for exposed Cronidur 30 steel specimens.

Average tensile data for nonexposed Cronidur 30 steel specimens are shown in table 8.

Table 8. Average tensile data for nonexposed Cronidur 30 steel specimens.

UTS	YS	E	EL	RA
(ksi)	(ksi)	(Msi)	(%)	(%)
300.44	252.65	29.33	2.17	1.61

Table 9 shows the SCC test conditions for Cronidur 30 steel specimens for figure 36 (exposed to various environments).

Sample	Initially Tested at 25 ksi in the Environments Shown Below Without Failing	Removed, Unloaded, Reloaded, and Subjected to the Following Environment	Stress Level for the Final Exposure (%YS)	Stress Level for the Final Exposure (ksi)
C30-24	5% salt spray at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	20	50
C30-25	5% salt spray at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	20	50
C30-26	5% salt spray at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	30	75
C30-27	High humidity at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	30	75
C30-28	High humidity at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	40	100
C30-29	High humidity at 95 °F for 313 days	3.5% NaCl alternate immersion for 46 days	40	100
C30-30	3.5% NaCl alternate immersion for 313 days	3.5% NaCl alternate immersion for 46 days	50	126
C30-31	3.5% NaCl alternate immersion for 313 days	3.5% NaCl alternate immersion for 46 days	50	126
C30-32	3.5% NaCl alternate immersion for 313 days	3.5% NaCl alternate immersion for 46 days	66	166

Table 9. SSC test conditions for Cronidur 30 steel specimens.

Statistics

Test Results	Maximum	Minimum	Median	Mean	Std. Deviation (sample)	Coefficient of Variation (%)
Tensile Stress (KSI)	319.74	287.46	299.72	300.95	9.73	3.23
Yield Stress (KSI)	264.27	249.29	256.44	256.18	4.44	1.73
Modulus of Elasticity (MSI)	29.86	26.85	28.30	28.35	0.96	3.38
Fracture Elongation (%)	2.70	1.65	2.13	2.15	0.40	18.52
Reduction of Area (%)	2.00	0.00	0.80	0.75	0.72	96.18

EM10 ecimen ID	Other Specimen ID	Tensile Stress (KSI)	Yield Stress (KSI)*	Modulus of Elasticity (MSI)**	Fracture Elongation (%)	Reduction of Area (%)
40532055	C30-24	304.93				
40532056	C30-25	298.62	256.52	29.23	1.93	0.80
40532057	C30-26	308.49	256.36	26.85	2.49	0.80
40532058	C30-27	299.72	255.28	28.32	2.16	2.00
40532059	C30-28	319.74	264.27	27.90	2.70	0.00
40532060	C30-29	290.77	257.20	28.84	1.66	1.20
40532061	C30-30	303.56	251.97	28.29	2.55	0.00
40532062	C30-31	295.29	249.29	29.86	2.10	1.20
40532063	C30-32	287.46	258.51	27.52	1.65	0.00

Figure 36. Cronidur 30 steel stress-strain curves and tensile data after a 359-day exposure to mixed environments of 5% salt spray, high humidity, and 3.5% NaCl alternate immersion.

REFERENCES

- 1. ASTM G49-85 (Reapproved 2005), "Standard Practice for Preparation and Use of Direct Tension Stress-Corrosion Test Specimens," ASTM International, West Conshohocken, PA, 2005.
- 2. ASTM B117-11, "Standard Practice for Operating Salt Spray (Fog) Apparatus," ASTM International, West Conshohocken, PA, 2011.
- 3. ASTM G44-99 (Reapproved 2005), "Standard Practice for Exposure of Metals and Alloys by Alternate Immersion in Neutral 3.5 % Sodium Chloride Solution," ASTM International, West Conshohocken, PA, 2005.
- 4. MSFC-STD-3029, Rev A, "Guidelines for the Selection of Metallic Materials for Stress Corrosion Cracking Resistance in Sodium Chloride Environments," NASA Marshall Space Flight Center, Huntsville, AL, 2005.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operation and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.					
1. REPORT DATE	(DD-MM-YYYY) -03-2015		2. REPORT TYPE Technical Memo	orandum	3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER
Stress Corrosion Evaluation of Various Metallic Materials					5b. GRANT NUMBER
for the International Space Station Water Recycling System					5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)					5d. PROJECT NUMBER
P.D. Torres					5e. TASK NUMBER
					5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)					8. PERFORMING ORGANIZATION REPORT NUMBER
Huntsville, AL 35812					M-1395
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSORING/MONITOR'S ACRONYM(S)
National Aeronautics and Space Administration					INASA 11. SPONSORING/MONITORING REPORT NUMBER
washington, DC 20340-0001					NASA/TM—2015–218206
12. DISTRIBUTION/AVAILABILITY STATEMENT					
Subject Category 26					
Availability: NASA STI Information Desk (757–864–9658)					
13. SUPPLEMENTARY NOTES					
Prepared by the Materials and Processes Laboratory, Engineering Directorate					
14. ABSTRACT					
A stress corrosion evaluation was performed on Inconel 625, Hastelloy C276, titanium commercially pure (TiCP), Ti-6Al-4V, Ti-6Al-4V extra low interstitial, and Cronidur 30 steel as a consequence of a change in formulation of the pretreatment for processing the urine in the International Space Station Environmental Control and Life Support System Urine Processing Assembly from a sulfuric acid-based to a phosphoric acid-based solution. The first five listed were found resistant to stress corrosion in the pretreatment and brine. However, some of the Cronidur 30 specimens experienced reduction in load-carrying ability.					
International Space Station, Environmental Control and Life Support System, Urine Processing Assembly, stress corrosion cracking, corrosion, metallic materials, urine pretreatment, urine brine, water recycling in the Space Station, water recovery in the Space Station					
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESI STI Help Desk a					19a. NAME OF RESPONSIBLE PERSON STI Help Desk at email: help@sti.nasa.gov
U	U	U	UU	66	19b. TELEPHONE NUMBER (Include area code) STI Help Desk at: 757–864–9658

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18

National Aeronautics and Space Administration IS20 George C. Marshall Space Flight Center Huntsville, Alabama 35812