

RFID-Enabled Autonomous Logistics Management (REALM)

REALM-3: "Smart Enclosures"

Patrick Fink, Ph.D., REALM PI, NASA JSC EV8 James Broyan, PM, AES/Logistics Reduction, NASA JSC EC7 Phong Ngo, REALM-1 Chief Engineer, NASA JSC EV8

- Brief review of "smart enclosure" technology prototypes
- Considerations for "smart enclosures"
- NASA is currently flying two "smart drawers" on ISS
- This presentation addresses prototype "Smart-ZSR", "Smart Trash Can", and "Smart-CTB", only

"SMART ZERO-GRAVITY STOWAGE RACK (ZSR)"

Zero-g Stowage Rack (ZSR)

Objective

- Assess performance of integrated RFID system ("smart ZSR")
- Operational Goals
 - Minimal changes to current textile structure
 - Interchangeable inserts
- Design Process: Full scale 1-g mockup
 - Conductive fabric enclosure
 - Sample ISS inventory items
 - Computational analysis
 - Testing

Zero-g Stowage Rack (ZSR)

ZSR Soft Stowage Shelving

Full Scale 1-g Mockup

Operational ZSR Mock-up in B9 Training Facility

Dense Zone RFID enclosure

First concept: D-insert (1/2 rack)

- Largest volume
 - → Potential for increased number of tags, hardware, & item locations
- Manufacture
 - Conductive fabric enclosure attached to all faces of enclosure

ZSR Inventory

- 18 Zero-g Stowage Racks on-board ISS
- Use Case:
 - Cargo Transfer Bags (CTBs) bungeed/Velcroed in ZSR
- Inventory from ZSR NOD104
 - March 2012
 - Maximum number of items:
 687 per full rack
 - D-insert (1/2 rack)≈ 300 items
 - Sample items borrowed & purchased
 - RFID tagged & packed

Sample RFID-Tagged Inventory: Huggies, Tape, Gloves, Laptops & Clothing

ZSR Testing Populations: D-Insert

Population 3: 296 items

Read accuracy as a function of transmit power for three population sizes (118, 207, 296 items)

More transmit power required for an increase in population size

→System performs at an acceptable level with
 296 item inventory
 except at lowest power
 setting

"SMART TRASH RECEPTACLE"

- NASA 2012 "smart trash receptacle" prototype
- Lined with conductive fabric
- RFID reader in side pocket
- Reads tags on consumed items (trash)
- Trigger options:
 - Upon closure (event-driven)
 - Crew manual (backup, only)
 - Scheduled
 - Commanded from ground
- Note: compacting trash can damage RFID tags

"SMART CARGO TRANSFER BAG (CTB)"

"SMART CTB"

- CTB is lined with conductive fabric for shielding
- RFID reader resides in pocket with RF cable interface to interior antennas (1-2)
- Reader has WiFi radio that interfaces to an e-textile antenna for external data transfer
- Possible concepts of operation include inventory for frequently used CTBs or crew workbag for collection of experiment supplies and tools

NASA AES/Logistics Reduction RFID-enabled CTB

"Smart Enclosure Considerations"

- Applies to all "smart enclosures": ZSR, Cargo Transfer Bags, Trash Cans
- Conductive material is desired around all sides of the enclosure (container); that is, good shielding
 - Gaps reduce read accuracy and can introduce unintended reads from tagged items external to the container
 - Must consider whether to send up conductive inserts or new racks that have conductive boundaries (walls)
- Read accuracy is affected by an abundance of items with metal or liquid, but performance > 90% accuracy can still be expected with proper design
- Availability of power
 - If powered by a battery, it is probably necessary to limit the rate at which the enclosure is read in order extend the life
- Data transfer telemetry and commands
- Triggering mechanisms
 - Upon closure (event-driven)
 - Crew manual (backup, only)
 - Scheduled
 - Commanded from ground