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Abstract 
The National Aeronautics and Space Administration Armstrong Flight Research Center has developed 

a cost-effective and flexible object-oriented optimization (O3) tool that leverages existing tools and 
practices and allows easy integration and adoption of new state-of-the-art software. This object-oriented 
framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to 
perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in 
a loop between the O3 tool and the discipline modules, or both. Six different sample mathematical problems 
are presented to demonstrate the performance of the O3 tool. Instructions for preparing input data for the 
O3 tool are detailed in this user’s manual. 

Nomenclature 
ADS  automated design synthesis  
AIC  aerodynamic influence coefficient 
ATW  Aerostructures Test Wing 
BBBC  Big-Bang-Big-Crunch 
CG  center of gravity 
D & DT  damage and damage tolerance 
DOT  design optimization tools 
FE  finite element 
GA  genetic algorithm 
LSCT  Low-Boom Supersonic Civil Transport 
MAC  modal assurance criteria 
MDAO  multidisciplinary design, analysis, and optimization 
NASA  National Aeronautics and Space Administration 
O3  object-oriented optimization 
V-f  velocity versus frequency 
V-g  velocity versus damping 
XCG  design variable vector at CG location 
XGO  global optimum solution 
Xi  design variable vector 
XLi  lower bound of design variable vector Xi 
XUi  upper bound of design variable vector Xi 
α  parameter limiting the size of the design space 
β  parameter controlling the influence of XGO 
ϑ  standard normal random number 

Introduction 
Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics  

and Space Administration (NASA) Armstrong Flight Research Center (AFRC) has developed a 
FORTRAN-based object-oriented optimization (O3) tool (ref. 1). Over the past several years, an 
object-oriented Multi-disciplinary Design, Analysis, and Optimization (MDAO) tool, as shown in figure 1, 
has been developed and tested at NASA AFRC using the O3 tool (ref. 2). 

 
The O3 tool provides a computational environment in which the optimizer can effectively receive 

objective and constraint function values from various disciplines through interface variables. The basic flow 
of the O3 tool is shown in figure 2. An input deck is prepared prior to running the O3 tool. The gray circle 
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on the left in figure 2 represents how the O3 tool processes incoming information in its optimization 
procedure. The red and green modules on the right in the figure each represent a different discipline of the 
MDAO tool as specified in figure 1. For simplicity, the sample problems provided in this user’s manual are 
single-discipline runs. 

 
 

 
 

Figure 1. The object-oriented multidisciplinary design, analysis, and optimization tool. 
 

 
 

Figure 2. The object-oriented optimization tool flowchart. 



3 
 

The O3 tool works in this way: 
 

1. When starting the O3 tool, the design variables are printed and saved in an external ASCII file 
that will be used to communicate with the analysis modules. The ASCII file cannot be used by 
two programs at the same time; the user must copy the ASCII file to a different file by way of 
of a user-defined script command. 

2. The next step is submitting a pre-process job using a script command. A pre-processor code 
reads in the copy of the design variables generated by the O3 tool and creates input data for an 
analysis code. Then, a script command submits an analysis job. The analysis code can be a 
commercial or an in-house code. Output files created by the analysis code are then 
post-processed. Using a post-processing code, required performance indices are computed. 

3. The O3 tool reads in performance indices from each discipline module, and computes the 
objective function and constraint functions. 

4. An extreme value is searched using the objective and constraint function values, and the next 
design variable values will be computed. If the convergence criteria are satisfied, then terminate 
optimization; otherwise go back to step 1. 

 
This computer program has been used for the development of a structural dynamic finite element (FE) 

model tuning tool, unsteady aerodynamic model tuning tools, and the MDAO tool. The structural dynamic 
FE model tuning tool, as shown in figure 3, has been used for FE model validation and updates for the 
following problems: the Quiet SpikeTM noseboom (refs. 3 and 4); the Aerostructures Test Wing 1 (ATW1) 
(ref. 5); the X-37 (The Boeing Company, Chicago, Illinois) drogue chute test fixture (ref. 6); the ATW2 
(refs. 7, 8, and 9); and the X-56A (Lockheed Martin, Bethesda, Maryland) (ref. 10). 

 

 
 

Figure 3. The structural dynamic finite element model tuning tool using the object-oriented optimization 
tool. 
 

A computer code for unsteady aerodynamic model tuning based on the direct method has been 
developed using the O3 tool together with the preprocessor, ZAERO (ZONA Technology Inc., Scottsdale, 
Arizona), and postprocessor codes, as shown in figure 4. Unsteady aerodynamic model tuning requires 
wind-tunnel or flight-flutter test data; this technique has been applied to validate an unsteady aerodynamic 
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model of the ATW2 with respect to its flight-test data (ref. 11). An unsteady aerodynamic model tuning 
tool based on an indirect method also has been developed using the O3 tool, as shown in figure 5; however, 
the new tool is not yet fully tested. 

  
 

Figure 4. Unsteady aerodynamic model tuning based on the direct method using the object-oriented 
optimization tool. 

 

 
 

Figure 5. Unsteady aerodynamic model tuning based on an indirect method using the object-oriented 
optimization tool. 
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The O3 tool has been used to evaluate several real-world optimization problems including flutter 
characteristic improvement for the Ikhana MQ-9 Predator B (General Atomics Aeronautical Systems, Inc., 
San Diego, California) aircraft with a fire pod (ref. 2) and aeroelastic tailoring and flutter mass balancing 
studies to improve the performance of the X-56A aircraft (ref. 12). The same tool has been used for 
multidisciplinary design optimization studies of the N+2 Low-Boom Supersonic Civil Transport (LSCT) 
aircraft and a hybrid wing-body (HWB) aircraft, as shown in figures 6(a) and 6(b), respectively, in order to 
minimize weight and analyze aeroelastic effects. 
 

    
 

Figure 6. Sample multidisciplinary design optimization problems: (a) N+2 Low-Boom Supersonic Civil 
Transport aircraft; and (b) hybrid wing body aircraft. 
 

The O3 tool includes various optimizer programs, such as the gradient-based automated design 
synthesis (ADS) and design optimization tools (DOT) and global optimizers such as the genetic algorithm 
(GA) and the Big-Bang-Big-Crunch (BBBC) algorithm. The ADS and the BBBC are the newest additions 
to the modified O3 tool. Further testing of the ADS and the BBBC algorithm are needed in order to validate 
its performance in the O3 tool before utilizing it with appropriate applications. These algorithms are 
discussed in the “Optimizer Background” section below. 

 
The primary objective of this user’s manual is to document changes made after the first version of the 

O3 tool (ref. 1) was released. The quick reference manual is summarized in the appendix. The second 
objective is to test the ADS and the BBBC. The results obtained from these algorithms will be compared 
in the sample problems below to compare their performance. 

Optimizer Background 
In the O3 tool, the user chooses an optimization methodology and defines objective and constraint 

functions from performance indices. The user also provides starting and side constraints for continuous as 
well as discrete design variables and external file names for performance indices which communicate 
between the O3 tool and each analysis module. The performance indices can be total weight, safety factors, 
frequencies, lift, drag, noise levels, flutter speeds, gain and phase margins, et cetera. 

 
Each discipline module consists of three sub-modules as shown in figure 2, that is, pre-processor, 

analyzer, and post-processor modules. The pre-processor module is used to create and update input files 
based on the design variable values provided by the O3 tool before executing the analyzer module. The 
analyzer module can be a commercial or an in-house code for a specific discipline. Multi-fidelity analyzer 
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modules can be incorporated with the current O3 tool environment. The script command executes the 
analyzer module automatically. Users can use a script file to execute a series of analyses in sequential order. 
The post-processor module is used to post-process the output file computed from the analyzer module, and 
to compute the performance indices automatically.  

 
Four optimizer codes are included in the O3 tool. The codes are divided into two categories: 

gradient-based optimizers and global optimizers. The gradient-based optimizer codes are ADS (ref. 13) and 
DOT (ref. 14); the global optimizer codes are GA (ref. 15) and BBBC (refs. 16, 17, and 18). 

A. Automated Design Synthesis (ADS) 

Automated design synthesis, which is the predecessor of DOT, is a public-domain numerical 
optimization program with several built-in optimizer algorithms that can be used to solve various 
optimization problems. Along with the inputs of the objective and constraint functions, ADS needs three 
pieces of information in order to acquire a solution: the strategy, the optimizer, and the one-dimensional 
search.  

B. Design Optimization Tools (DOT) 

The DOT is a commercial optimization code that can be used to solve a wide variety of nonlinear 
optimization problems. When the optimizer requires the values of the objective and constraint functions 
corresponding to a proposed design, it returns control to the O3 tool. The O3 tool calls the optimizer again 
to obtain the next design point; this iterative process continues until the optimizer returns a parameter to 
indicate that the optimum objective function is reached. 

C. The Genetic Algorithm (GA)  

The GA does not require gradient calculations and can be started with random seeds, eliminating some 
user input and allowing for solutions that may not be readily apparent even to experienced designers. In the 
case of multiple local minima problems, genetic algorithms are able to find the global optimum results, 
while gradient-based algorithms may converge to the local optimum value. 

D. The Big-Bang-Big-Crunch (BBBC) Algorithm 

The BBBC algorithm is a global optimization method that relies on one of the theories of the evolution 
of the universe, namely, the big-bang-big-crunch theory. The algorithm generates random design variables 
in the Big-Bang phase. These design variables are randomly selected over the entire design space except 
for one design variable vector. Current design configuration is also selected as the initial random design 
variables to guarantee the final design improvement. 

 
The first step is the selection of the number of population (N) random design variable vectors Xi  

(i = 2, 3 … N) using a uniform random number generator such that equation (1): 
 

 XLi ≤ Xi ≤ XUi (1) 
 
where, vectors XLi and XUi are the lower and upper bounds of design variable vectors Xi, respectively. The 
current design configuration is saved in the design variable vector X1. 
 

The second step shrinks those design variable vectors to a single representative design point via a center 
of gravity (CG) in the Big-Crunch phase. The CG is the weighted average of the candidate minimum 
solution with respect to the inverse of the objective function Ji (ref. 16) such that equation (2): 
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where XCG is the design variable vector at the CG location. 
 

The third step is the computation of the new candidate design variables for the next Big-Bang step. 
These new candidate design variable vectors are normally distributed around the CG location, XCG, using 
a standard normal random number generator program as shown in equation (3): 

 

  (3) 

where ϑ is the standard normal random number, α is the parameter limiting the size of the design space or 
search domain, and K is the number of current Big-Bang iterations (ref. 16). In order to improve 
computational efficiency, the modified form of equation (3), introduced by Camp (ref. 17), is used in this 
study and is given in equation (4): 
 

 

 
 

 
(4) 

 
where β is the parameter controlling the influence of the global optimum solution XGO. Values of α, β, and 
γ can range from 0 to 1, but in the O3 tool, the default value of α is 1, while the default value for β and γ is 
0.7. The user when using BBBC decides whether to use the default values or to provide user-defined values, 
depending on the problem. 
 

After a number of sequential Big-Bang and Big-Crunch processes, during which the distribution of the 
randomness within the design space during the Big-Bang step becomes smaller and smaller about the CG 
location computed during the Big-Crunch step, the algorithm converges to a solution. Studies have shown 
that this algorithm is capable of quick convergence even in long, narrow, parabolic-shaped flat valleys, or 
in the existence of several local minima.  

 
Applications 

 
Detailed instructions for preparing input data cards, DESVAR, DOPTPRM and INDEX, for executing 

the O3 tool are explained in the appendix. Free sequence of these input data cards are used in the O3 tool. 
The following information is provided through the use of each input command: 
 

1. DESVAR cards for each design variable (appendix, section A.1) 
a. Continuous versus discrete design variable 
b. Starting value 
c. Lower and upper limit of design variable 
d. Name of table for a discrete design variable. 
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2. DOPTPRM card (appendix, section A.2) 
a. Optimization methodology 
b. Control variables for optimizer routines ADS, DOT, GA, and BBBC. 

 
3. INDEX cards for each performance index (appendix, section A.3) 

a. Objective function versus constraint function 
b. Scaling factor in case of objective function 
c. Small allowable value in case of equality as well as inequality constraints 
d. Is gradient supplied by the user? 
e. Name of script file for the performance index (interface variable) 
f. Name of output file where the performance index is saved 
g. Name of script file for the gradient of the performance index (when supplied by user) 
h. Name of output file where the gradient of the performance index is saved (when supplied by 

user). 
 
Six different mathematical optimization test problems (one maximization problem and five 

minimization problems) are presented herein as examples of the application and use of the O3 tool with 
each of the four optimizers ADS, DOT, GA, and BBBC. 

 
Depending on the type of optimizer selected in the O3 tool, the objective function results may have an 

opposite sign to their value. The gradient optimizers ADS and DOT are set to minimization, while the 
global optimizers, GA and BBBC, are set by default to maximization. Thus, if the user desires a 
maximization search when using the gradient optimizers or a minimization search when using the global 
optimizers, the optimizers will multiply the objective function solution by -1. If a gradient optimizer (such 
as ADS or DOT) is selected and maximization is used, the result of the objective function will have an 
opposite sign to that of the exact solution, for example, if ADS or DOT outputs a negative result for the 
objective function, the correct result is actually positive and vice versa. Similarly, if a global optimizer 
(such as GA or BBBC) is selected and minimization is used, the sign of the objective function result for 
this case is the opposite of what is outputted, for example, if GA or BBBC outputs a negative objective 
function value, the value is actually positive and vice versa. For convenience, all of the objective function 
outputs, f(x,y), for the sample mathematical optimization test problems in this user’s manual have already 
incorporated these appropriate sign changes for consistency when providing these results in the 
corresponding tables below. 

A. Sample 1: The Maximization Problem 

For the objective function in equation (5), use maximization to find the global maximum: 

  (5) 

                                                             
where rr is defined in equation (6) as 
 

  (6) 
 
 

The surface plot for this objective function is shown in figure 7. 
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Figure 7. The surface plot for the sample maximization problem. 
 

Using the O3 tool, ADS, DOT, GA, and BBBC are herein each used to determine the two design 
variables, that is, the values of x and y, which provide the global maximum for the above objective function. 

1) Solution using the Automated Design Synthesis (ADS) 
Unlike global optimization searches, such as GA and BBBC, ADS is an optimization methodology that 

uses the gradient-based search technique. Depending on the initial design variable selected, the correct 
output design variables that describe the global minimum or maximum may or may not result. Rather, ADS 
tends to find local minima or maxima and output their corresponding design variables based on that 
particular result. 

 
The input data card for the ADS simulation with a starting value of 0.0 for both design variables is 

shown below: 
 

DOPTPRM IOPT2 3 ICAS 1 NRWK 1000   
+ NRIWK 500 IGRAD 0 DELOBJ 0.00001   
+ IOPT 3 IONED 1     
DESVAR 1 0 0.0 0.0 1.0  1.0 
DESVAR 2 0 0.0 0.0 1.0  1.0 
INDEX 1 1 0 1.0 0    
+ Sample Problem 1: Objective Function    
+ f   
+ f.dat   

 
In order to select the ADS optimization methodology, the IOPT2 parameter, which tells the O3 tool 

which optimizer to use, is set to 3, and because this is a maximization problem, ICAS, the flag parameter 
for a minimization (ICAS = 0) or maximization (ICAS = 1), is set to 1. Detailed information discussing 
IOPT2 and ICAS can be found in section A.2 of the appendix. The default values of the dimensioned work 
array sizes NRWK and NRIWK are 300 and 1000, respectively. For larger, more complex problems, these 
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two numbers should be increased by the user. Gradient calculation control is represented by IGRAD; if the 
user wishes the optimizer to calculate the gradients, IGRAD is set to 0; if IGRAD is set to 1, the user must 
provide the gradients. The maximum relative change between two consecutive iterations desired to indicate 
convergence is represented by DELOBJ. The default value for DELOBJ is 0.001, but for this example, it is 
set at a more strict value of 0.00001. Unique to ADS, IOPT, and IONED are the ADS optimizer and 
one-dimensional search algorithm to be used; these two parameters are further detailed and explained in 
section A.2 of the appendix. 

 
For this simulation, starting values of 0.0, 0.45, 0.48, and 1.0 were used for both design variables, with 

lower and upper bound limits between 0.0 and 1.0. For this example and subsequent examples in this 
section, both design variables (DESVAR) had a scaling factor of 1.0, as shown at the far right of the input 
card. Under the INDEX card, “f” represents the script or batch file, f.bat, which executes the executable file 
of the objective function shown in equation (1), while “f.dat” represents the external output file for that 
particular performance index. The O3 tool outputs an external file, design_variables, which cannot be shared 
with any other executable and as a result, a copy of the external file, design_var, is created in the script file, 
f.bat. This process will apply to any application and will be the case for all sample cases in this user’s 
manual. The appendix contains detailed definitions and descriptions on how these input cards are compiled. 
 

The results for this ADS simulation are shown in table 1. The exact solution to this mathematical 
problem is also shown in the table as the “Exact Global.” Out of the four sample runs using ADS for this 
problem, only one run with starting values of x = 0.48  and y = 0.48 converged close to the exact solution. 
Since ADS is a gradient-based optimizer, it has a tendency to search for local minima or maxima. Only if 
the starting design variable value is extremely close to the exact solution will the optimum solution of the 
optimizer converge to the desired value. This outcome is not ideal, because in most cases the exact solution 
isn’t known ahead of time. A gradient-based optimizer will likely yield an undesirable solution to this kind 
of problem. 

Table 1. Results for the maximization problem. 
 

Maximum Initial x Initial y Optimum x Optimum y Objective function  
f(x,y) 

Number of 
function 

calls 
Exact 
Global - - 0.5 0.5 1.0 - 

ADS 0.00 0.00 0.03245 0.03245 0.05294 55 
ADS 0.45 0.45 0.42212 0.42212 0.92162 39 
ADS 0.48 0.48 0.50004 0.50004 1.00000 35 
ADS 1.00 1.00 0.96753 0.96753 0.05294 55 
DOT 0.00 0.00 0.03246 0.03246 0.05294 23 
DOT 0.45 0.45 0.42206 0.42206 0.92162 23 
DOT 0.48 0.48 0.50000 0.50000 1.00000 23 
DOT 1.00 1.00 0.96747 0.96747 0.05294 21 
GA 0.00 0.00 0.49986 0.49999 0.99998 4,000 
GA 0.45 0.45 0.49894 0.49958 0.99894 2,800 
GA 0.48 0.48 0.50112 0.50109 0.99802 4,000 
GA 1.00 1.00 0.49994 0.50013 0.99998 2,000 

BBBC 0.00 0.00 0.49945 0.50039 0.99963 1,800 
BBBC 0.45 0.45 0.49936 0.50037 0.99956 1,800 
BBBC 0.48 0.48 0.49930 0.50045 0.99944 1,800 
BBBC 1.00 1.00 0.49953 0.50047 0.99964 1,800 



11 
 

2) Solution using the Design Optimization Tools (DOT) 
Like ADS, the DOT optimization methodology uses the gradient-based search technique. Depending 

on the optimization problem and the initial design variable selected, the output design variable may or may 
not be the global minimum or maximum, and an incorrect solution may be provided instead. Unlike ADS, 
however, DOT has a faster convergence, and for most problems will provide a more accurate solution than 
ADS. 

The input data card for the DOT simulation with a starting value of 0 for both design variables is shown 
below: 

 
DOPTPRM IOPT2 1 ICAS 1 MAXDOT 1   
+ NRWK 1000 NRIWK 500 NGMAX 2   
+ IGRAD 0 DELOBJ 0.00001     
DESVAR 1 0 0.0 0.0 1.0  1.0 
DESVAR 2 0 0.0 0.0 1.0  1.0 
INDEX 1 1 0 1.0 0    
+ Sample Problem 1: Objective Function    
+ f   
+ f.dat   

 
The IOPT2 parameter is changed to 1 in order to select the DOT optimization methodology. The 

number of maximum DOT optimizations desired is represented by MAXDOT; for this problem, MAXDOT 
is set to its default value of 1. In addition, NGMAX represents the number of retained constraints for 
gradient calculations; NGMAX is further explained in detail in section A.2 of the appendix. The same 
starting design variable values are used in this run in order to compare performance with ADS, GA, and 
BBBC. 

 
The results for this DOT simulation are shown in table 1. Notice that the DOT gradient optimizer has 

a fast convergence, in slightly more than 20 optimization iterations, as opposed to the convergence rate of 
ADS, GA, or BBBC. Moreover, DOT gives nearly identical results to those produced by ADS. For the four 
different DOT cases with different starting design variable x and y values, however, the resulting optimum 
results were all different. This result demonstrates the weakness of the gradient-based optimizer, as it tends 
to find local maxima or minima as opposed to global maxima or minima. Out of the four DOT sample runs, 
three did not converge to the exact value but rather to a local maximum near the starting design variable 
input. It is still possible to obtain optimum design variable results around the global optimum, but the 
starting design variable value must be close to the solution. In this case, a starting design variable value of 
(0.48, 0.48) for x and y, respectively, did converge to the exact solution. In most situations, the solution 
won’t be known, and using the DOT optimizer will likely yield inaccurate global optimum results. 

3) Solution using the Genetic Algorithm (GA)  
The input data card for the GA simulation with a starting value of 0.0 for both design variables is shown 

below: 
 

DOPTPRM IOPT2 2 ICAS 1 IPOP 200   
+ IGEN 20 EPSOBJ 0.000001     
DESVAR 1 0 0.0 0.0 1.0  1.0 
DESVAR 2 0 0.0 0.0 1.0  1.0 
INDEX 1 1 0 1.0 0    
+ Sample Problem 1: Objective Function    
+ f   
+ f.dat   
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The IOPT2 parameter is changed to 2 in order to select the GA optimization methodology. In addition, 

IPOP and IGEN values dictate how many desired optimizations to be performed. Furthermore, a 
convergence accuracy criterion was specified to be 10-6 for the EPSOBJ value. Note that the EPSOBJ 
parameter is only used for GA and BBBC. The same starting design variable values are used again in this 
run in order to compare its performance with that of the DOT. 

 
Results for this GA simulation are shown in table 1. For this simulation, 4,000 optimization iterations 

(= IPOP × IGEN) were requested in each run. If the solution converges for five consecutive generations 
with identical results, the optimization will terminate early. If the user wishes to change the number of 
consecutive generations with which the solution must converge, the user has the option to change the default 
value of 5 in the NCONV parameter, which is only available for the global optimizers GA and BBBC. 
Notice that for each run, the optimum x and y values converged almost to the exact solution of (0.5, 0.5) 
and the resulting objective function was near 1.0. Even with a starting design variable value at the 
lower- and upper-boundary search limits, GA was able to find the global optimum. This result demonstrates 
one of the benefits of using a global optimizer, as it tries to find the global minimum or maximum, unlike 
the gradient-based optimizers ADS and DOT. If the EPSOBJ value is more restrictive, or lower, while 
increasing the number of optimization iterations, a more accurate result for the design variables can be 
obtained. 

4)  Solution using the Big-Bang-Big-Crunch Algorithm (BBBC) 
The input data card for the BBBC with a starting value of 0.0 for both design variables is shown below: 
 

DOPTPRM IOPT2 6 ICAS 1 NPOP 200   
+ NBANG 20 BETA 0.70 GAMMA 0.70   
+ EPSOBJ 0.000001       
DESVAR 1 0 0.0 0.0 1.0  1.0 
DESVAR 2 0 0.0 0.0 1.0  1.0 
INDEX 1 1 0 1.0 0    
+ Sample Problem 1: Objective Function    
+ f   
+ f.dat   

 
To use the BBBC optimization methodology, the IOPT2 parameter is changed to 6. Similar to the GA 

optimizer, NPOP and NBANG will help dictate the number of optimization iterations  
(= NPOP × NBANG) desired. In this case, 4,000 iterations were requested, but the solution converged in 
only 1,800 optimization iterations for all of the BBBC runs, as shown in table 1. In addition, values of 
BETA (β) and GAMMA (γ) were both set to 0.70, which is their default value, since it is best for the  
O3 tool to determine the global maximum due to the complexity of the surface plot for this optimization 
function, as shown in figure 7. The two scaling parameters, BETA and GAMMA, are defined in section 
A.2 of the appendix. Using the same initial starting values of (0.0, 0.0), (0.45, 0.45), (0.48, 0.48) and  
(1.0, 1.0) for the two design variables, as in the previous cases, the BBBC optimizer resulted in better results 
at the extremities of the design variable search limit than did ADS and DOT. In addition, ADS as well as 
DOT perform better when the starting initial x and y values are closer to the exact solution when compared 
to BBBC. When comparing to GA, BBBC converged in a shorter amount of time due to its convergence to 
the approximate solution in fewer iterations. The GA more closely approximated the exact solution at the 
extreme ends of the search range at (0.00, 0.00) and (1.00, 1.00), while BBBC performed better when the 
initial starting design variables were closer to the exact solution at (0.45, 0.45) and (0.48, 0.48). 
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B. Sample 2: Beale’s Function 

For the objective function in equation (7), find the global minimum. 
 
  (7) 

 
The surface plot for Beale’s function is shown in figure 8. 

 

 
 

Figure 8. The surface plot for Beale’s function. 
 

Input cards for the ADS, DOT, GA, and BBBC simulations are similar to the previous example. The 
goal of this problem is to find the global minimum, that is, ICAS = 0. Upper- and lower-boundary search 
limits for the two design variables were between -5.0 and +5.0. The results of the optimization runs for 
Beale’s function are shown in table 2. Note that the global minimum solution to Beale’s function is such 
that f(3.0,0.5) = 0.0, as shown in the first row of table 2. 

 
Table 2. Results for Beale’s function. 

 

Minimum Initial x Initial y Optimum x Optimum y Objective function  
f(x,y) 

Number of 
function 

calls 
Exact 
Global - - 3.0 0.5 0.0 - 

ADS -2.50 -1.00 -2.27815 1.32433 1.01374 54 
ADS 0.00 0.00 2.82512 0.44602 0.00696 123 
ADS 2.95 0.45 2.94872 0.48701 4.46E-04 52 
ADS 5.00 5.00 3.46857 0.51393 0.26497 47 
DOT -2.50 -1.00 2.90498 0.46978 0.00226 34 
DOT 0.00 0.00 2.96851 0.49172 1.67E-04 60 
DOT 2.95 0.45 2.99598 0.49890 2.83E-06 28 
DOT 5.00 5.00 3.29427 0.56352 0.01022 28 
GA -2.50 -1.00 2.95971 0.47277 0.00646 4,000 
GA 0.00 0.00 3.00594 0.48972 0.00315 3,200 



14 
 

GA 2.95 0.45 3.00279 0.49989 1.61E-05 4,000 
GA 5.00 5.00 3.04503 0.51440 6.01E-04 4,000 

BBBC -2.50 -1.00 3.00199 0.49984 1.03E-05 2,400 
BBBC 0.00 0.00 3.00199 0.49985 1.03E-05 2,400 
BBBC 2.95 0.45 2.98123 0.49517 5.80E-05 2,200 
BBBC 5.00 5.00 3.00321 0.50127 6.87E-06 4,200 

 
For this example, four different pairs of starting values were used in order to compare the performances 

of ADS, DOT, GA, and BBBC. Notice that when using ADS and DOT, the closer the initial design variable 
values were to the solution, the more accurate the answer was, as shown when x = 2.95 and y = 0.45. When 
the initial starting design variable values were further from the exact solution, solutions to ADS and DOT 
tended to deviate away from the correct answer. In this example, DOT was able to closely estimate the 
solution in all four runs as the local minimum in this case was also the global minimum. Between ADS and 
DOT, DOT performed better in all four sample runs in approximating the exact solution to Beale’s function 
and with a faster convergence. Using GA resulted in more accurate solutions, regardless of the initial 
starting design variable value. With 4,000 optimization iterations desired, solution convergence was slower 
than that of the gradient-based optimizers, but as in the previous example, the resulting solutions were much 
better when compared to the exact solution. For the BBBC runs, values of β and γ in the input cards were 
set to 0.05 and 1.0, respectively. In this example, the surface plot of the optimization function, shown in 
figure 8, was known in advance. Unlike the previous maximization function, an idea of the global optimum 
can be inferred from figure 8. Thus, more emphasis was placed on the XGO parameter in equation (4) by 
setting β to a low value. The first two BBBC runs and the fourth run resulted in better design variable and 
objective function values than did ADS, GA, or DOT. The exception is the third run, with initial starting 
design variable values of (2.95, 0.45), in which GA produced a more accurate result. Overall, the global 
optimizers GA and BBBC performed better in estimating the exact solution to this function. 

C. Sample 3: Booth’s Function 

For the objective function in equation (8), find the global minimum. 
 
  (8) 
 
The surface plot for Booth’s function is shown in figure 9. 
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Figure 9. The surface plot for Booth’s function. 
 

Input cards for this minimization problem are similar to those used in the previous example. Upper- and 
lower-boundary search limits for the two design variables were between -10.0 and +10.0. The results of the 
optimization runs for Booth’s function are shown in table 3. Note that the global minimum solution to 
Booth’s function is such that f(1.0, 3.0) = 0.0, as shown in the first row of table 3. 

 
Table 3. Results for Booth’s function. 

 

Minimum Initial x Initial y Optimum x Optimum y Objective function  
f(x,y) 

Number of 
function 

calls 
Exact 
Global - - 1.0 3.0 0.0 - 

ADS -10.0 -10.0 0.99924 3.00164 6.34E-06 62 
ADS 0.00 0.00 1.00423 2.99581 3.55E-05 78 
ADS 0.95 2.95 1.00899 2.99057 1.71E-04 55 
ADS 10.0 10.0 0.99427 2.99625 4.06E-04 66 
DOT -10.0 -10.0 1.00051 2.99958 4.75E-07 32 
DOT 0.00 0.00 1.00019 2.99984 6.37E-08 34 
DOT 0.95 2.95 1.00004 2.99992 1.50E-08 28 
DOT 10.0 10.0 1.00004 2.99996 3.77E-09 26 
GA -10.0 -10.0 0.96960 3.06004 0.00804 3,200 
GA 0.00 0.00 0.99008 2.99584 9.09E-04 3,800 
GA 0.95 2.95 1.00764 2.99144 1.35E-04 3,600 
GA 10.0 10.0 0.98886 3.00894 2.23E-04 3,200 

BBBC -10.0 -10.0 0.98097 3.01507 6.52E-04 3,200 
BBBC 0.00 0.00 0.99136 3.00791 1.39E-04 2,200 
BBBC 0.95 2.95 1.00840 2.99376 1.28E-04 3,600 
BBBC 10.0 10.0 0.99441 3.02014 0.00128 2,400 
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As before, four different pairs of starting design variable values were selected in order to compare the 
performances of the various algorithms within the O3 tool. Due to the relative absence of local minima and 
maxima for Booth’s function, ADS and DOT did not encounter the problem experienced in the 
maximization example earlier as shown in the results in table 1. Rather, both of the gradient-based 
optimizers performed well in estimating the global minimum solution within and at the extreme ends of the 
design variable search limits. Likewise, GA was able to converge nearly to the exact global minimum 
solution, regardless of the initial design variable values within the search limits; however, it required more 
iterations in order to converge to the desired solution and the resulting objective function was not as small 
when compared to that of ADS or DOT. For BBBC, values of β and γ in the input cards were set to  
0.05 and 1.0, respectively. The BBBC results were similar to those of GA, but DOT performed better than 
BBBC for this function. Overall, these four optimizers were able to pinpoint the exact global minimum 
solution of (1.0, 3.0) for Booth’s function. 

D. Sample 4: The Easom Function 

 
For the objective function in equation (9), find the global minimum: 
 

  (9) 
 

The surface plot of the Easom function is shown in figure 10. 
 

 
 

Figure 10. The surface plot for the Easom function. 
 

The lower- and upper-boundary search limits for the two design variables for this function were set 
between -5.0 and +5. The results of the optimization runs based on four different algorithms for the Easom 
function are shown in table 4. Note that the global minimum solution for the Easom function is such that 
f(π, π) = -1.0. For the BBBC runs, β and γ were both set to their default value of 0.7. 
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Table 4. Results for the Easom function. 

 

Minimum Initial x Initial y Optimum x Optimum y Objective function  
f(x,y) 

Number of 
function 

calls 
Exact 
Global - - 3.15149 3.14159 -1.0 - 

ADS -5.00 -5.00 -5.00000 -5.00000 -2.14E-59 2 
ADS 0.00 0.00 3.14035 3.14035 -1.00000 55 
ADS 3.00 3.00 3.14155 3.14155 -1.00000 55 
ADS 5.00 5.00 5.00000 5.00000 -8.05E-05 2 
DOT -5.00 -5.00 -5.00000 -5.00000 -2.14E-59 3 
DOT 0.00 0.00 0.00000 0.00000 -2.68E-09 3 
DOT 3.00 3.00 3.14159 3.14159 -1.00000 19 
DOT 5.00 5.00 3.14121 3.14121 -1.00000 21 
GA -5.00 -5.00 3.14151 3.14002 -1.00000 4,000 
GA 0.00 0.00 3.13764 3.14325 -0.99997 4,000 
GA 3.00 3.00 3.16530 3.13987 -0.99915 4,000 
GA 5.00 5.00 3.15290 3.14323 -0.99980 4,000 

BBBC -5.00 -5.00 3.13116 3.14720 -0.99979 3,000 
BBBC 0.00 0.00 3.13116 3.14720 -0.99979 3,000 
BBBC 3.00 3.00 3.13504 3.14164 -0.99994 4,200 
BBBC 5.00 5.00 3.13116 3.14721 -0.99979 3,000 

 
Similar to the previous sample maximization problem, the Easom function again demonstrated the 

fundamental weakness of ADS and of DOT as gradient optimizers. As shown in Table 4, ADS did not 
perform well at the lower and upper extremities of the design variable search limit, while DOT did not 
perform well for its first two runs when the initial starting design variable values were far away from the 
exact solution. Notice that in these cases the optimization runs quit after a couple of iterations since gradient 
values are already zero at the starting points. The ADS performed well at starting design variable points 
(0.0, 0.0) and (3.0, 3.0), while DOT performed well at (3.0, 3.0) and at (5.0, 5.0) when it came to acquiring 
the approximation to the exact solution to the Easom function. On the other hand, the global optimizers, 
GA and BBBC, performed well in approximating the exact Easom function solution of (π, π), regardless of 
the starting design variable values. For the Easom function, using the global optimizers would guarantee a 
close approximation of the exact solution, as opposed to using the gradient-based optimizers, particularly 
at the lower and upper ends of the design variable search limit. 

E. Sample 5: The Goldstein-Price Function 

For the objective function in equation (10), find the global minimum. 
 

  
 (10)   

The surface plot for the Goldstein-Price function is shown in figure 11. 
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Figure 11. The surface plot for the Goldstein-Price function. 
 

For the Goldstein-Price function, lower- and upper-boundary search limits for the two design variables 
were set between -2.0 and +2.0. The results of the optimization runs using the four different algorithms for 
the Goldstein-Price function are shown in table 5. Note that the global minimum solution for the 
Goldstein-Price function is such that f(0, -1) = 3.0. For the BBBC runs, a value of 0.05 and 0.98 were 
assumed for β and γ, respectively. 

 
Table 5. Results for the Goldstein-Price function. 

 

Minimum Initial x Initial y Optimum x Optimum y Objective function  
f(x,y) 

Number of 
function 

calls 
Exact 
Global - - 0 -1 3.0 - 

ADS -2.00 -2.00 -1.50403 -2.00000 1,977.60 29 
ADS 0.50 -0.50 -0.09667 -1.03285 5.45030 48 
ADS 0.05 -1.05 -0.00324 -1.00032 3.00247 51 
ADS 2.00 2.00 2.00000 0.32335 92.3673 41 
DOT -2.00 -2.00 -0.00454 -1.00377 3.00767 48 
DOT 0.50 -0.50 -2.10E-04 -1.00033 3.00004 39 
DOT 0.05 -1.05 9.43E-06 -0.99999 3.00000 31 
DOT 2.00 2.00 -0.00091 -0.99927 3.00058 46 
GA -2.00 -2.00 -0.00732 -0.99887 3.01577 4,000 
GA 0.50 -0.50 -4.60E-04 -1.00088 3.00030 3,800 
GA 0.05 -1.05 -6.12E-04 -1.00145 3.00081 2,800 
GA 2.00 2.00 -0.00970 -1.02212 3.19572 3,800 

BBBC -2.00 -2.00 -0.00132 -1.00161 3.00110 2,400 
BBBC 0.50 -0.50 -0.00110 -1.00111 3.00057 2,400 
BBBC 0.05 -1.05 2.26E-04 -1.00013 3.00003 3,600 
BBBC 2.00 2.00 4.45E-05 -1.00061 3.00017 2,400 
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Among the four optimizers, ADS performed the worst in approximating the exact solution to the 
Goldstein-Price function. Three of the runs for ADS produced design variable and objective function results 
that were not near the exact solution. Only the third run with initial design variables (0.05, -1.05) did well, 
as its location is nearest to the exact solution. At the lower and upper limits of the search domain, DOT 
performed fairly well and better than GA, but BBBC best approximated the exact solution to the 
Goldstein-Price function at the extremities of the search domain. When the initial starting design variables 
were set closer to the exact solution at (0.50, -0.50) and (0.05, -1.05), however, DOT performed best among 
all four of the optimizers. When comparing BBBC to GA, BBBC tended to give more accurate results in 
fewer iterations, the exception being the second run, in which the GA solution was better. Overall, using 
DOT, GA, or BBBC resulted in solutions that were on target with regard to the exact solution to the 
Goldstein-Price function.  

F. Sample 6: The Three-Hump Camel Function 

For the objective function in equation (11), find the global minimum. 
 

 
 (11) 

 
The generalized surface plot overview for the three-hump camel function is shown in figure 12(a), 

while figure 12(b) shows a zoomed-in detailed view of this function, revealing that the “flat valley” in 
figure 12(a) is not what it appears to be. 
 

 
 

Figure 12(a). Surface plot for the three-hump camel function. 
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Figure 12(b). Surface plot for the three-hump camel function. 
 

Figure 12. Surface plots for the three-hump camel function. 
 

Lower- and upper-boundary search limits for the two design variables were between -5.0 and +5.0. The 
results of the optimization runs for the three-hump camel function are shown in table 6. The global 
minimum solution of the three-hump camel function is such that f(0, 0) = 0.0. It should be noted for this 
example that the BBBC input cards had β set to 0.07, with γ set to 1.0. 

 
Table 6. Results for the three-hump camel function. 

 

Minimum Initial x Initial y Optimum x Optimum y Objective function  
f(x,y) 

Number of 
function 

calls 
Exact 
Global - - 0.0 0.0 0.0 - 

ADS -5.0 -5.0 1.93982 -5.00000 16.83932 46 
ADS -2.0 -2.0 1.74523 -0.86054 0.29882 76 
ADS 2.0 2.0 -1.75223 0.87840 0.29877 69 
ADS 5.0 5.0 -1.94982 5.00000 16.83636 47 
DOT -5.0 -5.0 0.00357 -0.00748 5.47E-05 34 
DOT -2.0 -2.0 1.10E-05 -2.47E-05 5.82E-10 36 
DOT 2.0 2.0 3.04E-06 -8.70E-06 6.77E-11 37 
DOT 5.0 5.0 -0.00375 0.00782 5.99E-05 34 
GA -5.0 -5.0 0.01168 -0.00789 2.43E-04 4,000 
GA -2.0 -2.0 0.00659 -0.00999 1.21E-04 4,000 
GA 2.0 2.0 0.00196 -0.00629 3.49E-05 3,800 
GA 5.0 5.0 0.01168 -0.00789 2.43E-04 4,000 

BBBC -5.0 -5.0 0.00359 -0.00355 2.56E-05 3,600 
BBBC -2.0 -2.0 -5.84E-04 0.00234 4.80E-06 2,800 
BBBC 2.0 2.0 -5.03E-04 0.00242 5.14E-06 2,800 
BBBC 5.0 5.0 0.00149 0.00321 1.96E-05 2,200 
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Among the four optimizers, BBBC best approximated the exact solution when the initial x and y design 

variables were set at the lower and upper search limits of -5.0 and 5.0, respectively, while DOT performed 
best for the middle two runs at initial x and y design variables of -2.0 and 2.0 due to the proximity to the 
exact solution. In addition, GA was able to approximate the exact solution at all ranges of the design variable 
search domain, although with slightly less accuracy and in more iterations than BBBC. The ADS, however, 
performed worst among the four optimizers. For all four sample runs in the search domain, ADS was unable 
to obtain a close approximation of not only the optimum x and y design variable values, but also the target 
objective function value, as shown in table 6. For the three-hump camel function, with the exception of 
ADS, using any one of the three remainder algorithms would yield an idea of what is the correct global 
minimum solution. 

Conclusion 
The object-oriented optimization (O3) tool has been modified and demonstrated in this report. The  

O3 tool now includes the gradient-based Automated Design Synthesis (ADS) optimizer as well as the 
Big-Bang-Big-Crunch (BBBC) global optimizer. The feasibilities of the O3 tool leveraging with other 
executable codes have been demonstrated by using simple mathematical equations that readers can easily 
understand. Six different optimization functions have been presented, each with unique surface plot 
features, and testing of the O3 tool capabilities has been performed in order to locate the exact global 
maximum or minimum. From the results tables for each optimization problem, it can be inferred that the 
gradient-based optimizers, ADS and Design Optimization Tools, are much faster in their calculations due 
to the lower number of function calls, but gradient optimizers tend to converge on local minima or maxima, 
as opposed to converging on the desired global maxima or minima. Global optimizers such as GA and 
BBBC, on the other hand, work very well for locating the exact global maximum or minimum for each of 
the sample problems. Despite requiring more function calls or iterations than the gradient-based optimizers, 
GA and BBBC were able to produce objective function results close to the exact global value, even at the 
extreme ends of the inputted search domain. The results in this report show the flexibility of the O3 tool for 
optimization problems ranging from mathematical functions to aerospace applications. 
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Appendix 
The object-oriented optimization (O3) tool input data cards are presented and explained in this appendix.  

A.1 DESVAR 

DESVAR: Defines a design variable for design optimization. 
 
Format: 
 
1 2 3 4 5 6   7 8 
DESVAR ID IOPT XSTART XL XU TABLE FFFFF 

 
Example: 
 
1 2 3 4 5 6 7 8 
DESVAR 2 0 3.5+3 1.0-5 1.0+4  1.0 

 
1 2   3 4 5 6 7 8 
DESVAR 101 1 2.0 0.0 5.0 ddv-01.dat 1.0 

 
Field: 
 
DESVAR (A10) 
ID (I5) Unique design variable identification number. (Integer>0). 
 
IOPT (I5) = 0: Continuous design variable 
  = 1: Discrete design variable 
 
XSTART (F20.5) Initial starting value. (Real, XL XSTART XU) 
 
XL (F10.5)  Lower bound of design variable. (Real, default = 1.e+20) 
 
XU (F10.5)  Upper bound of design variable. (Real, default = 1.e+20) 
 
TABLE (A20) Name of table for a discrete design variable (remark 1) 
 
FFFFF (F10.5)  Scaling factor 
 
Remark: 
 
1.  The following data should be prepared for each discrete design variable table: 
 
 cdv(L), cdv(U), fix (prepare one line for each domain; 3 free format) 
 cdv(L): lower bound of continuous value 
 cdv(U): upper bound of continuous value 
 fix: fixed value within this domain 
 
 ex 1) if 2.5 ≤ x < 3.5: x = 3 and 3.5 ≤ x < 4.5: x = 4 then 
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cdv(L)=2.5 cdv(U)=3.5 fix=3.0 
cdv(L)=3.5 cdv(U)=4.5 fix=4.0 

 
 ex 2) if 2.0 ≤ x < 3.0: x = 2 and 3.0 ≤ x < 4.0: x = 3 then 
 

cdv(L)=2.0 cdv(U)=3.0 fix=2.0 
cdv(L)=3.0 cdv(U)=4.0 fix=3.0 

A.2 DOPTPRM 

DOPTPRM: Override default values of parameters used in design. 
 
Format: 
 
1 2 3 4 5 6 7 
DOPTPR
M 

PAR1 VAL1 PAR2 VAL2 PAR3 VAL3 

+ PAR4 VAL4 -etc.-    
 
Example: 
 
1 2 3 4 5 6 7 
DOPTPR
M 

IOPT2 2 ICAS 0 MAXDOT 1 

+ NRWK 1000 NRIWK 500 NGMAX 2 
+ IGRAD 0     

 
Field: 
 
DOPTPRM (A10) 

 
 

PARi (A10) 
 

Name of the design optimization parameter. Allowable names are 
given in Tables A.1, A.2, A.3 and A.4. (character). 
 

VALi (I10 or F10.5) Value of the parameter. (real or integer, see Tables A.1, A.2, A.3, 
A.4, A.8, A.9, A.10, and A.11). 
 

Remark: 
 

Only one DOPTPRM entry is allowed in the Bulk Data Section. 
 

Table A.1. PARi names and descriptions for general input. 
 
Name Description, Type, and Default Value 
ICAS Flag for minimization or maximization (default = 0) 
 = 0: minimization 
 = 1: maximization 
  
IOPT2 Optimization methodology in O3 tool (default = 0) 
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 Continuous Design Variables (CDV) 
 Discrete Design Variables (DDV) 
  
 = 0: Sensitivity analysis for ranking design variables 
 = 1: DOT (CDV) 
 = 2: GA (CDV or DDV) 
 = 3: ADS (CDV) 
 = 6: BBBC (CDV or DDV) 
  
RESTART Flag for restarting optimization (default = 0) 
 = 0: don’t use restart option 
 = 1: restart optimization 

 
Table A.2. PARi names and descriptions for sensitivity analysis. 

 
Name Description, Type, and Default Value 
INPICK Sorting of design variables will be based on this performance index number. 
  
DELTA Design variable changes for sensitivity analysis 

 
Table A.3. PARi names and descriptions for automated design synthesis (integers) (ref. 13). 

 
Name Description, Type, and Default Value 
ICNDIR Restart parameter for conjugate direction and variable metric methods. 

Unconstrained minimization is restarted with a steepest descent direction every 
ICNDIR iterations.     (default = NDV+1) 

  
IGRAD Gradient calculation control. Specifies whether the gradients are calculated by ADS 

or the user. (default = 0) 
 = 0: by ADS 
 = 1: by user as indicated by the value of INFO 
  
INFO Information parameter. 
 On first call to ADS, INFO = 0 or -2. 
 = 0: user does not wish to override internal parameters 
 = -2: user wishes to override and change internal parameters 
  
 When control returns ADS input to the calling program, INFO = 0, 1, or 2. 
 = 0: optimization is complete 
 = 1: user must evaluate objective and constraint functions again, and call ADS again. 
 = 2: user must evaluate the gradient of the objective and the NGT constraints 

identified by 
 the vector IC, and call ADS again. 
  
 Note that all gradient information is calculated by finite difference within ADS. 
  
IONED One-dimensional search algorithm to be used. 
 = 1: Find the minimum of an unconstrained function using the Golden Section 

method. 



25 
 

 = 2: Find the minimum of an unconstrained function using the Golden Section 
method followed by polynomial interpolation. 

 = 3: Find the minimum of an unconstrained function by first finding bounds and 
then using polynomial interpolation. 

 = 4: Find the minimum of an unconstrained function by polynomial 
interpolation/extrapolation without first having to find bounds on the solution. 

 = 5: Find the minimum of a constrained function using the Golden Section method. 
 = 6: Find the minimum of a constrained function using the Golden Section method 

followed by polynomial interpolation. 
 = 7: Find the minimum of a constrained function by first finding bounds and then 

using polynomial interpolation. 
 = 8: Find the minimum of a constrained function by polynomial 

interpolation/extrapolation without first having to find bounds on the solution. 
  
IOPT Optimizer to be used. (default = 0) 
 = 0: None. Go directly to one-dimensional search. (This option should only be used 

for program development.) 
 = 1: Fletcher-Reeves algorithm for unconstrained minimization 
 = 2: Davidon-Fletcher-Powell (DFP) variable metric method for unconstrained 

minimization 
 = 3: Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for 

unconstrained minimization 
 = 4: Method of Feasible Directions (MFD) for constrained minimization 
 = 5: Modified Method of Feasible Directions for constrained minimization 
  
KPRINT A four-digit print control. KPRINT = IJKL, where I, J, K, and L have the following 

definitions: 
 

 I – ADS system print control. 
       0: No print. 
       1: Print initial and final information. 
       2: Same as 1 plus parameter values and storage needs. 
       3: Same as 2 plus scaling information calculated by ADS. 
  
 J – Strategy print control. 
       0: No print. 
       1: Print initial and final optimization information. 
       2: Same as 1 plus OBJ and X at each iteration. 
       3: Same as 2 plus G at each iteration. 
       4: Same as 3 plus intermediate information. 
       5: Same as 4 plus gradients of constraints. 
  
 K – Optimizer print control. 
        0: No print. 
        1: Print initial and final optimization information. 
        2: Same as 1 plus OBJ and X at each iteration. 
        3: Same as 2 plus constraints at each iteration. 
        4: Same as 3 plus intermediate optimization and one-dimensional search 

information. 
        5: Same as 4 plus gradients of constraints. 
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 L – One-Dimensional search print control, (debug only). 
        0: No print. 
        1: One-dimensional search debug information. 
        2: More of the same. 
  
 Example: KPRINT = 3120 represents that I = 3, J = 1, K = 2, and L = 0. 
  
ISCAL Scaling parameter. If ISCAL = 0, no scaling is done. If ISCAL = 1, the design 

variables, objective and constraints are scaled automatically. (default = 1) 
  
ISTRAT Optimization strategy to be used. (default = 0) 
 = 0: None. Go directly to optimizer. 
 = 1: Sequential unconstrained minimization using the exterior penalty function 

method 
 = 2: Sequential unconstrained minimization using the linear extended interior 

penalty function method 
 = 3: Sequential unconstrained minimization using the quadratic extended interior 

penalty function method 
 = 4: Sequential unconstrained minimization using the cubic extended interior 

penalty function method 
 = 5: Augmented Lagrange Multiplier Method 
 = 6: Sequential Linear Programming 
 = 7: Method of Centers (Method of Inscribed Hyperspheres) 
 = 8: Sequential Quadratic Programming 
  
ITMAX Maximum number of iterations allowed at the optimizer level. (default = 40) 
  
ITRMOP The number of consecutive iterations for which the absolute or relative convergence 

criteria must be met to indicate convergence at the optimizer level. (default = 3) 
  
ITRMST The number of consecutive iterations for which the absolute or relative convergence 

criteria must be met to indicate convergence at the strategy level. (default = 2) 
  
JONED The one-dimensional search parameter (IONED) to be used in the Sequential 

Quadratic Programming method at the strategy level. (default = IONED) 
  
JSMAX Maximum number of iterations allowed at the strategy level. (default = 20) 
  
NRIWK Dimensioned size of work array IWK. A good estimate is 300 for a small problem. 

Increase the size of NRIWK as the problem grows larger. If NRIWK is too 
small, an error message will be printed and the optimization will be terminated. 
(default = 300) 

  
NRWK Dimensioned size of work array WK. NRWK should be set quite large, starting at 

about 1000 for a small problem. If NRWK has been given too small a value, an 
error message will be printed and the optimization will be terminated.  
(default = 1000) 
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Table A.4. PARi names and descriptions for automated design synthesis (real numbers) (ref. 13). 
 
Name Description, Type, and Default Value 
ALAMDZ Initial estimate of the Lagrange multipliers in the Augmented Lagrange Multiplier 

Method. (default = 0) 
  
BETAMC Additional steepest descent fraction in the method of centers. After moving to the 

center of the hypersphere, a steepest descent move is made equal to BETAMC times 
the radius of the hypersphere. (default = 0) 

  
CT Constraint tolerance in the Method of Feasible Directions or the Modified Method of 

Feasible Directions. A constraint is active if its numerical value is more positive than 
CT.         (default = -0.03) 

  
CTL Same as CT, but for linear constraints. (default = -0.005) 
  
CTLMIN Same as CTMIN, but for linear constraints. (default = 0.001) 
  
CTMIN Minimum constraint tolerance for nonlinear constraints. If a constraint is more 

positive than CTMIN, it is considered to be violated. (default = 0.01) 
  
DABALP Absolute convergence criteria for the one-dimensional search when using the Golden 

Section method. (default = 0.0001) 
  
DABOBJ Maximum absolute change in the objective between two consecutive iterations to 

indicate convergence in optimization. (default = ABS(F0)/10,000, where F0 is the 
objective function value for the initial design.) 

  
DABOBM Absolute convergence criterion for the optimization sub-problem when using 

sequential minimization techniques. (default = ABS(F0)/1,000) 
  
DABSTR Same as DABOBJ, but used at the strategy level. (default = ABS(F0)/10,000) 
  
DELALP Relative convergence criteria for the one-dimensional search when using the Golden 

Section method. (default = 0.005) 
  
DELOBJ Maximum relative change in the objective between two consecutive iterations to 

indicate convergence in optimization. (default = 0.001) 
  
DELOBM Relative convergence criterion for the optimization sub-problem when using 

sequential minimization techniques. (default = 0.01) 
  
DELSTR Same as DELOBJ, but used at the strategy level. (default = 0.001) 
  
DLOBJ1 Relative change in the objective function attempted on the first optimization iteration. 

Used to estimate initial move in the one-dimensional search. Updated as the 
optimization progresses. (default = 0.1) 

  
DLOBJ2 Absolute change in the objective function attempted on the first optimization 

iteration. Used to estimate the initial move in the one-dimensional search. Updated as 
the optimization progresses. (default = 1000) 
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DX1 Maximum relative change in a design variable attempted on the first optimization 

iteration. Used to estimate the initial move in the one-dimensional search. Updated as 
the optimization progresses. (default = 0.01) 

  
DX2 Maximum absolute change in a design variable attempted on the first optimization 

iteration. Used to estimate the initial move in the one-dimensional search. Updated as 
the optimization progresses. (default = 0.2) 

  
EPSPEN Initial transition point for extended penalty function methods. Updated as the 

optimization progresses. (default = -0.05) 
  
EXTRAP Maximum multiplier on the one-dimensional search parameter, ALPHA in the 

one-dimensional search using polynomial interpolation/extrapolation. (default = 5.0) 
  
FDCH Relative finite difference step when calculating gradients. (default = 0.01) 
  
FDCHM Minimum absolute value of the finite difference step when calculating gradients.  

This prevents too small a step when X(I) is near zero. (default = 0.001) 
  
GMULTZ Initial penalty parameter in Sequential Quadratic programming. (default = 10) 
  
PSAIZ Move fraction to avoid constraint violations in Sequential Quadratic Programming.     

(default = 0.95) 
  
RMULT Penalty function multiplier for the exterior penalty function method. Must be greater 

than 1.0. (default = 5) 
  
RMVLMZ Initial relative move limit. Used to set the move limits in sequential linear 

programming, method of inscribed hyperspheres and sequential quadratic 
programming as a fraction of the value of X(I), I = 1, NDV. (default = 0.2) 

  
RP Initial penalty parameter for the exterior penalty function method or the Augmented 

Lagrange Multiplier method. (default = 10) 
  
RPMAX Maximum value of RP for the exterior penalty function method or the Augmented 

Lagrange Multiplier method. (default = 1.0E+10) 
  
RPMULT Multiplier on RP for consecutive iterations. (default = 5.0) 
  
RPPMIN Minimum value of RPPRIM to indicate convergence. (default = 1.0E-10) 
  
RPPRIM Initial penalty parameter for extended interior penalty function methods.  

(default = 100) 
  
SCFO The user-supplied value of the scale factor for the objective function if the default or 

calculated value is to be overridden. (default = 1.0) 
  
SCLMIN Minimum numerical value of any scale factor allowed. (default = 0.001) 
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STOL Tolerance on the components of the calculated search direction to indicate that the 
Kuhn-Tucker conditions are satisfied. (default = 0.001) 

  
THETAZ Nominal value of the push-off factor in the Method of Feasible Directions.  

(default = 0.1) 
  
XMULT Multiplier on the move parameter, ALPHA, in the one-dimensional search to find 

bounds on the solution. (default = 2.618034) 
  
ZRO Numerical estimate of zero on the computer. Usually the default value is adequate. If 

a computer with a short word length is used, ZRO = 1.0E-04 may be preferred.              
(default = 0.00001) 

 
Table A.5. Automated design synthesis program selection options (ref. 13). 

 
STRATEGY 

(ISTRAT) 
OPTIMIZER (IOPT) 

1 2 3 4 5 
0      
1      
2      
3      
4      
5      
6      
7      
8      

ONE-D 
SEARCH 
(IONED) 

     

1      
2      
3      
4      
5      
6      
7      
8      

 
Table A.6. Automated design synthesis real parameters stored in array WK. 

 

Parameter Location Default Modules Where Used 
ISTRAT IOPT IONED 

ALAMDZ 1 0.0 5 - - 
BETAMC 2 0.0 7 - - 
CT1 3 -0.03 - 4,5 - 
CTL 4 -0.005 - 4,5 - 
CTLMIN 5 0.001 - 4,5 - 
CTMIN 6 0.01 - 4,5 - 
DABALP2 7 0.0001 - ALL - 
DABOBJ 8 ABS(F0)/10000 ALL - - 
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DABOBM 9 ABS(F0)/1000 ALL - - 
DABSTR 10 ABS(F0)/10000 ALL - - 
DELALP3 11 0.005 - - 1, 2, 5, 6 
DELOBJ 12 0.001 - ALL - 
DELOBM 13 0.01 ALL - - 
DELSTR 14 0.001 ALL - - 
DLOBJ1 15 0.1 - ALL - 
DLOBJ2 16 1000.0 - ALL - 
DX1 17 0.01 - ALL - 
DX2 18 0.2 - ALL - 
EPSPEN 19 -0.05 2, 3, 4 - - 
EXTRAP 20 5.0 - - ALL 
FDCH 21 0.01 - ALL - 
FDCHM 22 0.001 - ALL - 
GMULTZ 23 10.0 8 - - 
PSAIZ 24 0.95 8 - - 
RMULT 25 5.0 1, 5 - - 
RMVLMZ 26 0.2 6, 7, 8 - - 
RP 27 10.0 1, 5 - - 
RPMAX 28 1.0E+10 1, 5 - - 
RPMULT 29 0.2 1, 5 - - 
RPPMIN 30 1.0E-10 2, 3, 4 - - 
RPPRIM 31 100.0 2, 3, 4 - - 
SCFO 32 1.0 ALL ALL ALL 
SCLMIN 33 0.001 ALL ALL ALL 
STOL 34 0.001 - 4, 5 - 
THETAZ 35 0.1 - 4, 5 - 
XMULT 36 2.618034 - - 1, 2, 3, 5, 6, 7 
ZRO 37 0.00001 ALL ALL ALL 

1If IOPT = 4, CT = -0.1 
2If IONED = 3 or 8, DABALP = 0.001 
3If IONED = 3 or 8, DELALP = 0.05 
 

 
Table A.7. Automated design synthesis integer parameters stored in array IWK. 

 

Parameter Location Default Modules Where Used 
ISTRAT IOPT IONED 

ICNDIR 1 NDV+1 - ALL - 
ISCAL 2 1 ALL ALL ALL 
ITMAX 3 40 - ALL - 
ITRMOP 4 3 - 1, 2, 3 - 
ITRMST 5 2 ALL - - 
JONED 6 IONED 8 - - 
JSMAX 7 20 ALL - - 
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Table A.8. PARi names and descriptions for design optimization tools (integers). 
 
Name Description, Type, and Default Value 
IGMAX =0: only gradients of active and violated constraints are calculated. 

>0: up to NGMAX gradients are calculated, including active, violated, and near 
active constraints.  
(default = 0) 

  
IGRAD Similar to the definition of IGRAD for ADS 
 = -1 or 0: by DOT 
 = 1: by user 
  
IPRINT Control parameter for printing. (default = 3) 
 = 0 no output 
 = 1 internal parameters, initial information and results. 
 = 2 same plus objective function and X-vector at each iteration 
 = 3 same plus G-vector and critical constraint numbers. 
 = 4 same plus gradients. 
 = 5 same plus search direction. 
 = 6 same plus set IPRNT1 = 1 and IPRNT2 = 1 
 = 7 same except set IPRNT2 = 2 
  
IPRNT1 = 1: print scaling factors for the X vector. (default = 0) 
  
IPRNT2 = 1: print miscellaneous search information.  

= 2: turn on print during one-dimensional search process. This is for debugging only.  
(default = 0) 

  
ISCAL Similar to the definition of ISCAL for ADS  

Design variables are rescaled every ISCAL iteration. 
 Set ISCAL = -1 to turn off scaling. (default = number of design variable) 
  
ITMAX Similar to the definition of ITMAX for ADS. (default = 100). 
  
ITRMOP Similar to the definition of ITRMOP for ADS. (Integer; default = 2). 
  
ITRMST Similar to the definition of ITRMST for ADS. (Integer > 0; default = 2). 
  
JTMAX Maximum number of iterations allowed for the Sequential Linear Programming 

Method. This is the number of linearized sub-problems solved.  
(Integer 0; default = 50). 
 

JPRINT Ref. 14 
  
JWRITE Ref. 14 
  
MAXDOT Ref. 14 
  
MAXINT Ref. 14 
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METHOD Ref. 14 
  
NGMAX Ref. 14 
  
NRIWK Similar to the definition of NRIWK for ADS. 
  
NRWK Similar to the definition of NRWK for ADS. 
  

 
Table A.9. PARi names and descriptions for design optimization tool (real numbers). 

 
Name Description, Type, and Default Value 
CT Similar to the definition of CT for ADS. 
  
CTMIN Similar to the definition of CTMIN for ADS. (default = 0.003) 
  
DABOBJ Similar to the definition of DABOBJ for ADS.  

(default = MAX[0.0001*ABS(F0),1.e-20]) 
  
DABSTR Similar to the definition of DABSTR for ADS. (default = 0.003) 
  
DELOBJ Similar to the definition of DELOBJ for ADS. (default = 0.001) 
  
DELSTR Ref. 14 (default = 0.001) 
  
DOBJ1 Similar to the definition of DLOBJ1for ADS. (default = 0.1) 
  
DOBJ2 Similar to the definition of DLOBJ2for ADS. (default = 0.2*ABS(F0)) 
  
DX1 Similar to the definition of DX1 for ADS. (default = 0.01) 
  
DX2 Similar to the definition of DX2 for ADS. (default = 0.2*ABS[x(l)]) 
  
FDCH Similar to the definition of FDCH for ADS. (default = 0.001) 
  
FDCHM Similar to the definition of FDCHM for ADS (default = 0.0001) 
  
RMVLMZ Ref. 14. (default = 0.4) 
  

Table A.10. PARi names and descriptions for the genetic algorithm. 
 
Name Description, Type, and Default Value 
EPSOBJ Epsilon value for convergence criteria (default = 0.0001) 
  
FDIF Relative fitness differential; range from 0 (none) to 1 (maximum).  

(default = 1) 
  
ICON Print optimum results flag; 0 or 1  (default = 1) 
 0 = off 
 1 = on 
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IDIG Number of significant digits (i.e., number of genes) retained in chromosomal 

encoding (default = 6) 
 (Note: This number is limited by the machine floating point precision. Most 32-bit 

floating point representations have only 6 full digits of precision. To achieve greater 
precision, this routine could be converted to double precision, but note that this would 
also require a double precision random number generator, which likely would not 
have more than 9 digits of precision if it used 4-byte integers internally.) 

  
IELITE Elitism flag; 0 or 1 (default = 0) 
 0 = off 
 1 = on (Applies only to reproduction plans 1 and 2; see IREP for more info.) 
  
IGEN Number of generations over which solution is to evolve. (default = 500) 
IMUT Mutation mode; 1/2/3/4/5/6  (default = 2) 

1 = one-point mutation, fixed rate 
2 = one-point, adjustable rate based on fitness 
3 = one-point, adjustable rate based on distance 
4 = one-point+creep, fixed rate 
5 = one-point+creep, adjustable rate based on fitness 
6 = one-point+creep, adjustable rate based on distance 
 

IPOP Number of individuals in a population  (default = 100) 

IREP Reproduction plan; 1/2/3  (default = 1) 
1 = Full generational replacement 
2 = Steady-state-replace-random 
3 = Steady-state-replace-worst 

  
IVRB Printed output; 0/1/2  (default = 0) 

0 = None 
1 = Minimal 
2 = Verbose 

  
NCONV Convergence criteria; number of the same global optimum (default = 5) 
  
PCROSS Crossover probability; must be ≤ 1.0 (default = 0.85) 

If crossover takes place, either one or two splicing points are used, with equal 
probabilities 

  
PMUT Initial mutation rate; should be small (default = 0.005) 

(Note: The mutation rate is the probability that any one gene locus will mutate in any 
one generation.) 

  
PMUTMN Minimum mutation rate; must be ≥ 0.0  (default = 0.0005) 
  
PMUTMX Maximum mutation rate; must be ≤ 1.0 (default = 0.25) 
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R Positive multiplier for inequality constraints. (default = 10) 
 

Table A.11. PARi names and descriptions for the Big-Bang-Big-Crunch algorithm. 
 
Name Description, Type, and Default Value 
ALPHA Parameter limiting the size of the search domain. (default = 1; range: 0 - 1) 
  
BETA Parameter controlling the influence of the best optimum on the location of new 

candidate optimum. (default=0.7; range: 0 - 1) 
  
EPSOBJ Epsilon value for convergence criteria. (default = 0.0001) 
  
GAMMA Parameter controlling the influence of the global best optimum and local best 

optimum based on the best optimum. (default=0.7; range: 0 - 1) 
  
 Xnew(ides, ipop) = beta*xcg(ides) + (1 – beta)*(gamma*xglb(ides) + 
 (1 – gamma)*xold(ides, ifit(1))) + random*alpha*(xdesu(ides) –  

xdesl(ides))/(ibang + 1) 
 

NBANG Number of Big-Bangs-Big-Crunches. (default = 20) 
  
NCONV Convergence criteria number of the same global optimum. (default = 5) 

 
NPOP Number of individuals in a population (default = 50) 

A.3 INDEX 

INDEX: Prepare INDEX cards for each performance index. Object and constraint functions will be 
defined from performance indices. 
 
Format: 
 

1 2 3 4 5 6 
INDEX ID INTOBJ INTCON FACOBJ INTGRA 
+ TASK 
+ SCRIPT 
+ OUTPUT 
+ SCRIPT_GRAD (needed when INTGRA=1) 
+ OUTPUT_GRAD (needed when INTGRA=1) 

 
Example: 

 
INDEX 1 1 0 1.0 0 
+ Total Weight: based on analytical equation 
+ f 
+ f.dat 
INDEX 2 0 1 0.0 0 
+ First inequality constraint: based on analytical equation 
+ g1 
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+ g1.dat 
INDEX 3 0 1 0.0 0 
+ Second inequality constraint: based on analytical equation 
+ g2 
+ g2.dat 

 
 
INDEX 1 1 0 1.0 1 
+ Total Weight: based on analytical equation 
+ f 
+ f.dat 
+ fdot 
+ fdot.dat 
INDEX 2 0 1 0.0 1 
+ First inequality constraint: based on analytical equation 
+ g1 
+ g1.dat 
+ g1dot 
+ g1dot.dat 
INDEX 3 0 1 0.0 1 
+ Second inequality constraint: based on analytical equation 
+ g2 
+ g2.dat 
+ g2dot 
+ g2dot.dat 

 
Field: 
 
ID (I10) Unique integer variable identification number. (integer>0) 
 
INTOBJ (I10) Part of objective function ? Yes then 1, 2, or 3; No  then 0 
  1: linear     obj(i) 
  2: quadratic  obj(i)**2 
  3: absolute   |obj(i)| 
  ex) obj= a1*obj(1) + a2*obj(2)**2 + a3*|obj(3)| + ... 
 
INTCON (I10) Part of constraints? Yes then 1 or 2; No  then 0 
  1: inequality constraint 
  2: equality constraint 
 
FACOBJ (F10.5) Scaling factor for objective function (real, default=1.0) 
  a1, a2, ... (scaling factors) 
  ex) obj= a1*obj(1) + a2*obj(2) + ... 
  or epsilon for constraints 
  g(i) <= facobj(i) for inequality constraints 
  Lagrange multiplier for equality constraints 
 
INTGRA (I10) User supplied gradients ? Yes then 1 ; No  then 0 
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TASK (A70) Task description 
 
SCRIPT (A70) Name of script file for this performance index 
 
OUTPUT (A70) Name for output file where the performance indices are saved. 
  write(unit,*) performance index 
  format( real; double precision; free format) 
 
SCRIPT_GRAD (A70) Name of script file for analytical gradient computations 
 
OUTPUT_GRAD (A70) Name for output file where gradient of performance index with respect to 
  design variables are saved. 
  write(unit,*) ndv 
  format(integer; double precision; free format) 
  write(unit,*) (dx(i),i=1,ndv) 
  format(real; double precision; free format) 
  where, ndv=number of design variable 
  dx(i)=gradients 
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