

NASA/TM—2015–218733

Extension of an Object-Oriented Optimization
Tool: User’s Reference Manual

Chan-gi Pak and Samson S. Truong
Armstrong Flight Research Center, Edwards, California

 Click here: Press F1 key (Windows) or Help key (Mac) for help

March 2015

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and its
public interface, the NASA Technical Reports Server,
thus providing one of the largest collections of
aeronautical and space science STI in the world.
Results are published in both non-NASA channels and
by NASA in the NASA STI Report Series, which
includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compila-
tions of significant scientific and technical data
and information deemed to be of continuing
reference value. NASA counter-part of peer-
reviewed formal professional papers but has less
stringent limitations on manuscript length and
extent of graphic presentations.

 TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

 CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Fax your question to the NASA STI Information
Desk at 757-864-6500

 Phone the NASA STI Information Desk at
757-864-9658

 Write to:
NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

This page is required and contains approved text that cannot be changed.

NASA/TM—2015–218733

Extension of an Object-Oriented Optimization
Tool: User’s Reference Manual

Chan-gi Pak and Samson S. Truong
Armstrong Flight Research Center, Edwards, California

 Insert conference information, if applicable; otherwise delete

 Click here: Press F1 key (Windows) or Help key (Mac) for help

 Enter acknowledgments here, if applicable.

National Aeronautics and
Space Administration

Armstrong Flight Research Center
Edwards, CA 93523-0273

March 2015

 Click here: Press F1 key (Windows) or Help key (Mac) for help

 Click here: Press F1 key (Windows) or Help key (Mac) for help

Available from:

NASA STI Program National Technical Information Service
Mail Stop 148 5285 Port Royal Road
NASA Langley Research Center Springfield, VA 22161
Hampton, VA 23681-2199 703-605-6000

 This report is also available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

1

Abstract
The National Aeronautics and Space Administration Armstrong Flight Research Center has developed

a cost-effective and flexible object-oriented optimization (O3) tool that leverages existing tools and
practices and allows easy integration and adoption of new state-of-the-art software. This object-oriented
framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to
perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in
a loop between the O3 tool and the discipline modules, or both. Six different sample mathematical problems
are presented to demonstrate the performance of the O3 tool. Instructions for preparing input data for the
O3 tool are detailed in this user’s manual.

Nomenclature
ADS automated design synthesis
AIC aerodynamic influence coefficient
ATW Aerostructures Test Wing
BBBC Big-Bang-Big-Crunch
CG center of gravity
D & DT damage and damage tolerance
DOT design optimization tools
FE finite element
GA genetic algorithm
LSCT Low-Boom Supersonic Civil Transport
MAC modal assurance criteria
MDAO multidisciplinary design, analysis, and optimization
NASA National Aeronautics and Space Administration
O3 object-oriented optimization
V-f velocity versus frequency
V-g velocity versus damping
XCG design variable vector at CG location
XGO global optimum solution
Xi design variable vector
XLi lower bound of design variable vector Xi
XUi upper bound of design variable vector Xi
α parameter limiting the size of the design space
β parameter controlling the influence of XGO
ϑ standard normal random number

Introduction
Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics

and Space Administration (NASA) Armstrong Flight Research Center (AFRC) has developed a
FORTRAN-based object-oriented optimization (O3) tool (ref. 1). Over the past several years, an
object-oriented Multi-disciplinary Design, Analysis, and Optimization (MDAO) tool, as shown in figure 1,
has been developed and tested at NASA AFRC using the O3 tool (ref. 2).

The O3 tool provides a computational environment in which the optimizer can effectively receive

objective and constraint function values from various disciplines through interface variables. The basic flow
of the O3 tool is shown in figure 2. An input deck is prepared prior to running the O3 tool. The gray circle

2

on the left in figure 2 represents how the O3 tool processes incoming information in its optimization
procedure. The red and green modules on the right in the figure each represent a different discipline of the
MDAO tool as specified in figure 1. For simplicity, the sample problems provided in this user’s manual are
single-discipline runs.

Figure 1. The object-oriented multidisciplinary design, analysis, and optimization tool.

Figure 2. The object-oriented optimization tool flowchart.

3

The O3 tool works in this way:

1. When starting the O3 tool, the design variables are printed and saved in an external ASCII file
that will be used to communicate with the analysis modules. The ASCII file cannot be used by
two programs at the same time; the user must copy the ASCII file to a different file by way of
of a user-defined script command.

2. The next step is submitting a pre-process job using a script command. A pre-processor code
reads in the copy of the design variables generated by the O3 tool and creates input data for an
analysis code. Then, a script command submits an analysis job. The analysis code can be a
commercial or an in-house code. Output files created by the analysis code are then
post-processed. Using a post-processing code, required performance indices are computed.

3. The O3 tool reads in performance indices from each discipline module, and computes the
objective function and constraint functions.

4. An extreme value is searched using the objective and constraint function values, and the next
design variable values will be computed. If the convergence criteria are satisfied, then terminate
optimization; otherwise go back to step 1.

This computer program has been used for the development of a structural dynamic finite element (FE)

model tuning tool, unsteady aerodynamic model tuning tools, and the MDAO tool. The structural dynamic
FE model tuning tool, as shown in figure 3, has been used for FE model validation and updates for the
following problems: the Quiet SpikeTM noseboom (refs. 3 and 4); the Aerostructures Test Wing 1 (ATW1)
(ref. 5); the X-37 (The Boeing Company, Chicago, Illinois) drogue chute test fixture (ref. 6); the ATW2
(refs. 7, 8, and 9); and the X-56A (Lockheed Martin, Bethesda, Maryland) (ref. 10).

Figure 3. The structural dynamic finite element model tuning tool using the object-oriented optimization
tool.

A computer code for unsteady aerodynamic model tuning based on the direct method has been
developed using the O3 tool together with the preprocessor, ZAERO (ZONA Technology Inc., Scottsdale,
Arizona), and postprocessor codes, as shown in figure 4. Unsteady aerodynamic model tuning requires
wind-tunnel or flight-flutter test data; this technique has been applied to validate an unsteady aerodynamic

4

model of the ATW2 with respect to its flight-test data (ref. 11). An unsteady aerodynamic model tuning
tool based on an indirect method also has been developed using the O3 tool, as shown in figure 5; however,
the new tool is not yet fully tested.

Figure 4. Unsteady aerodynamic model tuning based on the direct method using the object-oriented
optimization tool.

Figure 5. Unsteady aerodynamic model tuning based on an indirect method using the object-oriented
optimization tool.

5

The O3 tool has been used to evaluate several real-world optimization problems including flutter
characteristic improvement for the Ikhana MQ-9 Predator B (General Atomics Aeronautical Systems, Inc.,
San Diego, California) aircraft with a fire pod (ref. 2) and aeroelastic tailoring and flutter mass balancing
studies to improve the performance of the X-56A aircraft (ref. 12). The same tool has been used for
multidisciplinary design optimization studies of the N+2 Low-Boom Supersonic Civil Transport (LSCT)
aircraft and a hybrid wing-body (HWB) aircraft, as shown in figures 6(a) and 6(b), respectively, in order to
minimize weight and analyze aeroelastic effects.

Figure 6. Sample multidisciplinary design optimization problems: (a) N+2 Low-Boom Supersonic Civil
Transport aircraft; and (b) hybrid wing body aircraft.

The O3 tool includes various optimizer programs, such as the gradient-based automated design
synthesis (ADS) and design optimization tools (DOT) and global optimizers such as the genetic algorithm
(GA) and the Big-Bang-Big-Crunch (BBBC) algorithm. The ADS and the BBBC are the newest additions
to the modified O3 tool. Further testing of the ADS and the BBBC algorithm are needed in order to validate
its performance in the O3 tool before utilizing it with appropriate applications. These algorithms are
discussed in the “Optimizer Background” section below.

The primary objective of this user’s manual is to document changes made after the first version of the

O3 tool (ref. 1) was released. The quick reference manual is summarized in the appendix. The second
objective is to test the ADS and the BBBC. The results obtained from these algorithms will be compared
in the sample problems below to compare their performance.

Optimizer Background
In the O3 tool, the user chooses an optimization methodology and defines objective and constraint

functions from performance indices. The user also provides starting and side constraints for continuous as
well as discrete design variables and external file names for performance indices which communicate
between the O3 tool and each analysis module. The performance indices can be total weight, safety factors,
frequencies, lift, drag, noise levels, flutter speeds, gain and phase margins, et cetera.

Each discipline module consists of three sub-modules as shown in figure 2, that is, pre-processor,

analyzer, and post-processor modules. The pre-processor module is used to create and update input files
based on the design variable values provided by the O3 tool before executing the analyzer module. The
analyzer module can be a commercial or an in-house code for a specific discipline. Multi-fidelity analyzer

6

modules can be incorporated with the current O3 tool environment. The script command executes the
analyzer module automatically. Users can use a script file to execute a series of analyses in sequential order.
The post-processor module is used to post-process the output file computed from the analyzer module, and
to compute the performance indices automatically.

Four optimizer codes are included in the O3 tool. The codes are divided into two categories:

gradient-based optimizers and global optimizers. The gradient-based optimizer codes are ADS (ref. 13) and
DOT (ref. 14); the global optimizer codes are GA (ref. 15) and BBBC (refs. 16, 17, and 18).

A. Automated Design Synthesis (ADS)

Automated design synthesis, which is the predecessor of DOT, is a public-domain numerical
optimization program with several built-in optimizer algorithms that can be used to solve various
optimization problems. Along with the inputs of the objective and constraint functions, ADS needs three
pieces of information in order to acquire a solution: the strategy, the optimizer, and the one-dimensional
search.

B. Design Optimization Tools (DOT)

The DOT is a commercial optimization code that can be used to solve a wide variety of nonlinear
optimization problems. When the optimizer requires the values of the objective and constraint functions
corresponding to a proposed design, it returns control to the O3 tool. The O3 tool calls the optimizer again
to obtain the next design point; this iterative process continues until the optimizer returns a parameter to
indicate that the optimum objective function is reached.

C. The Genetic Algorithm (GA)

The GA does not require gradient calculations and can be started with random seeds, eliminating some
user input and allowing for solutions that may not be readily apparent even to experienced designers. In the
case of multiple local minima problems, genetic algorithms are able to find the global optimum results,
while gradient-based algorithms may converge to the local optimum value.

D. The Big-Bang-Big-Crunch (BBBC) Algorithm

The BBBC algorithm is a global optimization method that relies on one of the theories of the evolution
of the universe, namely, the big-bang-big-crunch theory. The algorithm generates random design variables
in the Big-Bang phase. These design variables are randomly selected over the entire design space except
for one design variable vector. Current design configuration is also selected as the initial random design
variables to guarantee the final design improvement.

The first step is the selection of the number of population (N) random design variable vectors Xi

(i = 2, 3 … N) using a uniform random number generator such that equation (1):

 XLi ≤ Xi ≤ XUi (1)

where, vectors XLi and XUi are the lower and upper bounds of design variable vectors Xi, respectively. The
current design configuration is saved in the design variable vector X1.

The second step shrinks those design variable vectors to a single representative design point via a center
of gravity (CG) in the Big-Crunch phase. The CG is the weighted average of the candidate minimum
solution with respect to the inverse of the objective function Ji (ref. 16) such that equation (2):

7

 1

1

1

X

X

N i
i i

CG N

i i

J

J

 (2)

where XCG is the design variable vector at the CG location.

The third step is the computation of the new candidate design variables for the next Big-Bang step.
These new candidate design variable vectors are normally distributed around the CG location, XCG, using
a standard normal random number generator program as shown in equation (3):

 (3)

where ϑ is the standard normal random number, α is the parameter limiting the size of the design space or
search domain, and K is the number of current Big-Bang iterations (ref. 16). In order to improve
computational efficiency, the modified form of equation (3), introduced by Camp (ref. 17), is used in this
study and is given in equation (4):

(4)

where β is the parameter controlling the influence of the global optimum solution XGO. Values of α, β, and
γ can range from 0 to 1, but in the O3 tool, the default value of α is 1, while the default value for β and γ is
0.7. The user when using BBBC decides whether to use the default values or to provide user-defined values,
depending on the problem.

After a number of sequential Big-Bang and Big-Crunch processes, during which the distribution of the
randomness within the design space during the Big-Bang step becomes smaller and smaller about the CG
location computed during the Big-Crunch step, the algorithm converges to a solution. Studies have shown
that this algorithm is capable of quick convergence even in long, narrow, parabolic-shaped flat valleys, or
in the existence of several local minima.

Applications

Detailed instructions for preparing input data cards, DESVAR, DOPTPRM and INDEX, for executing

the O3 tool are explained in the appendix. Free sequence of these input data cards are used in the O3 tool.
The following information is provided through the use of each input command:

1. DESVAR cards for each design variable (appendix, section A.1)
a. Continuous versus discrete design variable
b. Starting value
c. Lower and upper limit of design variable
d. Name of table for a discrete design variable.

8

2. DOPTPRM card (appendix, section A.2)
a. Optimization methodology
b. Control variables for optimizer routines ADS, DOT, GA, and BBBC.

3. INDEX cards for each performance index (appendix, section A.3)

a. Objective function versus constraint function
b. Scaling factor in case of objective function
c. Small allowable value in case of equality as well as inequality constraints
d. Is gradient supplied by the user?
e. Name of script file for the performance index (interface variable)
f. Name of output file where the performance index is saved
g. Name of script file for the gradient of the performance index (when supplied by user)
h. Name of output file where the gradient of the performance index is saved (when supplied by

user).

Six different mathematical optimization test problems (one maximization problem and five

minimization problems) are presented herein as examples of the application and use of the O3 tool with
each of the four optimizers ADS, DOT, GA, and BBBC.

Depending on the type of optimizer selected in the O3 tool, the objective function results may have an

opposite sign to their value. The gradient optimizers ADS and DOT are set to minimization, while the
global optimizers, GA and BBBC, are set by default to maximization. Thus, if the user desires a
maximization search when using the gradient optimizers or a minimization search when using the global
optimizers, the optimizers will multiply the objective function solution by -1. If a gradient optimizer (such
as ADS or DOT) is selected and maximization is used, the result of the objective function will have an
opposite sign to that of the exact solution, for example, if ADS or DOT outputs a negative result for the
objective function, the correct result is actually positive and vice versa. Similarly, if a global optimizer
(such as GA or BBBC) is selected and minimization is used, the sign of the objective function result for
this case is the opposite of what is outputted, for example, if GA or BBBC outputs a negative objective
function value, the value is actually positive and vice versa. For convenience, all of the objective function
outputs, f(x,y), for the sample mathematical optimization test problems in this user’s manual have already
incorporated these appropriate sign changes for consistency when providing these results in the
corresponding tables below.

A. Sample 1: The Maximization Problem

For the objective function in equation (5), use maximization to find the global maximum:

 (5)

where rr is defined in equation (6) as

 (6)

The surface plot for this objective function is shown in figure 7.

9

Figure 7. The surface plot for the sample maximization problem.

Using the O3 tool, ADS, DOT, GA, and BBBC are herein each used to determine the two design
variables, that is, the values of x and y, which provide the global maximum for the above objective function.

1) Solution using the Automated Design Synthesis (ADS)
Unlike global optimization searches, such as GA and BBBC, ADS is an optimization methodology that

uses the gradient-based search technique. Depending on the initial design variable selected, the correct
output design variables that describe the global minimum or maximum may or may not result. Rather, ADS
tends to find local minima or maxima and output their corresponding design variables based on that
particular result.

The input data card for the ADS simulation with a starting value of 0.0 for both design variables is

shown below:

DOPTPRM IOPT2 3 ICAS 1 NRWK 1000
+ NRIWK 500 IGRAD 0 DELOBJ 0.00001
+ IOPT 3 IONED 1
DESVAR 1 0 0.0 0.0 1.0 1.0
DESVAR 2 0 0.0 0.0 1.0 1.0
INDEX 1 1 0 1.0 0
+ Sample Problem 1: Objective Function
+ f
+ f.dat

In order to select the ADS optimization methodology, the IOPT2 parameter, which tells the O3 tool

which optimizer to use, is set to 3, and because this is a maximization problem, ICAS, the flag parameter
for a minimization (ICAS = 0) or maximization (ICAS = 1), is set to 1. Detailed information discussing
IOPT2 and ICAS can be found in section A.2 of the appendix. The default values of the dimensioned work
array sizes NRWK and NRIWK are 300 and 1000, respectively. For larger, more complex problems, these

10

two numbers should be increased by the user. Gradient calculation control is represented by IGRAD; if the
user wishes the optimizer to calculate the gradients, IGRAD is set to 0; if IGRAD is set to 1, the user must
provide the gradients. The maximum relative change between two consecutive iterations desired to indicate
convergence is represented by DELOBJ. The default value for DELOBJ is 0.001, but for this example, it is
set at a more strict value of 0.00001. Unique to ADS, IOPT, and IONED are the ADS optimizer and
one-dimensional search algorithm to be used; these two parameters are further detailed and explained in
section A.2 of the appendix.

For this simulation, starting values of 0.0, 0.45, 0.48, and 1.0 were used for both design variables, with

lower and upper bound limits between 0.0 and 1.0. For this example and subsequent examples in this
section, both design variables (DESVAR) had a scaling factor of 1.0, as shown at the far right of the input
card. Under the INDEX card, “f” represents the script or batch file, f.bat, which executes the executable file
of the objective function shown in equation (1), while “f.dat” represents the external output file for that
particular performance index. The O3 tool outputs an external file, design_variables, which cannot be shared
with any other executable and as a result, a copy of the external file, design_var, is created in the script file,
f.bat. This process will apply to any application and will be the case for all sample cases in this user’s
manual. The appendix contains detailed definitions and descriptions on how these input cards are compiled.

The results for this ADS simulation are shown in table 1. The exact solution to this mathematical
problem is also shown in the table as the “Exact Global.” Out of the four sample runs using ADS for this
problem, only one run with starting values of x = 0.48 and y = 0.48 converged close to the exact solution.
Since ADS is a gradient-based optimizer, it has a tendency to search for local minima or maxima. Only if
the starting design variable value is extremely close to the exact solution will the optimum solution of the
optimizer converge to the desired value. This outcome is not ideal, because in most cases the exact solution
isn’t known ahead of time. A gradient-based optimizer will likely yield an undesirable solution to this kind
of problem.

Table 1. Results for the maximization problem.

Maximum Initial x Initial y Optimum x Optimum y Objective function
f(x,y)

Number of
function

calls
Exact
Global - - 0.5 0.5 1.0 -

ADS 0.00 0.00 0.03245 0.03245 0.05294 55
ADS 0.45 0.45 0.42212 0.42212 0.92162 39
ADS 0.48 0.48 0.50004 0.50004 1.00000 35
ADS 1.00 1.00 0.96753 0.96753 0.05294 55
DOT 0.00 0.00 0.03246 0.03246 0.05294 23
DOT 0.45 0.45 0.42206 0.42206 0.92162 23
DOT 0.48 0.48 0.50000 0.50000 1.00000 23
DOT 1.00 1.00 0.96747 0.96747 0.05294 21
GA 0.00 0.00 0.49986 0.49999 0.99998 4,000
GA 0.45 0.45 0.49894 0.49958 0.99894 2,800
GA 0.48 0.48 0.50112 0.50109 0.99802 4,000
GA 1.00 1.00 0.49994 0.50013 0.99998 2,000

BBBC 0.00 0.00 0.49945 0.50039 0.99963 1,800
BBBC 0.45 0.45 0.49936 0.50037 0.99956 1,800
BBBC 0.48 0.48 0.49930 0.50045 0.99944 1,800
BBBC 1.00 1.00 0.49953 0.50047 0.99964 1,800

11

2) Solution using the Design Optimization Tools (DOT)
Like ADS, the DOT optimization methodology uses the gradient-based search technique. Depending

on the optimization problem and the initial design variable selected, the output design variable may or may
not be the global minimum or maximum, and an incorrect solution may be provided instead. Unlike ADS,
however, DOT has a faster convergence, and for most problems will provide a more accurate solution than
ADS.

The input data card for the DOT simulation with a starting value of 0 for both design variables is shown
below:

DOPTPRM IOPT2 1 ICAS 1 MAXDOT 1
+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 0 DELOBJ 0.00001
DESVAR 1 0 0.0 0.0 1.0 1.0
DESVAR 2 0 0.0 0.0 1.0 1.0
INDEX 1 1 0 1.0 0
+ Sample Problem 1: Objective Function
+ f
+ f.dat

The IOPT2 parameter is changed to 1 in order to select the DOT optimization methodology. The

number of maximum DOT optimizations desired is represented by MAXDOT; for this problem, MAXDOT
is set to its default value of 1. In addition, NGMAX represents the number of retained constraints for
gradient calculations; NGMAX is further explained in detail in section A.2 of the appendix. The same
starting design variable values are used in this run in order to compare performance with ADS, GA, and
BBBC.

The results for this DOT simulation are shown in table 1. Notice that the DOT gradient optimizer has

a fast convergence, in slightly more than 20 optimization iterations, as opposed to the convergence rate of
ADS, GA, or BBBC. Moreover, DOT gives nearly identical results to those produced by ADS. For the four
different DOT cases with different starting design variable x and y values, however, the resulting optimum
results were all different. This result demonstrates the weakness of the gradient-based optimizer, as it tends
to find local maxima or minima as opposed to global maxima or minima. Out of the four DOT sample runs,
three did not converge to the exact value but rather to a local maximum near the starting design variable
input. It is still possible to obtain optimum design variable results around the global optimum, but the
starting design variable value must be close to the solution. In this case, a starting design variable value of
(0.48, 0.48) for x and y, respectively, did converge to the exact solution. In most situations, the solution
won’t be known, and using the DOT optimizer will likely yield inaccurate global optimum results.

3) Solution using the Genetic Algorithm (GA)
The input data card for the GA simulation with a starting value of 0.0 for both design variables is shown

below:

DOPTPRM IOPT2 2 ICAS 1 IPOP 200
+ IGEN 20 EPSOBJ 0.000001
DESVAR 1 0 0.0 0.0 1.0 1.0
DESVAR 2 0 0.0 0.0 1.0 1.0
INDEX 1 1 0 1.0 0
+ Sample Problem 1: Objective Function
+ f
+ f.dat

12

The IOPT2 parameter is changed to 2 in order to select the GA optimization methodology. In addition,

IPOP and IGEN values dictate how many desired optimizations to be performed. Furthermore, a
convergence accuracy criterion was specified to be 10-6 for the EPSOBJ value. Note that the EPSOBJ
parameter is only used for GA and BBBC. The same starting design variable values are used again in this
run in order to compare its performance with that of the DOT.

Results for this GA simulation are shown in table 1. For this simulation, 4,000 optimization iterations

(= IPOP × IGEN) were requested in each run. If the solution converges for five consecutive generations
with identical results, the optimization will terminate early. If the user wishes to change the number of
consecutive generations with which the solution must converge, the user has the option to change the default
value of 5 in the NCONV parameter, which is only available for the global optimizers GA and BBBC.
Notice that for each run, the optimum x and y values converged almost to the exact solution of (0.5, 0.5)
and the resulting objective function was near 1.0. Even with a starting design variable value at the
lower- and upper-boundary search limits, GA was able to find the global optimum. This result demonstrates
one of the benefits of using a global optimizer, as it tries to find the global minimum or maximum, unlike
the gradient-based optimizers ADS and DOT. If the EPSOBJ value is more restrictive, or lower, while
increasing the number of optimization iterations, a more accurate result for the design variables can be
obtained.

4) Solution using the Big-Bang-Big-Crunch Algorithm (BBBC)
The input data card for the BBBC with a starting value of 0.0 for both design variables is shown below:

DOPTPRM IOPT2 6 ICAS 1 NPOP 200
+ NBANG 20 BETA 0.70 GAMMA 0.70
+ EPSOBJ 0.000001
DESVAR 1 0 0.0 0.0 1.0 1.0
DESVAR 2 0 0.0 0.0 1.0 1.0
INDEX 1 1 0 1.0 0
+ Sample Problem 1: Objective Function
+ f
+ f.dat

To use the BBBC optimization methodology, the IOPT2 parameter is changed to 6. Similar to the GA

optimizer, NPOP and NBANG will help dictate the number of optimization iterations
(= NPOP × NBANG) desired. In this case, 4,000 iterations were requested, but the solution converged in
only 1,800 optimization iterations for all of the BBBC runs, as shown in table 1. In addition, values of
BETA (β) and GAMMA (γ) were both set to 0.70, which is their default value, since it is best for the
O3 tool to determine the global maximum due to the complexity of the surface plot for this optimization
function, as shown in figure 7. The two scaling parameters, BETA and GAMMA, are defined in section
A.2 of the appendix. Using the same initial starting values of (0.0, 0.0), (0.45, 0.45), (0.48, 0.48) and
(1.0, 1.0) for the two design variables, as in the previous cases, the BBBC optimizer resulted in better results
at the extremities of the design variable search limit than did ADS and DOT. In addition, ADS as well as
DOT perform better when the starting initial x and y values are closer to the exact solution when compared
to BBBC. When comparing to GA, BBBC converged in a shorter amount of time due to its convergence to
the approximate solution in fewer iterations. The GA more closely approximated the exact solution at the
extreme ends of the search range at (0.00, 0.00) and (1.00, 1.00), while BBBC performed better when the
initial starting design variables were closer to the exact solution at (0.45, 0.45) and (0.48, 0.48).

13

B. Sample 2: Beale’s Function

For the objective function in equation (7), find the global minimum.

 (7)

The surface plot for Beale’s function is shown in figure 8.

Figure 8. The surface plot for Beale’s function.

Input cards for the ADS, DOT, GA, and BBBC simulations are similar to the previous example. The
goal of this problem is to find the global minimum, that is, ICAS = 0. Upper- and lower-boundary search
limits for the two design variables were between -5.0 and +5.0. The results of the optimization runs for
Beale’s function are shown in table 2. Note that the global minimum solution to Beale’s function is such
that f(3.0,0.5) = 0.0, as shown in the first row of table 2.

Table 2. Results for Beale’s function.

Minimum Initial x Initial y Optimum x Optimum y Objective function
f(x,y)

Number of
function

calls
Exact
Global - - 3.0 0.5 0.0 -

ADS -2.50 -1.00 -2.27815 1.32433 1.01374 54
ADS 0.00 0.00 2.82512 0.44602 0.00696 123
ADS 2.95 0.45 2.94872 0.48701 4.46E-04 52
ADS 5.00 5.00 3.46857 0.51393 0.26497 47
DOT -2.50 -1.00 2.90498 0.46978 0.00226 34
DOT 0.00 0.00 2.96851 0.49172 1.67E-04 60
DOT 2.95 0.45 2.99598 0.49890 2.83E-06 28
DOT 5.00 5.00 3.29427 0.56352 0.01022 28
GA -2.50 -1.00 2.95971 0.47277 0.00646 4,000
GA 0.00 0.00 3.00594 0.48972 0.00315 3,200

14

GA 2.95 0.45 3.00279 0.49989 1.61E-05 4,000
GA 5.00 5.00 3.04503 0.51440 6.01E-04 4,000

BBBC -2.50 -1.00 3.00199 0.49984 1.03E-05 2,400
BBBC 0.00 0.00 3.00199 0.49985 1.03E-05 2,400
BBBC 2.95 0.45 2.98123 0.49517 5.80E-05 2,200
BBBC 5.00 5.00 3.00321 0.50127 6.87E-06 4,200

For this example, four different pairs of starting values were used in order to compare the performances

of ADS, DOT, GA, and BBBC. Notice that when using ADS and DOT, the closer the initial design variable
values were to the solution, the more accurate the answer was, as shown when x = 2.95 and y = 0.45. When
the initial starting design variable values were further from the exact solution, solutions to ADS and DOT
tended to deviate away from the correct answer. In this example, DOT was able to closely estimate the
solution in all four runs as the local minimum in this case was also the global minimum. Between ADS and
DOT, DOT performed better in all four sample runs in approximating the exact solution to Beale’s function
and with a faster convergence. Using GA resulted in more accurate solutions, regardless of the initial
starting design variable value. With 4,000 optimization iterations desired, solution convergence was slower
than that of the gradient-based optimizers, but as in the previous example, the resulting solutions were much
better when compared to the exact solution. For the BBBC runs, values of β and γ in the input cards were
set to 0.05 and 1.0, respectively. In this example, the surface plot of the optimization function, shown in
figure 8, was known in advance. Unlike the previous maximization function, an idea of the global optimum
can be inferred from figure 8. Thus, more emphasis was placed on the XGO parameter in equation (4) by
setting β to a low value. The first two BBBC runs and the fourth run resulted in better design variable and
objective function values than did ADS, GA, or DOT. The exception is the third run, with initial starting
design variable values of (2.95, 0.45), in which GA produced a more accurate result. Overall, the global
optimizers GA and BBBC performed better in estimating the exact solution to this function.

C. Sample 3: Booth’s Function

For the objective function in equation (8), find the global minimum.

 (8)

The surface plot for Booth’s function is shown in figure 9.

15

Figure 9. The surface plot for Booth’s function.

Input cards for this minimization problem are similar to those used in the previous example. Upper- and
lower-boundary search limits for the two design variables were between -10.0 and +10.0. The results of the
optimization runs for Booth’s function are shown in table 3. Note that the global minimum solution to
Booth’s function is such that f(1.0, 3.0) = 0.0, as shown in the first row of table 3.

Table 3. Results for Booth’s function.

Minimum Initial x Initial y Optimum x Optimum y Objective function
f(x,y)

Number of
function

calls
Exact
Global - - 1.0 3.0 0.0 -

ADS -10.0 -10.0 0.99924 3.00164 6.34E-06 62
ADS 0.00 0.00 1.00423 2.99581 3.55E-05 78
ADS 0.95 2.95 1.00899 2.99057 1.71E-04 55
ADS 10.0 10.0 0.99427 2.99625 4.06E-04 66
DOT -10.0 -10.0 1.00051 2.99958 4.75E-07 32
DOT 0.00 0.00 1.00019 2.99984 6.37E-08 34
DOT 0.95 2.95 1.00004 2.99992 1.50E-08 28
DOT 10.0 10.0 1.00004 2.99996 3.77E-09 26
GA -10.0 -10.0 0.96960 3.06004 0.00804 3,200
GA 0.00 0.00 0.99008 2.99584 9.09E-04 3,800
GA 0.95 2.95 1.00764 2.99144 1.35E-04 3,600
GA 10.0 10.0 0.98886 3.00894 2.23E-04 3,200

BBBC -10.0 -10.0 0.98097 3.01507 6.52E-04 3,200
BBBC 0.00 0.00 0.99136 3.00791 1.39E-04 2,200
BBBC 0.95 2.95 1.00840 2.99376 1.28E-04 3,600
BBBC 10.0 10.0 0.99441 3.02014 0.00128 2,400

16

As before, four different pairs of starting design variable values were selected in order to compare the
performances of the various algorithms within the O3 tool. Due to the relative absence of local minima and
maxima for Booth’s function, ADS and DOT did not encounter the problem experienced in the
maximization example earlier as shown in the results in table 1. Rather, both of the gradient-based
optimizers performed well in estimating the global minimum solution within and at the extreme ends of the
design variable search limits. Likewise, GA was able to converge nearly to the exact global minimum
solution, regardless of the initial design variable values within the search limits; however, it required more
iterations in order to converge to the desired solution and the resulting objective function was not as small
when compared to that of ADS or DOT. For BBBC, values of β and γ in the input cards were set to
0.05 and 1.0, respectively. The BBBC results were similar to those of GA, but DOT performed better than
BBBC for this function. Overall, these four optimizers were able to pinpoint the exact global minimum
solution of (1.0, 3.0) for Booth’s function.

D. Sample 4: The Easom Function

For the objective function in equation (9), find the global minimum:

 (9)

The surface plot of the Easom function is shown in figure 10.

Figure 10. The surface plot for the Easom function.

The lower- and upper-boundary search limits for the two design variables for this function were set
between -5.0 and +5. The results of the optimization runs based on four different algorithms for the Easom
function are shown in table 4. Note that the global minimum solution for the Easom function is such that
f(π, π) = -1.0. For the BBBC runs, β and γ were both set to their default value of 0.7.

17

Table 4. Results for the Easom function.

Minimum Initial x Initial y Optimum x Optimum y Objective function
f(x,y)

Number of
function

calls
Exact
Global - - 3.15149 3.14159 -1.0 -

ADS -5.00 -5.00 -5.00000 -5.00000 -2.14E-59 2
ADS 0.00 0.00 3.14035 3.14035 -1.00000 55
ADS 3.00 3.00 3.14155 3.14155 -1.00000 55
ADS 5.00 5.00 5.00000 5.00000 -8.05E-05 2
DOT -5.00 -5.00 -5.00000 -5.00000 -2.14E-59 3
DOT 0.00 0.00 0.00000 0.00000 -2.68E-09 3
DOT 3.00 3.00 3.14159 3.14159 -1.00000 19
DOT 5.00 5.00 3.14121 3.14121 -1.00000 21
GA -5.00 -5.00 3.14151 3.14002 -1.00000 4,000
GA 0.00 0.00 3.13764 3.14325 -0.99997 4,000
GA 3.00 3.00 3.16530 3.13987 -0.99915 4,000
GA 5.00 5.00 3.15290 3.14323 -0.99980 4,000

BBBC -5.00 -5.00 3.13116 3.14720 -0.99979 3,000
BBBC 0.00 0.00 3.13116 3.14720 -0.99979 3,000
BBBC 3.00 3.00 3.13504 3.14164 -0.99994 4,200
BBBC 5.00 5.00 3.13116 3.14721 -0.99979 3,000

Similar to the previous sample maximization problem, the Easom function again demonstrated the

fundamental weakness of ADS and of DOT as gradient optimizers. As shown in Table 4, ADS did not
perform well at the lower and upper extremities of the design variable search limit, while DOT did not
perform well for its first two runs when the initial starting design variable values were far away from the
exact solution. Notice that in these cases the optimization runs quit after a couple of iterations since gradient
values are already zero at the starting points. The ADS performed well at starting design variable points
(0.0, 0.0) and (3.0, 3.0), while DOT performed well at (3.0, 3.0) and at (5.0, 5.0) when it came to acquiring
the approximation to the exact solution to the Easom function. On the other hand, the global optimizers,
GA and BBBC, performed well in approximating the exact Easom function solution of (π, π), regardless of
the starting design variable values. For the Easom function, using the global optimizers would guarantee a
close approximation of the exact solution, as opposed to using the gradient-based optimizers, particularly
at the lower and upper ends of the design variable search limit.

E. Sample 5: The Goldstein-Price Function

For the objective function in equation (10), find the global minimum.

 (10)

The surface plot for the Goldstein-Price function is shown in figure 11.

18

Figure 11. The surface plot for the Goldstein-Price function.

For the Goldstein-Price function, lower- and upper-boundary search limits for the two design variables
were set between -2.0 and +2.0. The results of the optimization runs using the four different algorithms for
the Goldstein-Price function are shown in table 5. Note that the global minimum solution for the
Goldstein-Price function is such that f(0, -1) = 3.0. For the BBBC runs, a value of 0.05 and 0.98 were
assumed for β and γ, respectively.

Table 5. Results for the Goldstein-Price function.

Minimum Initial x Initial y Optimum x Optimum y Objective function
f(x,y)

Number of
function

calls
Exact
Global - - 0 -1 3.0 -

ADS -2.00 -2.00 -1.50403 -2.00000 1,977.60 29
ADS 0.50 -0.50 -0.09667 -1.03285 5.45030 48
ADS 0.05 -1.05 -0.00324 -1.00032 3.00247 51
ADS 2.00 2.00 2.00000 0.32335 92.3673 41
DOT -2.00 -2.00 -0.00454 -1.00377 3.00767 48
DOT 0.50 -0.50 -2.10E-04 -1.00033 3.00004 39
DOT 0.05 -1.05 9.43E-06 -0.99999 3.00000 31
DOT 2.00 2.00 -0.00091 -0.99927 3.00058 46
GA -2.00 -2.00 -0.00732 -0.99887 3.01577 4,000
GA 0.50 -0.50 -4.60E-04 -1.00088 3.00030 3,800
GA 0.05 -1.05 -6.12E-04 -1.00145 3.00081 2,800
GA 2.00 2.00 -0.00970 -1.02212 3.19572 3,800

BBBC -2.00 -2.00 -0.00132 -1.00161 3.00110 2,400
BBBC 0.50 -0.50 -0.00110 -1.00111 3.00057 2,400
BBBC 0.05 -1.05 2.26E-04 -1.00013 3.00003 3,600
BBBC 2.00 2.00 4.45E-05 -1.00061 3.00017 2,400

19

Among the four optimizers, ADS performed the worst in approximating the exact solution to the
Goldstein-Price function. Three of the runs for ADS produced design variable and objective function results
that were not near the exact solution. Only the third run with initial design variables (0.05, -1.05) did well,
as its location is nearest to the exact solution. At the lower and upper limits of the search domain, DOT
performed fairly well and better than GA, but BBBC best approximated the exact solution to the
Goldstein-Price function at the extremities of the search domain. When the initial starting design variables
were set closer to the exact solution at (0.50, -0.50) and (0.05, -1.05), however, DOT performed best among
all four of the optimizers. When comparing BBBC to GA, BBBC tended to give more accurate results in
fewer iterations, the exception being the second run, in which the GA solution was better. Overall, using
DOT, GA, or BBBC resulted in solutions that were on target with regard to the exact solution to the
Goldstein-Price function.

F. Sample 6: The Three-Hump Camel Function

For the objective function in equation (11), find the global minimum.

 (11)

The generalized surface plot overview for the three-hump camel function is shown in figure 12(a),

while figure 12(b) shows a zoomed-in detailed view of this function, revealing that the “flat valley” in
figure 12(a) is not what it appears to be.

Figure 12(a). Surface plot for the three-hump camel function.

20

Figure 12(b). Surface plot for the three-hump camel function.

Figure 12. Surface plots for the three-hump camel function.

Lower- and upper-boundary search limits for the two design variables were between -5.0 and +5.0. The
results of the optimization runs for the three-hump camel function are shown in table 6. The global
minimum solution of the three-hump camel function is such that f(0, 0) = 0.0. It should be noted for this
example that the BBBC input cards had β set to 0.07, with γ set to 1.0.

Table 6. Results for the three-hump camel function.

Minimum Initial x Initial y Optimum x Optimum y Objective function
f(x,y)

Number of
function

calls
Exact
Global - - 0.0 0.0 0.0 -

ADS -5.0 -5.0 1.93982 -5.00000 16.83932 46
ADS -2.0 -2.0 1.74523 -0.86054 0.29882 76
ADS 2.0 2.0 -1.75223 0.87840 0.29877 69
ADS 5.0 5.0 -1.94982 5.00000 16.83636 47
DOT -5.0 -5.0 0.00357 -0.00748 5.47E-05 34
DOT -2.0 -2.0 1.10E-05 -2.47E-05 5.82E-10 36
DOT 2.0 2.0 3.04E-06 -8.70E-06 6.77E-11 37
DOT 5.0 5.0 -0.00375 0.00782 5.99E-05 34
GA -5.0 -5.0 0.01168 -0.00789 2.43E-04 4,000
GA -2.0 -2.0 0.00659 -0.00999 1.21E-04 4,000
GA 2.0 2.0 0.00196 -0.00629 3.49E-05 3,800
GA 5.0 5.0 0.01168 -0.00789 2.43E-04 4,000

BBBC -5.0 -5.0 0.00359 -0.00355 2.56E-05 3,600
BBBC -2.0 -2.0 -5.84E-04 0.00234 4.80E-06 2,800
BBBC 2.0 2.0 -5.03E-04 0.00242 5.14E-06 2,800
BBBC 5.0 5.0 0.00149 0.00321 1.96E-05 2,200

21

Among the four optimizers, BBBC best approximated the exact solution when the initial x and y design

variables were set at the lower and upper search limits of -5.0 and 5.0, respectively, while DOT performed
best for the middle two runs at initial x and y design variables of -2.0 and 2.0 due to the proximity to the
exact solution. In addition, GA was able to approximate the exact solution at all ranges of the design variable
search domain, although with slightly less accuracy and in more iterations than BBBC. The ADS, however,
performed worst among the four optimizers. For all four sample runs in the search domain, ADS was unable
to obtain a close approximation of not only the optimum x and y design variable values, but also the target
objective function value, as shown in table 6. For the three-hump camel function, with the exception of
ADS, using any one of the three remainder algorithms would yield an idea of what is the correct global
minimum solution.

Conclusion
The object-oriented optimization (O3) tool has been modified and demonstrated in this report. The

O3 tool now includes the gradient-based Automated Design Synthesis (ADS) optimizer as well as the
Big-Bang-Big-Crunch (BBBC) global optimizer. The feasibilities of the O3 tool leveraging with other
executable codes have been demonstrated by using simple mathematical equations that readers can easily
understand. Six different optimization functions have been presented, each with unique surface plot
features, and testing of the O3 tool capabilities has been performed in order to locate the exact global
maximum or minimum. From the results tables for each optimization problem, it can be inferred that the
gradient-based optimizers, ADS and Design Optimization Tools, are much faster in their calculations due
to the lower number of function calls, but gradient optimizers tend to converge on local minima or maxima,
as opposed to converging on the desired global maxima or minima. Global optimizers such as GA and
BBBC, on the other hand, work very well for locating the exact global maximum or minimum for each of
the sample problems. Despite requiring more function calls or iterations than the gradient-based optimizers,
GA and BBBC were able to produce objective function results close to the exact global value, even at the
extreme ends of the inputted search domain. The results in this report show the flexibility of the O3 tool for
optimization problems ranging from mathematical functions to aerospace applications.

22

Appendix
The object-oriented optimization (O3) tool input data cards are presented and explained in this appendix.

A.1 DESVAR

DESVAR: Defines a design variable for design optimization.

Format:

1 2 3 4 5 6 7 8
DESVAR ID IOPT XSTART XL XU TABLE FFFFF

Example:

1 2 3 4 5 6 7 8
DESVAR 2 0 3.5+3 1.0-5 1.0+4 1.0

1 2 3 4 5 6 7 8
DESVAR 101 1 2.0 0.0 5.0 ddv-01.dat 1.0

Field:

DESVAR (A10)
ID (I5) Unique design variable identification number. (Integer>0).

IOPT (I5) = 0: Continuous design variable
 = 1: Discrete design variable

XSTART (F20.5) Initial starting value. (Real, XL XSTART XU)

XL (F10.5) Lower bound of design variable. (Real, default = 1.e+20)

XU (F10.5) Upper bound of design variable. (Real, default = 1.e+20)

TABLE (A20) Name of table for a discrete design variable (remark 1)

FFFFF (F10.5) Scaling factor

Remark:

1. The following data should be prepared for each discrete design variable table:

 cdv(L), cdv(U), fix (prepare one line for each domain; 3 free format)
 cdv(L): lower bound of continuous value
 cdv(U): upper bound of continuous value
 fix: fixed value within this domain

 ex 1) if 2.5 ≤ x < 3.5: x = 3 and 3.5 ≤ x < 4.5: x = 4 then

23

cdv(L)=2.5 cdv(U)=3.5 fix=3.0
cdv(L)=3.5 cdv(U)=4.5 fix=4.0

 ex 2) if 2.0 ≤ x < 3.0: x = 2 and 3.0 ≤ x < 4.0: x = 3 then

cdv(L)=2.0 cdv(U)=3.0 fix=2.0
cdv(L)=3.0 cdv(U)=4.0 fix=3.0

A.2 DOPTPRM

DOPTPRM: Override default values of parameters used in design.

Format:

1 2 3 4 5 6 7
DOPTPR
M

PAR1 VAL1 PAR2 VAL2 PAR3 VAL3

+ PAR4 VAL4 -etc.-

Example:

1 2 3 4 5 6 7
DOPTPR
M

IOPT2 2 ICAS 0 MAXDOT 1

+ NRWK 1000 NRIWK 500 NGMAX 2
+ IGRAD 0

Field:

DOPTPRM (A10)

PARi (A10)

Name of the design optimization parameter. Allowable names are
given in Tables A.1, A.2, A.3 and A.4. (character).

VALi (I10 or F10.5) Value of the parameter. (real or integer, see Tables A.1, A.2, A.3,
A.4, A.8, A.9, A.10, and A.11).

Remark:

Only one DOPTPRM entry is allowed in the Bulk Data Section.

Table A.1. PARi names and descriptions for general input.

Name Description, Type, and Default Value
ICAS Flag for minimization or maximization (default = 0)
 = 0: minimization
 = 1: maximization

IOPT2 Optimization methodology in O3 tool (default = 0)

24

 Continuous Design Variables (CDV)
 Discrete Design Variables (DDV)

 = 0: Sensitivity analysis for ranking design variables
 = 1: DOT (CDV)
 = 2: GA (CDV or DDV)
 = 3: ADS (CDV)
 = 6: BBBC (CDV or DDV)

RESTART Flag for restarting optimization (default = 0)
 = 0: don’t use restart option
 = 1: restart optimization

Table A.2. PARi names and descriptions for sensitivity analysis.

Name Description, Type, and Default Value
INPICK Sorting of design variables will be based on this performance index number.

DELTA Design variable changes for sensitivity analysis

Table A.3. PARi names and descriptions for automated design synthesis (integers) (ref. 13).

Name Description, Type, and Default Value
ICNDIR Restart parameter for conjugate direction and variable metric methods.

Unconstrained minimization is restarted with a steepest descent direction every
ICNDIR iterations. (default = NDV+1)

IGRAD Gradient calculation control. Specifies whether the gradients are calculated by ADS

or the user. (default = 0)
 = 0: by ADS
 = 1: by user as indicated by the value of INFO

INFO Information parameter.
 On first call to ADS, INFO = 0 or -2.
 = 0: user does not wish to override internal parameters
 = -2: user wishes to override and change internal parameters

 When control returns ADS input to the calling program, INFO = 0, 1, or 2.
 = 0: optimization is complete
 = 1: user must evaluate objective and constraint functions again, and call ADS again.
 = 2: user must evaluate the gradient of the objective and the NGT constraints

identified by
 the vector IC, and call ADS again.

 Note that all gradient information is calculated by finite difference within ADS.

IONED One-dimensional search algorithm to be used.
 = 1: Find the minimum of an unconstrained function using the Golden Section

method.

25

 = 2: Find the minimum of an unconstrained function using the Golden Section
method followed by polynomial interpolation.

 = 3: Find the minimum of an unconstrained function by first finding bounds and
then using polynomial interpolation.

 = 4: Find the minimum of an unconstrained function by polynomial
interpolation/extrapolation without first having to find bounds on the solution.

 = 5: Find the minimum of a constrained function using the Golden Section method.
 = 6: Find the minimum of a constrained function using the Golden Section method

followed by polynomial interpolation.
 = 7: Find the minimum of a constrained function by first finding bounds and then

using polynomial interpolation.
 = 8: Find the minimum of a constrained function by polynomial

interpolation/extrapolation without first having to find bounds on the solution.

IOPT Optimizer to be used. (default = 0)
 = 0: None. Go directly to one-dimensional search. (This option should only be used

for program development.)
 = 1: Fletcher-Reeves algorithm for unconstrained minimization
 = 2: Davidon-Fletcher-Powell (DFP) variable metric method for unconstrained

minimization
 = 3: Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for

unconstrained minimization
 = 4: Method of Feasible Directions (MFD) for constrained minimization
 = 5: Modified Method of Feasible Directions for constrained minimization

KPRINT A four-digit print control. KPRINT = IJKL, where I, J, K, and L have the following

definitions:

 I – ADS system print control.
 0: No print.
 1: Print initial and final information.
 2: Same as 1 plus parameter values and storage needs.
 3: Same as 2 plus scaling information calculated by ADS.

 J – Strategy print control.
 0: No print.
 1: Print initial and final optimization information.
 2: Same as 1 plus OBJ and X at each iteration.
 3: Same as 2 plus G at each iteration.
 4: Same as 3 plus intermediate information.
 5: Same as 4 plus gradients of constraints.

 K – Optimizer print control.
 0: No print.
 1: Print initial and final optimization information.
 2: Same as 1 plus OBJ and X at each iteration.
 3: Same as 2 plus constraints at each iteration.
 4: Same as 3 plus intermediate optimization and one-dimensional search

information.
 5: Same as 4 plus gradients of constraints.

26

 L – One-Dimensional search print control, (debug only).
 0: No print.
 1: One-dimensional search debug information.
 2: More of the same.

 Example: KPRINT = 3120 represents that I = 3, J = 1, K = 2, and L = 0.

ISCAL Scaling parameter. If ISCAL = 0, no scaling is done. If ISCAL = 1, the design

variables, objective and constraints are scaled automatically. (default = 1)

ISTRAT Optimization strategy to be used. (default = 0)
 = 0: None. Go directly to optimizer.
 = 1: Sequential unconstrained minimization using the exterior penalty function

method
 = 2: Sequential unconstrained minimization using the linear extended interior

penalty function method
 = 3: Sequential unconstrained minimization using the quadratic extended interior

penalty function method
 = 4: Sequential unconstrained minimization using the cubic extended interior

penalty function method
 = 5: Augmented Lagrange Multiplier Method
 = 6: Sequential Linear Programming
 = 7: Method of Centers (Method of Inscribed Hyperspheres)
 = 8: Sequential Quadratic Programming

ITMAX Maximum number of iterations allowed at the optimizer level. (default = 40)

ITRMOP The number of consecutive iterations for which the absolute or relative convergence

criteria must be met to indicate convergence at the optimizer level. (default = 3)

ITRMST The number of consecutive iterations for which the absolute or relative convergence

criteria must be met to indicate convergence at the strategy level. (default = 2)

JONED The one-dimensional search parameter (IONED) to be used in the Sequential

Quadratic Programming method at the strategy level. (default = IONED)

JSMAX Maximum number of iterations allowed at the strategy level. (default = 20)

NRIWK Dimensioned size of work array IWK. A good estimate is 300 for a small problem.

Increase the size of NRIWK as the problem grows larger. If NRIWK is too
small, an error message will be printed and the optimization will be terminated.
(default = 300)

NRWK Dimensioned size of work array WK. NRWK should be set quite large, starting at

about 1000 for a small problem. If NRWK has been given too small a value, an
error message will be printed and the optimization will be terminated.
(default = 1000)

27

Table A.4. PARi names and descriptions for automated design synthesis (real numbers) (ref. 13).

Name Description, Type, and Default Value
ALAMDZ Initial estimate of the Lagrange multipliers in the Augmented Lagrange Multiplier

Method. (default = 0)

BETAMC Additional steepest descent fraction in the method of centers. After moving to the

center of the hypersphere, a steepest descent move is made equal to BETAMC times
the radius of the hypersphere. (default = 0)

CT Constraint tolerance in the Method of Feasible Directions or the Modified Method of

Feasible Directions. A constraint is active if its numerical value is more positive than
CT. (default = -0.03)

CTL Same as CT, but for linear constraints. (default = -0.005)

CTLMIN Same as CTMIN, but for linear constraints. (default = 0.001)

CTMIN Minimum constraint tolerance for nonlinear constraints. If a constraint is more

positive than CTMIN, it is considered to be violated. (default = 0.01)

DABALP Absolute convergence criteria for the one-dimensional search when using the Golden

Section method. (default = 0.0001)

DABOBJ Maximum absolute change in the objective between two consecutive iterations to

indicate convergence in optimization. (default = ABS(F0)/10,000, where F0 is the
objective function value for the initial design.)

DABOBM Absolute convergence criterion for the optimization sub-problem when using

sequential minimization techniques. (default = ABS(F0)/1,000)

DABSTR Same as DABOBJ, but used at the strategy level. (default = ABS(F0)/10,000)

DELALP Relative convergence criteria for the one-dimensional search when using the Golden

Section method. (default = 0.005)

DELOBJ Maximum relative change in the objective between two consecutive iterations to

indicate convergence in optimization. (default = 0.001)

DELOBM Relative convergence criterion for the optimization sub-problem when using

sequential minimization techniques. (default = 0.01)

DELSTR Same as DELOBJ, but used at the strategy level. (default = 0.001)

DLOBJ1 Relative change in the objective function attempted on the first optimization iteration.

Used to estimate initial move in the one-dimensional search. Updated as the
optimization progresses. (default = 0.1)

DLOBJ2 Absolute change in the objective function attempted on the first optimization

iteration. Used to estimate the initial move in the one-dimensional search. Updated as
the optimization progresses. (default = 1000)

28

DX1 Maximum relative change in a design variable attempted on the first optimization

iteration. Used to estimate the initial move in the one-dimensional search. Updated as
the optimization progresses. (default = 0.01)

DX2 Maximum absolute change in a design variable attempted on the first optimization

iteration. Used to estimate the initial move in the one-dimensional search. Updated as
the optimization progresses. (default = 0.2)

EPSPEN Initial transition point for extended penalty function methods. Updated as the

optimization progresses. (default = -0.05)

EXTRAP Maximum multiplier on the one-dimensional search parameter, ALPHA in the

one-dimensional search using polynomial interpolation/extrapolation. (default = 5.0)

FDCH Relative finite difference step when calculating gradients. (default = 0.01)

FDCHM Minimum absolute value of the finite difference step when calculating gradients.

This prevents too small a step when X(I) is near zero. (default = 0.001)

GMULTZ Initial penalty parameter in Sequential Quadratic programming. (default = 10)

PSAIZ Move fraction to avoid constraint violations in Sequential Quadratic Programming.

(default = 0.95)

RMULT Penalty function multiplier for the exterior penalty function method. Must be greater

than 1.0. (default = 5)

RMVLMZ Initial relative move limit. Used to set the move limits in sequential linear

programming, method of inscribed hyperspheres and sequential quadratic
programming as a fraction of the value of X(I), I = 1, NDV. (default = 0.2)

RP Initial penalty parameter for the exterior penalty function method or the Augmented

Lagrange Multiplier method. (default = 10)

RPMAX Maximum value of RP for the exterior penalty function method or the Augmented

Lagrange Multiplier method. (default = 1.0E+10)

RPMULT Multiplier on RP for consecutive iterations. (default = 5.0)

RPPMIN Minimum value of RPPRIM to indicate convergence. (default = 1.0E-10)

RPPRIM Initial penalty parameter for extended interior penalty function methods.

(default = 100)

SCFO The user-supplied value of the scale factor for the objective function if the default or

calculated value is to be overridden. (default = 1.0)

SCLMIN Minimum numerical value of any scale factor allowed. (default = 0.001)

29

STOL Tolerance on the components of the calculated search direction to indicate that the
Kuhn-Tucker conditions are satisfied. (default = 0.001)

THETAZ Nominal value of the push-off factor in the Method of Feasible Directions.

(default = 0.1)

XMULT Multiplier on the move parameter, ALPHA, in the one-dimensional search to find

bounds on the solution. (default = 2.618034)

ZRO Numerical estimate of zero on the computer. Usually the default value is adequate. If

a computer with a short word length is used, ZRO = 1.0E-04 may be preferred.
(default = 0.00001)

Table A.5. Automated design synthesis program selection options (ref. 13).

STRATEGY

(ISTRAT)
OPTIMIZER (IOPT)

1 2 3 4 5
0
1
2
3
4
5
6
7
8

ONE-D
SEARCH
(IONED)

1
2
3
4
5
6
7
8

Table A.6. Automated design synthesis real parameters stored in array WK.

Parameter Location Default Modules Where Used
ISTRAT IOPT IONED

ALAMDZ 1 0.0 5 - -
BETAMC 2 0.0 7 - -
CT1 3 -0.03 - 4,5 -
CTL 4 -0.005 - 4,5 -
CTLMIN 5 0.001 - 4,5 -
CTMIN 6 0.01 - 4,5 -
DABALP2 7 0.0001 - ALL -
DABOBJ 8 ABS(F0)/10000 ALL - -

30

DABOBM 9 ABS(F0)/1000 ALL - -
DABSTR 10 ABS(F0)/10000 ALL - -
DELALP3 11 0.005 - - 1, 2, 5, 6
DELOBJ 12 0.001 - ALL -
DELOBM 13 0.01 ALL - -
DELSTR 14 0.001 ALL - -
DLOBJ1 15 0.1 - ALL -
DLOBJ2 16 1000.0 - ALL -
DX1 17 0.01 - ALL -
DX2 18 0.2 - ALL -
EPSPEN 19 -0.05 2, 3, 4 - -
EXTRAP 20 5.0 - - ALL
FDCH 21 0.01 - ALL -
FDCHM 22 0.001 - ALL -
GMULTZ 23 10.0 8 - -
PSAIZ 24 0.95 8 - -
RMULT 25 5.0 1, 5 - -
RMVLMZ 26 0.2 6, 7, 8 - -
RP 27 10.0 1, 5 - -
RPMAX 28 1.0E+10 1, 5 - -
RPMULT 29 0.2 1, 5 - -
RPPMIN 30 1.0E-10 2, 3, 4 - -
RPPRIM 31 100.0 2, 3, 4 - -
SCFO 32 1.0 ALL ALL ALL
SCLMIN 33 0.001 ALL ALL ALL
STOL 34 0.001 - 4, 5 -
THETAZ 35 0.1 - 4, 5 -
XMULT 36 2.618034 - - 1, 2, 3, 5, 6, 7
ZRO 37 0.00001 ALL ALL ALL

1If IOPT = 4, CT = -0.1
2If IONED = 3 or 8, DABALP = 0.001
3If IONED = 3 or 8, DELALP = 0.05

Table A.7. Automated design synthesis integer parameters stored in array IWK.

Parameter Location Default Modules Where Used
ISTRAT IOPT IONED

ICNDIR 1 NDV+1 - ALL -
ISCAL 2 1 ALL ALL ALL
ITMAX 3 40 - ALL -
ITRMOP 4 3 - 1, 2, 3 -
ITRMST 5 2 ALL - -
JONED 6 IONED 8 - -
JSMAX 7 20 ALL - -

31

Table A.8. PARi names and descriptions for design optimization tools (integers).

Name Description, Type, and Default Value
IGMAX =0: only gradients of active and violated constraints are calculated.

>0: up to NGMAX gradients are calculated, including active, violated, and near
active constraints.
(default = 0)

IGRAD Similar to the definition of IGRAD for ADS
 = -1 or 0: by DOT
 = 1: by user

IPRINT Control parameter for printing. (default = 3)
 = 0 no output
 = 1 internal parameters, initial information and results.
 = 2 same plus objective function and X-vector at each iteration
 = 3 same plus G-vector and critical constraint numbers.
 = 4 same plus gradients.
 = 5 same plus search direction.
 = 6 same plus set IPRNT1 = 1 and IPRNT2 = 1
 = 7 same except set IPRNT2 = 2

IPRNT1 = 1: print scaling factors for the X vector. (default = 0)

IPRNT2 = 1: print miscellaneous search information.

= 2: turn on print during one-dimensional search process. This is for debugging only.
(default = 0)

ISCAL Similar to the definition of ISCAL for ADS

Design variables are rescaled every ISCAL iteration.
 Set ISCAL = -1 to turn off scaling. (default = number of design variable)

ITMAX Similar to the definition of ITMAX for ADS. (default = 100).

ITRMOP Similar to the definition of ITRMOP for ADS. (Integer; default = 2).

ITRMST Similar to the definition of ITRMST for ADS. (Integer > 0; default = 2).

JTMAX Maximum number of iterations allowed for the Sequential Linear Programming

Method. This is the number of linearized sub-problems solved.
(Integer 0; default = 50).

JPRINT Ref. 14

JWRITE Ref. 14

MAXDOT Ref. 14

MAXINT Ref. 14

32

METHOD Ref. 14

NGMAX Ref. 14

NRIWK Similar to the definition of NRIWK for ADS.

NRWK Similar to the definition of NRWK for ADS.

Table A.9. PARi names and descriptions for design optimization tool (real numbers).

Name Description, Type, and Default Value
CT Similar to the definition of CT for ADS.

CTMIN Similar to the definition of CTMIN for ADS. (default = 0.003)

DABOBJ Similar to the definition of DABOBJ for ADS.

(default = MAX[0.0001*ABS(F0),1.e-20])

DABSTR Similar to the definition of DABSTR for ADS. (default = 0.003)

DELOBJ Similar to the definition of DELOBJ for ADS. (default = 0.001)

DELSTR Ref. 14 (default = 0.001)

DOBJ1 Similar to the definition of DLOBJ1for ADS. (default = 0.1)

DOBJ2 Similar to the definition of DLOBJ2for ADS. (default = 0.2*ABS(F0))

DX1 Similar to the definition of DX1 for ADS. (default = 0.01)

DX2 Similar to the definition of DX2 for ADS. (default = 0.2*ABS[x(l)])

FDCH Similar to the definition of FDCH for ADS. (default = 0.001)

FDCHM Similar to the definition of FDCHM for ADS (default = 0.0001)

RMVLMZ Ref. 14. (default = 0.4)

Table A.10. PARi names and descriptions for the genetic algorithm.

Name Description, Type, and Default Value
EPSOBJ Epsilon value for convergence criteria (default = 0.0001)

FDIF Relative fitness differential; range from 0 (none) to 1 (maximum).

(default = 1)

ICON Print optimum results flag; 0 or 1 (default = 1)
 0 = off
 1 = on

33

IDIG Number of significant digits (i.e., number of genes) retained in chromosomal

encoding (default = 6)
 (Note: This number is limited by the machine floating point precision. Most 32-bit

floating point representations have only 6 full digits of precision. To achieve greater
precision, this routine could be converted to double precision, but note that this would
also require a double precision random number generator, which likely would not
have more than 9 digits of precision if it used 4-byte integers internally.)

IELITE Elitism flag; 0 or 1 (default = 0)
 0 = off
 1 = on (Applies only to reproduction plans 1 and 2; see IREP for more info.)

IGEN Number of generations over which solution is to evolve. (default = 500)
IMUT Mutation mode; 1/2/3/4/5/6 (default = 2)

1 = one-point mutation, fixed rate
2 = one-point, adjustable rate based on fitness
3 = one-point, adjustable rate based on distance
4 = one-point+creep, fixed rate
5 = one-point+creep, adjustable rate based on fitness
6 = one-point+creep, adjustable rate based on distance

IPOP Number of individuals in a population (default = 100)

IREP Reproduction plan; 1/2/3 (default = 1)
1 = Full generational replacement
2 = Steady-state-replace-random
3 = Steady-state-replace-worst

IVRB Printed output; 0/1/2 (default = 0)

0 = None
1 = Minimal
2 = Verbose

NCONV Convergence criteria; number of the same global optimum (default = 5)

PCROSS Crossover probability; must be ≤ 1.0 (default = 0.85)

If crossover takes place, either one or two splicing points are used, with equal
probabilities

PMUT Initial mutation rate; should be small (default = 0.005)

(Note: The mutation rate is the probability that any one gene locus will mutate in any
one generation.)

PMUTMN Minimum mutation rate; must be ≥ 0.0 (default = 0.0005)

PMUTMX Maximum mutation rate; must be ≤ 1.0 (default = 0.25)

34

R Positive multiplier for inequality constraints. (default = 10)

Table A.11. PARi names and descriptions for the Big-Bang-Big-Crunch algorithm.

Name Description, Type, and Default Value
ALPHA Parameter limiting the size of the search domain. (default = 1; range: 0 - 1)

BETA Parameter controlling the influence of the best optimum on the location of new

candidate optimum. (default=0.7; range: 0 - 1)

EPSOBJ Epsilon value for convergence criteria. (default = 0.0001)

GAMMA Parameter controlling the influence of the global best optimum and local best

optimum based on the best optimum. (default=0.7; range: 0 - 1)

 Xnew(ides, ipop) = beta*xcg(ides) + (1 – beta)*(gamma*xglb(ides) +
 (1 – gamma)*xold(ides, ifit(1))) + random*alpha*(xdesu(ides) –

xdesl(ides))/(ibang + 1)

NBANG Number of Big-Bangs-Big-Crunches. (default = 20)

NCONV Convergence criteria number of the same global optimum. (default = 5)

NPOP Number of individuals in a population (default = 50)

A.3 INDEX

INDEX: Prepare INDEX cards for each performance index. Object and constraint functions will be
defined from performance indices.

Format:

1 2 3 4 5 6
INDEX ID INTOBJ INTCON FACOBJ INTGRA
+ TASK
+ SCRIPT
+ OUTPUT
+ SCRIPT_GRAD (needed when INTGRA=1)
+ OUTPUT_GRAD (needed when INTGRA=1)

Example:

INDEX 1 1 0 1.0 0
+ Total Weight: based on analytical equation
+ f
+ f.dat
INDEX 2 0 1 0.0 0
+ First inequality constraint: based on analytical equation
+ g1

35

+ g1.dat
INDEX 3 0 1 0.0 0
+ Second inequality constraint: based on analytical equation
+ g2
+ g2.dat

INDEX 1 1 0 1.0 1
+ Total Weight: based on analytical equation
+ f
+ f.dat
+ fdot
+ fdot.dat
INDEX 2 0 1 0.0 1
+ First inequality constraint: based on analytical equation
+ g1
+ g1.dat
+ g1dot
+ g1dot.dat
INDEX 3 0 1 0.0 1
+ Second inequality constraint: based on analytical equation
+ g2
+ g2.dat
+ g2dot
+ g2dot.dat

Field:

ID (I10) Unique integer variable identification number. (integer>0)

INTOBJ (I10) Part of objective function ? Yes then 1, 2, or 3; No then 0
 1: linear obj(i)
 2: quadratic obj(i)**2
 3: absolute |obj(i)|
 ex) obj= a1*obj(1) + a2*obj(2)**2 + a3*|obj(3)| + ...

INTCON (I10) Part of constraints? Yes then 1 or 2; No then 0
 1: inequality constraint
 2: equality constraint

FACOBJ (F10.5) Scaling factor for objective function (real, default=1.0)
 a1, a2, ... (scaling factors)
 ex) obj= a1*obj(1) + a2*obj(2) + ...
 or epsilon for constraints
 g(i) <= facobj(i) for inequality constraints
 Lagrange multiplier for equality constraints

INTGRA (I10) User supplied gradients ? Yes then 1 ; No then 0

36

TASK (A70) Task description

SCRIPT (A70) Name of script file for this performance index

OUTPUT (A70) Name for output file where the performance indices are saved.
 write(unit,*) performance index
 format(real; double precision; free format)

SCRIPT_GRAD (A70) Name of script file for analytical gradient computations

OUTPUT_GRAD (A70) Name for output file where gradient of performance index with respect to
 design variables are saved.
 write(unit,*) ndv
 format(integer; double precision; free format)
 write(unit,*) (dx(i),i=1,ndv)
 format(real; double precision; free format)
 where, ndv=number of design variable
 dx(i)=gradients

37

References
1. Pak, Chan-gi, Preliminary Development of an Object-Oriented Optimization Tool,

NASA/TM-2011-216419, 2011.

2. Pak, Chan-gi, and Wesley Li, “Multidisciplinary Design, Analysis, and Optimization Tool
Development Using a Genetic Algorithm,” ICAS 2008-9.5.1, September 2008.

3. Spivey, Natalie D., Claudia Y. Herrera, Roger Truax, Chan-gi Pak, and Donald Freund, “Quiet
SpikeTM Build-up Ground Vibration Testing Approach,” AIAA-2007-1775, April 2007.

4. Herrera, Claudia Y., and Chan-gi Pak, “Build-up Approach to Updating the Mock Quiet SpikeTM
Beam Model,” AIAA-2007-1776, April 2007.

5. Lung, Shun-fat, and Chan-gi Pak, Structural Model Tuning Capability in an Object-Oriented

Multidisciplinary Design, Analysis, and Optimization Tool, NASA/TM-2008-214640, 2008.

6. Pak, Chan-gi, “Finite Element Model Tuning Using Measured Mass Properties and Ground

Vibration Test Data,” J. Vib. Acoust., 131(1), doi:10.1115/1.2981092, January 2009.

7. Lung, Shun-fat, and Chan-gi Pak, Updating the Finite Element Model of the Aerostructures Test

Wing with Ground Vibration Test Data, NASA/TM-2009-214646, 2009.

8. Pak, Chan-gi, and Shun-fat Lung, “Reduced Uncertainties in the Flutter Analysis of the

Aerostructures Test Wing,” ICAS 2010-9.6.1, September 2010.

9. Pak, Chan-gi, and Shun-fat Lung, “Flutter Analysis of Aerostructures Test Wing with Test

Validated Structural Dynamic Model,” Journal of Aircraft, Vol. 48, No. 4, 2011, pp. 1263-1272.

10. Pak, Chan-gi, and Samson Truong, “Creating a Test-Validated Structural Dynamic Finite-Element

Model of the X-56A Aircraft Structure,” Journal of Aircraft (AIAA Early Edition),
doi:10.2514/1.C033043, 2014.

11. Pak, Chan-gi, “Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction,” Journal of

Aircraft, Vol. 48, No. 6, 2011, pp. 2178-2184.

12. Li, Wesley, and Chan-gi Pak, “Aeroelastic Optimization Study Based on X-56A Model,” (slide

presentation), presented at the AIAA Atmospheric Flight Mechanics Conference, June 2014.

13. Vanderplaats, Garret N., “ADS - A FORTRAN Program for Automated Design Synthesis,” NASA

Contractor Report 177985, 1985.

14. DOT Design Optimization Tools User’s Manual Version 5.0, Vanderplaats Research &

Development, Inc., Colorado Springs, Colorado, 1999.

15. Charbonneau, Paul, and Barry Knapp, A User’s Guide to PIKAIA 1.0., NCAR/TN-418+IA, 1995.

16. Erol, Osman K., and Ibrahim Eksin, “A New Optimization Method: Big Bang-Big Crunch,”

Advances in Engineering Software, Vol. 37, No. 2, 2006, pp. 106–111,
doi:10.1016/j.advengsoft.2005.04.005.

38

17. Camp, C., “Design of Space Trusses Using Big Bang-Big Crunch Optimization,” J. Struct. Eng.,
133(7), 2007, pp. 999-1008, doi:10.1061/(ASCE)0733-9445(2007)133:7(999).

18. Kaveh, A., and S. Talatahari, “Size Optimization of Space Trusses Using Big Bang-Big Crunch

Algorithm,” Computers and Structures, Vol. 87, Nos. 17-18, 2009, pp. 1129–1140,
doi:10.1016/j.compstruc.2009.04.011.

