

Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

Alex Braafladt - University of Minnesota John M. Lucero - NASA GRC May 16, 2013

Contents

- Background

 Supersonic
 inlet research
- Trade study
 - Objective
 - Testing
 - Results
- Summary and Conclusions

• 15 cm by 15 cm Supersonic Wind Tunnel at NASA GRC

Objective

- Determine low-cost, readily available materials acceptable for use in a supersonic wind tunnel
 - Prevent any damage to wind tunnel
 - Consistent, repeatable experiments
 - Good aerodynamic qualities
 - Ease of use

Background

- Supersonic Inlets
 - Compress and slow incoming air
 - Mixed compression using external/internal oblique and normal shockwaves

Shockwave Boundary Layer Interactions (SBLI)

- Boundary Layer
 - Regions near solid surfaces were friction is important
- Entrance to the compressor
 - Uniformity of flow at compressor is important
- SBLI
 - Thicken boundary layer
 - Possible separation

Flow Control

- Boundary Layer Bleed
 - Traditionally used
- Research into other types of flow control
 - Main focus is on vortex generators

Experiments at NASA GRC

- Planned experiments to test corner fillets
 - 15 cm by 15 cm Supersonic Wind Tunnel
 - Determine the effects of:
 - Radius of curvature
 - Total length
 - Taper length
 - Traditional supersonic wind tunnel inserts
- Proposed approach using polymer/adhesive materials

Trade Study

- Select best option from readily available materials
 - Sealants
 - Adhesives
 - Dental impression material
- Criteria for selection and comparison
 - Non-damaging
 - Adhesion
 - Surface roughness
- Formability
- Precision
- Application/Removal Ease

Materials

Material	Туре
----------	------

Polyurethane Sealant

Vinyl Polysiloxane Dental Impression Material 1

Vinyl Polysiloxane Dental Impression Material 2

Polyester Filler Paste

Silicate Cement

Resin/Solvent Based Sealant

Silicone Adhesive Sealant

Vinyl Adhesive Caulk

Spackling Paste

Basic Sculpting Epoxy

Stages

- Aluminum angle iron tests
- In-tunnel tests

Figures of Merit

- Quantitative
 - Surface Roughness
 - Eccentricity
 - Repeatability
 - Cure Time
- Qualitative
 - Ease of Removal
 - Flow during application
 - Formability
 - Shrinkage
 - Adhesion to surface

• Scanning White Light Interferometer (SWLI)

Observations during tests

Angle Iron Tests

- Application and removal processes
 - Each material
 - Each radii of curvature
- Measurements of surface using SWLI
 - Each material
 - Eccentricity
 - Average surface roughness
 - Repeatability of eccentricity

Repeatability Tests

- After initial angle iron tests
- Additional 6 measurements on 5 samples
 - Heavy body dental impression material
 - Polyurethane sealant

- Residual error
 - Minimized by eccentricity
 - Mean
 - Standard deviation

• Regular type dental impression material profile output from SWLI

• Polyurethane sealant profile output from SWLI

Qualitative Results

		Flow During		Ease of	Adhesion to
Material Type	Shrinkage	Application	Formability	Removal	Surface
Dental Impression (Plastic					
Rod)	5	5	5	5	3
Heavy Body Dental					
Impression	5	5	5	5	3
Regular Type Dental					
Impression	5	5	5	5	3
Basic Epoxy (Plastic Film)	5	4	4	3	4
Polyurethane Sealant	5	4	2	3	5
Silicone Adhesive Sealant	5	2	2	2	5
Resin/Solvent Based					
Sealant	3	4	2	5	2
Spackling Paste	1	3	2	5	5
Silicate Cement	1	4	2	4	5
Vinyl Adhesive Caulk	1	1	2	2	4
Polyester Filler Paste	5	3	2	1	5

Quantitative Results

Material Type	Roughness	Cure Time	Eccentricity	Repeatability
Heavy Body Dental Impression (Plastic				
Rod)	0.2781	5 min	0.1942	0.02627
Regular Type Dental Impression (Plastic				
Rod)	0.8790	5 min	0.0582	-
Heavy Body Dental Impression	1.1533	5 min	0.2668	-
Regular Type Dental Impression	1.3310	5 min	0.2212	-
Basic Epoxy (Plastic Film)	1.9873	5-24 hrs	0.3710	-
Polyurethane Sealant	1.9473	3-48 hrs	0.6471	0.1354
Silicone Adhesive Sealant	3.1523	24 hrs	0.2605	-
Resin/Solvent Based Sealant	1.8353	3-24 hrs	0.8652	-
Spackling Paste	7.0660	1-5 hrs	0.8087	-
Silicate Cement	6.9183	3-4 hrs	0.7917	-
Vinyl Adhesive Caulk	10.9183	12-48 hrs	0.7349	-
Polyester Filler Paste	6.7817	25 min	0.9587	-

Test in the Wind Tunnel

- Best material tested in wind tunnel
 - Heavy body dental impression material
- Conditions
 - Mach 2
 - Reynolds number of 13-26 million per meter

Heavy Body Dental Impression Material

Overall Results

• Materials sorted by choice for use in the wind tunnel

Choice	Material
1	Dental Impression (Plastic Rod)
2	Heavy Body Dental Impression
3	Regular Type Dental Impression
4	Basic Epoxy
5	Polyurethane Sealant
6	Resin/Solvent Based Sealant
7	Silicone Adhesive Sealant
8	Spackling Paste
9	Vinyl Adhesive Caulk
10	Silicate Cement
11	Polyester Filler Paste

Summary

- Need for method to create radii of curvature in supersonic wind tunnel corners
- Use of low-cost polymer/adhesive material for radius formation proposed
- Selection of best material from 10 candidate materials

Material Selected

- Heavy body dental impression material
 - Non-damaging to wind tunnel
 - Repeatable
 - Similarity to wind tunnel surface

Use in Research

- Repeatable method for creating desired precise shapes in wind tunnel corner still needed
- Other applications for testing in supersonic wind tunnels

Acknowledgements

- Funded by the High Speed Project in the NASA Fundamental Aeronautics Program
- NASA Glenn: Robert Clark, Stefanie Hirt, Cleve Horn, John Lucero, and Marty Velez.

References

- [1] Benson, Tom, "Inlet Performance," *Guided Tours of the BGA*, National Aeronautics and Space Administration Glenn Research Center, 04 Aug. 2009, Web, 26 Nov. 2012, http://www.grc.nasa.gov/WWW/k-12/airplane/inleth.html.
- [2] Pritchard, Philip J., Leylegian, John C., "Fox and McDonald's Introduction to Fluid Mechanics," 8th ed. Hoboken: John Wiley & Sons, 2011, Print.
- [3] Fukuda, Michael K., Hingst, Warren G., Reshotko, Eli, "Control of Shock Wave Boundary Layer Interactions by Bleed in Supersonic Mixed Compression Inlets," NASA CR-2595, 1975.
- [4] Anderson, Bernhard H., Tinapple, Jon, Surber, Lewis, "Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation," AIAA Paper 2006-3197, June 2006.
- [5] Blinde, Paul L., Humble, Ray A., Van Oudheusden, Bas W., Scarano, Fulvio, "Effects of micro-ramps on a shock wave/turbulent boundary layer interaction," Shock Waves, December 2009, Vol. 19, Issue 6 (2009), pp. 507-520.
- [6] Babinsky, H., Li, Y., Ford, C. W. Pitt, "Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions," AIAA Journal, Vol. 47, No. 3 (2009), pp. 668-675.
- [7] Hirt, Stefanie M., Anderson Bernhard H., "Experimental Investigation of the Application of Microramp Flow Control to an Oblique Shock Interaction," AIAA Paper 2009-919, January 2009.
- [8] "The Pratt & Whitney J-58 Engine," The 456th Fighter Interceptor Squadron, 10 Feb. 2009, Web, 13 Dec. 2012, < http://www.456fis.org/YF-12A_SR-71_ENGINE.htm>.
- [9] Hirt, Stefanie M., Chima, Rodrick V., Vyas, Manan A., Wayman, Thomas R., Conners, Timothy R., Reger, Robert W., "Experimental Investigation of a Large-Scale Low-Boom Inlet Concept," AIAA Paper 2011-3796, June 2011.
- [10] Titchener, Neil, Babinsky, Holger, "Shock Boundary Layer Interaction Flow Control with Micro Vortex Generators," Air Force Research Laboratory, Air Force Office of Scientific Research, United Kingdom, Technical Report 2011-0014, March 2011.

References Continued

- [11] Eagle, W. Ethan, Driscoll, James F., Benek, John A., "Experimental Investigation of Corner Flows in Rectangular Supersonic Inlets with 3D Shock-Boundary Layer Effects," AIAA Paper 2011-857, January 2011.
- [12] Bruce , P. J. K., Babinsky, H., Tartinville , B., Hirsch, C., "Corner Effect and Asymmetry in Transonic Channel Flows," AIAA Journal, Vol. 49, No. 11 (2011), pp. 2382-2392.
- [13] Bruce, P. J. K., Burton, D. M. F., Titchener, N. A., Babinsky, H., "Corner effect and separation in transonic channel flows," Journal of Fluid Mechanics, Vol. 679, July 2011, pp. 247-262.
- [14] Vyas, Manan A., Hirt, Stefanie M., Anderson, Bernhard H., "Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control," AIAA Paper 2012-0048, January 2012.
- [15] Baruzzini, Dan, Domel, Neal, Miller, Daniel N., "Addressing Corner Interactions Generated by Oblique Shock-Waves In Unswept Right-Angle Corners and Implications for High-Speed Inlets," AIAA Paper 2012-0275, January 2012.
- [16] Burton, D. M. F., Babinsky, H., Bruce, P. J. K., "Experimental Investigation into Parameters Governing Corner Interaction for Transonic Shock Wave/Boundary Layer Interactions," AIAA Paper 2010-871, January 2010.
- [17] Zygo Corporation, "MetroPro Reference Guide OMP-0347K," Rev. K, August 2006, Web, August 2007, <www.zygo.com>.
- [18] Wheeler, Anthony J., Ganji, Ahmad R., "Introduction to Engineering Experimentation," 3rd ed. New York: Prentice Hall, 2010, Print.

Supplementary Slides

Surface Roughness

Rank	Material	Rouhgness (μm) +/- 0.020 μm
1	Heavy Body Dental Impression (Plastic Rod)	0.2781
2	Regular Type Dental Impression (Plastic Rod)	0.8790
3	Heavy Body Dental Impression	1.1533
4	Regular Type Dental Impression	1.3310
5	Resin/Solvent Based Sealant	1.8353
6	Polyurethane Sealant	1.9473
7	Basic Epoxy	1.9873
8	Silicone Adhesive	3.1523
9	Polyester Filler Paste	6.7817
10	Silicate Cement	6.9183
11	Spackling Paste	7.0660
12	Vinyl Adhesive Caulk	10.9183

Eccentricity

Rank	Material	Average Eccentricity
1	Regular Type Dental Impression (Plastic Rod)	0.0582
2	Heavy Body Dental Impression (Plastic Rod)	0.1942
3	Regular Type Dental Impression	0.2212
4	Basic Epoxy	0.3710
5	Silicone Adhesive Sealant	0.2605
6	Heavy Body Dental Impression	0.2668
7	Polyurethane Sealant	0.6471
8	Vinyl Adhesive Caulk	0.7349
9	Silicate Cement	0.7917
10	Spackling Paste	0.8087
11	Resin/Solvent Based Sealant	0.8652
12	Polyester Filler Paste	0.9587

Heavy Body Dental Impression Material

• Polyester Filler Paste

• Sculpting Epoxy

• Resin/Solvent Based Sealant

• Polyurethane Sealant

• Silicone Adhesive

• Regular Type Dental Impression Material

• Spackling Paste

• Silicate Cement

• Vinyl Adhesive

Figure 11: Curve Fit of an Ellipse to the Profile Data Obtained from the SWLI for the Regular Type Impression Material Applied with the Plastic Rod.

Test Matrix

				Form Fillet		
Sample		Plastic	Teflon/Plast	by Scraping	Spray	Zygo
Number's	Material Type	Film	ic Rod	Excess Away	Paint	(mm)
#1-4	Spackling Paste		Т	X	X	9.525
#5-8	Silicone Adhesive Sealant		Т	Χ	X	9.525
#9-12	Vinyl Adhesive Caulk		Т		X	9.525
#13-16	Silicate Cement		Т		X	9.525
#17-20	Basic Epoxy	Х	Т			9.525
	Regular Type Dental					
#21-24	Impression		Т			9.525
#25-28	Heavy Body Dental Impression		Т			9.525
#29-32	Polyurethane Sealant		Т	X		9.525
#33-36	Resin/Solvent Based Sealant		Т	Χ	X	9.525
#37-40	Polyester Filler Paste		Т	Χ	X	9.525
	Regular Type Dental					
#41	Impression		Р			12.7
#42-46	Heavy Body Dental Impression		P			12.7
#47-51	Polyurethane Sealant		P	X	X	12.7