

June 11 - 15, 2012

Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

> Gary Podboy NASA Glenn Research Center Cleveland, Ohio, USA

Support Provided by NASA Subsonic Fixed Wing Project





# Optinav Array48 Phased Array





Back

Front



### Reason for Acquiring the Phased Array Data

### To help explain conventional, single-microphone results



Array location for shielding surface tests



Array location for reflecting surface tests



### Distribution of Noise Sources in the Bare Jet are Important





### Array Location for Bare Jet Tests



Array on a stationary stand 55 jet diameters away broadside to the jet







|               | Nozzle  | Setnoint | NPR     | TSR                              | $M_a$              | $M_{j}$  |
|---------------|---------|----------|---------|----------------------------------|--------------------|----------|
|               | INOZZIC | Serpoint | Pt/Pamb | T <sub>s</sub> /T <sub>amb</sub> | V/c <sub>amb</sub> | V/clocal |
| $\rightarrow$ | SMC000  | 3        | 1.20    | 0.95                             | 0.50               | 0.51     |
|               | SMC000  | 7        | 1.86    | 0.835                            | 0.90               | 0.98     |
|               | SMC000  | 27       | 1.36    | 1.76                             | 0.90               | 0.68     |
|               | SMC000  | 46       | 1.24    | 2.70                             | 0.90               | 0.55     |
|               | SMC000  | 9010     | 3.18    | 0.74                             | 1.18               | 1.40     |
|               | SMC016  | 11606    | 2.75    | 0.76                             | 1.13               | 1.29     |
|               | SMC016  | 11610    | 3.67    | 0.72                             | 1.31               | 1.50     |
|               | SMC016  | 11617    | 4.32    | 0.76                             | 1.41               | 1.61     |



### SMC000 Nozzle

M<sub>a</sub>=0.50

TSR=0.95







#### SMC000 Nozzle















|               | Nozzla | Saturaint | NPR                              | TSR                              | $M_{a}$            | $M_{j}$  |
|---------------|--------|-----------|----------------------------------|----------------------------------|--------------------|----------|
|               | Nozzie | Setpoint  | P <sub>t</sub> /P <sub>amb</sub> | T <sub>s</sub> /T <sub>amb</sub> | V/c <sub>amb</sub> | V/clocal |
|               | SMC000 | 3         | 1.20                             | 0.95                             | 0.50               | 0.51     |
| $\rightarrow$ | SMC000 | 7         | 1.86                             | 0.835                            | 0.90               | 0.98     |
|               | SMC000 | 27        | 1.36                             | 1.76                             | 0.90               | 0.68     |
|               | SMC000 | 46        | 1.24                             | 2.70                             | 0.90               | 0.55     |
|               | SMC000 | 9010      | 3.18                             | 0.74                             | 1.18               | 1.40     |
|               | SMC016 | 11606     | 2.75                             | 0.76                             | 1.13               | 1.29     |
|               | SMC016 | 11610     | 3.67                             | 0.72                             | 1.31               | 1.50     |
|               | SMC016 | 11617     | 4.32                             | 0.76                             | 1.41               | 1.61     |









|                     | Nozzle | Setpoint | NPR<br>P <sub>t</sub> /P <sub>amb</sub> | TSR<br>T <sub>s</sub> /T <sub>amb</sub> | M <sub>a</sub><br>V/c <sub>amb</sub> | M <sub>j</sub><br>V/c <sub>local</sub> |
|---------------------|--------|----------|-----------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|
|                     | SMC000 | 3        | 1.20                                    | 0.95                                    | 0.50                                 | 0.51                                   |
|                     | SMC000 | 7        | 1.86                                    | 0.835                                   | 0.90                                 | 0.98                                   |
|                     | SMC000 | 27       | 1.36                                    | 1.76                                    | 0.90                                 | 0.68                                   |
|                     | SMC000 | 46       | 1.24                                    | 2.70                                    | 0.90                                 | 0.55                                   |
|                     | SMC000 | 9010     | 3.18                                    | 0.74                                    | 1.18                                 | 1.40                                   |
| $ \longrightarrow $ | SMC016 | 11606    | 2.75                                    | 0.76                                    | 1.13                                 | 1.29                                   |
| $\rightarrow$       | SMC016 | 11610    | 3.67                                    | 0.72                                    | 1.31                                 | 1.50                                   |
| $ \longrightarrow $ | SMC016 | 11617    | 4.32                                    | 0.76                                    | 1.41                                 | 1.61                                   |



### SMC016 Nozzle Cold Supersonic Jets



#### Tam's Model of BBSN



figure taken from Miller, S.A.E., "The Prediction of Broadband Shock-Associated Noise Using Reynolds-Averaged Navier-Stokes Solutions," Ph. D. dissertation, Pennsylvania State University, December 2009



### Peak Frequencies from Tam's Model Overlaid on Data



National Aeronautics and Space Administration



### SMC016 Nozzle Cold Supersonic Jets



### Array Location for Shielding Surface Tests



Array on a stationary stand 55 jet diameters away broadside to the jet







|               | Norrla  | Saturint | NPR                              | TSR                              | $M_a$              | $\mathbf{M}_{j}$ |
|---------------|---------|----------|----------------------------------|----------------------------------|--------------------|------------------|
|               | INOZZIE | Setpoint | P <sub>t</sub> /P <sub>amb</sub> | T <sub>s</sub> /T <sub>amb</sub> | V/c <sub>amb</sub> | V/clocal         |
|               | SMC000  | 3        | 1.20                             | 0.95                             | 0.50               | 0.51             |
|               | SMC000  | 7        | 1.86                             | 0.835                            | 0.90               | 0.98             |
|               | SMC000  | 27       | 1.36                             | 1.76                             | 0.90               | 0.68             |
|               | SMC000  | 46       | 1.24                             | 2.70                             | 0.90               | 0.55             |
|               | SMC000  | 9010     | 3.18                             | 0.74                             | 1.18               | 1.40             |
| $\rightarrow$ | SMC016  | 11606    | 2.75                             | 0.76                             | 1.13               | 1.29             |
|               | SMC016  | 11610    | 3.67                             | 0.72                             | 1.31               | 1.50             |
|               | SMC016  | 11617    | 4.32                             | 0.76                             | 1.41               | 1.61             |























| N1-     | Saturaint | NPR     | TSR                              | M <sub>a</sub>     | $M_{j}$              |
|---------|-----------|---------|----------------------------------|--------------------|----------------------|
| INOZZIE | Setpoint  | Pt/Pamb | T <sub>s</sub> /T <sub>amb</sub> | V/c <sub>amb</sub> | V/c <sub>local</sub> |
| SMC000  | 3         | 1.20    | 0.95                             | 0.50               | 0.51                 |
| SMC000  | 7         | 1.86    | 0.835                            | 0.90               | 0.98                 |
| SMC000  | 27        | 1.36    | 1.76                             | 0.90               | 0.68                 |
| SMC000  | 46        | 1.24    | 2.70                             | 0.90               | 0.55                 |
| SMC000  | 9010      | 3.18    | 0.74                             | 1.18               | 1.40                 |
| SMC016  | 11606     | 2.75    | 0.76                             | 1.13               | 1.29                 |
| SMC016  | 11610     | 3.67    | 0.72                             | 1.31               | 1.50                 |
| SMC016  | 11617     | 4.32    | 0.76                             | 1.41               | 1.61                 |





















### Array Location for Reflecting Surface Tests



Array on traverse moving with the surface







|               | N1-    | C at a a int | NPR                              | TSR                              | M <sub>a</sub>     | M <sub>j</sub> |
|---------------|--------|--------------|----------------------------------|----------------------------------|--------------------|----------------|
|               | Nozzie | Setpoint     | P <sub>t</sub> /P <sub>amb</sub> | T <sub>s</sub> /T <sub>amb</sub> | V/c <sub>amb</sub> | V/clocal       |
|               | SMC000 | 3            | 1.20                             | 0.95                             | 0.50               | 0.51           |
| $\rightarrow$ | SMC000 | 7            | 1.86                             | 0.835                            | 0.90               | 0.98           |
|               | SMC000 | 27           | 1.36                             | 1.76                             | 0.90               | 0.68           |
|               | SMC000 | 46           | 1.24                             | 2.70                             | 0.90               | 0.55           |
|               | SMC000 | 9010         | 3.18                             | 0.74                             | 1.18               | 1.40           |
|               | SMC016 | 11606        | 2.75                             | 0.76                             | 1.13               | 1.29           |
|               | SMC016 | 11610        | 3.67                             | 0.72                             | 1.31               | 1.50           |
|               | SMC016 | 11617        | 4.32                             | 0.76                             | 1.41               | 1.61           |



SMC000 Nozzle M<sub>a</sub>=0.9

Reflecting surface at r/D=4 with trailing edge @ 5D



SMC000 Nozzle M<sub>a</sub>=0.9

### Reflecting surface at r/D=1 with trailing edge @ 5D



12.5 kHz St=2.136



- 1) Subsonic jets are relatively simple. The peak noise source location gradually moves upstream toward the nozzle as frequency increases.
- 2) Supersonic jets are more complicated. The peak noise source location moves downstream as frequency increases through a BBSN hump.
- 3) In both subsonic and supersonic jets the peak noise source location corresponding to a given frequency of noise moves downstream as jet Mach number increases.
- 4) The noise generated at a given frequency in a BBSN hump is generated by a small number of shocks, not from all the shocks at the same time.
- 5) Single microphone spectrum levels decrease when the noise source locations measured with the phased array are blocked by a shielding surface. This consistency validates the phased array data and the stationary monopole source model used to process it.
- 6) Reflecting surface data illustrate that the law of reflection must be satisfied for noise to reflect off a surface toward an observer. Depending on the relative locations of the jet, the surface and the observer only some of the jet noise sources may satisfy this requirement.
- 7) The low frequency noise created when a jet flow impinges on a surface comes primarily from the trailing edge regardless of the axial extent impacted by the flow.