

The 2016 Perseids

D. E. Moser Jacobs ESSSA Group, Meteoroid Environment Office, NASA MSFC

> W. J. Cooke NASA, Meteoroid Environment Office, NASA MSFC

> > Stanford Meteor Environment and Effects Workshop Stanford University, California, 14-16 July 2015

The Perseid meteor shower is a prolific annual shower, known to outburst.

At least 2 spacecraft have suffered anomalies potentially caused by meteoroid impacts during Perseid outbursts.

The Perseids may outburst again in 2016. Observing geometry favors Russia/Europe and North America.

Goal: Describe preliminary predictions, encourage discussion and observation planning.

Perseid background info

Parent comet: 109P/Swift-Tuttle

- Peak: Max. around Aug 11-13
- Activity range: Jul 17 Aug 24

Speed: 59 km/s

Radiant: $\alpha = 48^{\circ}$, $\delta = +58^{\circ}$ at peak

Typical ZHR: 100/hr

Recent major displays: 1991-1995, 2004, 2009

Features: Not known to storm, but can produce enhanced activity (100s meteors/hr)

Prediction history: Forecasts less accurate than those for Leonids

Perseid fireball recorded Aug 12, 2012

Spacecraft affected by Perseids

Olympus ESA communication satellite

Struck by a Perseid near the time of the shower peak in August 1993

Sent tumbling, fuel exhausted, end of mission ^{Caswell et al. (1995)}

Landsat-5 NASA/USGS imaging satellite

Struck by a Perseid near the time of the shower peak in August 2009

Sent tumbling, stabilized, returned to normal operations

MSFC Meteoroid Stream Model

What

Model of particle ejection and subsequent meteoroid stream evolution from comets.

Why

To provide accurate meteor shower forecasts to spacecraft operators for hazard mitigation and mission planning purposes.

Meteoroid stream ejected from parent comet

Who

International Space Station and science spacecraft.

2016 Perseid model results: MSFC preliminary

2016 Perseid model results: MSFC preliminary

2016 Perseid model results: MSFC preliminary

Predicted ZHR

2016 Perseid model results - Summary -

Modeler	Rev	Date	Time (UT)	λ _s (°)	ZHR	r _d -r _E (AU)
Maslov (web, undated)	1862	Aug 11	22:34	139.436	?	-0.00134
Vaubaillon (Jenniskens, 2006)	1862	Aug 11	22:36	139.438	1	-0.00327
MSFC single rev (June 2015)	1862	Aug 11	22:47	139.445	-	-0.00170
Maslov (Rao, 2012)	-	Aug 11	23:23	-	160-180	-
Maslov (web, undated)	1479	Aug 11	23:23	139.468	?	0.00008
Vaubaillon (Rao, 2012)	-	Aug 12	~00:00	-	"Unusually high activity"	-
Main MSFC (June 2015)	Combined 15 revs	Aug 12	00:32	139.515	210 ± 50	-
MSFC single rev (June 2015)	1079	Aug 12	04:36	139.678	-	0.00194
Vaubaillon (Jenniskens, 2006)	1079	Aug 12	04:43	139.683	580	0.00023
MSFC single rev (June 2015)	441	Aug 12	13:03	140.016	Comprises secondary peak?	-0.00046

Increased activity lasts about half a day, from late-Aug 11 to mid-Aug 12.

Jacobs, ESSSA Group/MEO/D.E. Moser

12 Aug 2016 10:30:00.000

Lunar observing geometry

Perseids Aug 12 at 00:00 UT

LunarScan output (Gural 2007)

- Phase not good (62%) for lunar impact observing during the peak. (First Quarter on Aug 10.)
- Moonset around 12-1 am local time.

General camera deployment considerations

- Predicted peak observable
 - Night time for optical cameras
- Radiant high in the sky
 - Higher radiant = better rates
 - Keep radiant alt. >15° for the max. amount of time
- Good weather
- Minimal light pollution
- Mobility
 - Don't deploy cameras to islands, valleys, etc.
 - Choose area with wellconnected road systems
- Choose camera pointing directions to max. collecting area

- (a) Total night sky brightness acct. for alt., at zenith
- (b) Naked eye star visibility (V mag)

Spacecraft risk

Summary

- The Perseids may outburst in 2016.
- Increased activity predicted late Aug 11 Aug 12, lasting ~half a day.
 - Rates predicted between 160 580/hr.
 - Observing best from Russia & Europe, then North America.
- The outburst may represent a time of increased risk to spacecraft.

Backup Slides

2016 Perseid model results: Vaubaillon

29/7

http://www.imcce.fr/langues/en/ephemerides/phenomenes/meteor/DATABASE/Perseids/BIN-tout/Noeuds-Earth2016.jpg

Other weather data: Night only

Completely Clear Sky

Frequency of Occurrence (%)

-	1000		1	6	-	11	2		3	4 3	3 3	-	
	2 5	2	2	3		5 0	1	8 6	6	4 6	6 6		4
	4 5	5 4 5	5 5 5	4 4 4	5 6	1 2 1 0 1	2 4 5	5 4 4 9 9 9	9 10 14	11 9 15	12 10 10	8 / 9 E	6
	1 0 5	8 9	9 10 7	6 3		1 0 1	7 8 11	17 18 15	14 16 15	17 10 8	12 15 11	5 2	
	0	5 15	9 11 11	8 6 4	6	2 5	11 15 23	27 34 26	27 23 22	15 13 12	15 14 11	7	1.00
		24	31 20 14 14 14 17	17 12 9 7 8 11	8 5	10 14	16 15 15 21 29 36	42 47 45 50 43 43	49 54 50 51 32 2:	21 21 21 14 16 13 16	1413181486	6	
		40	37 26 19 13 17 17	19 18 9 10 13 7		29 29 3	24 34 38 42 41 53	52 39 29 32 53 65	5 75 74 59 37 25 25	5 22 23 17 18 17 16	15 9 13 14 4 3		
		15	51 39 15 16 21 25	25 23 14	0	2 49 40	33 41 50 53 67 84	74727444477	1 87 82 54 24 28 29	9 23 18 12 16 17 19	15 15 7 5 5		
			21 35 10 20 23 21	22 14 1		4 32 40	516165656356	53 72 89 77 76 74	4 86 52 21 8 6 7	11 9 6 12 16 20	12 12 6 4		
)			33 14 15 31 12 9 4 4			34 18 46 60 58 73 59 83 92 97 96 86 84 85 66 35 48 38 15 6 1 1 1 1 3 8 13 9 5 2 0 2							
			31 5 12 26	19221	9221		46 44 32 43 89 76 61 30 72 37 29		42110001467		740 0		
	1	-	14 6 6 6 6	0 1 7 10 6 2	0	5 6 4 7	1005	1 1 11 11	0 2 0	0 0 0 2 2 0	0 0	U	
			10	3 0 2 7 11	3.6	132	0 0 0 1 3 2	0 3 21	0 1 8	00000	0 0 1 0	0 0 0	0
	0			3 4 11	4 6	1 1	0423	3 9 20 0	0	00107	1 1		õ
				31 19 22 11 44	18 21 27 39 13 8		1 8 28 25	9 10 2 0	1	2 1 0 0	500001	0	0
	1 0	0		42 34 56 46 48 32 44 63 41 18 6		0 13 2426		0	682	12 1 1 3 2	0 0	0	
)	0,57	1		17 72 70 50 52 57 80 5		66 72 50 42 11 2 0 0			0	24 60 28 11	0 1	0	
)	1 1 12 0 0	0 0		34 34 48 45	34 34 48 45 63 55 63 72 25		0 16 88 87 75 58 35 15 12 0 0		0	48 82 71 67 69 10 3 1			1
)	3	0 0 0		5 42 51	38 57 40 42	43 78 75 78 64 38 41 7 1		8	50 57 65 81 70 49 48 14 7				
	8	.0	1	40 51 43	58 56 25	21 20 40 22			0 25 0 26 20 26 20 41 25 22 2			3	
		2427 36 33		5150.00 25		25	0	8 7 11 14			7 10		
)				16 25 35	550	0					9	1011	12 5
ĺ				15 25				0 0	2.12			4	12
				7 23	1				55			0 0	
				100000		7			7	-			
				1	16 8								
		17		-13				8 14	14 8	15 4	11	31	22
		1/	E ha all			20	23			10		-	F
	7.10					1				15			•
						36				http://www.atmos.washinat		hinaton.e	du/

(File name = Imcf08cr.txt, MGRP = 9078, TYPE = 2, PCODE = 2, SN = 8)

Past NASA deployment 2014 May Camelopardalids

WEST SYSTEM

Past NASA deployment 2014 May Camelopardalids

Orion capture device

Analog to SDI converter

Ronin video display

Future outbursts

- 2020 Ursids
- 2022 τ-Herculids
- 2027 Perseids
- 2028 Perseids
- 2034 Leonids

References

- Caswell, D. R. et al. (1995) "Olympus end of life anomaly A Perseid meteoroid impact event?" Int. J. of Impact Engineering 17, 139-150.
- Cooke, W. J. (2009) "The 2009 Perseid meteoroid environment and Landsat 5." NASA MSFC: NASA MEO Internal Report, 5pp.
- Gural, P. (2007) "Automated detection of lunar impact flashes." Paper presented at 2007 Meteoroid Environments Workshop, NASA Marshall Space Flight Center, Huntsville, Alabama, 31 January 1 February, 2007.
- Jenniskens, J. (2006) "Meteor showers and their parent comets." Cambridge: Cambridge University Press, p.657.
- Kronk, G. (n.d.) "Meteor showers online: Perseids." http://meteorshowersonline.com/perseids.html.
- Kronk, G. W. (2014) "Meteor showers: An annotated catalog." New York: Springer-Verlag, 362pp.
- Maslov, M. "Perseids 1901-2100: predictions of activity." http://feraj.narod.ru/Radiants/Predictions/1901-2100eng/Perseids1901-2100predeng.html.
- Rao, J. (2012) "August Perseid meteor shower has long legacy, bright future." Space.com, 3 August 2012, http://www.space.com/16915-perseid-meteor-shower-2012-history.html.
- Vaubaillon, J. "Nodes (2016)"

http://www.imcce.fr/langues/en/ephemerides/phenomenes/meteor/DATABASE/Perseids/BIN-tout/Noeuds-Earth2016.jpg