KSWAGS: A SWIFT X-RAY AND UV SURVEY OF THE KEPLER FIELD. I.

KRISTA LYNNE SMITH 1,2 , PATRICIA T. BOYD 2 , RICHARD F. MUSHOTZKY 1 , NEIL GEHRELS 2 , RICK EDELSON 1 , STEVE B. HOWELL 3 , DAWN M. GELINO 4 , ALEXANDER BROWN 5 & STEVE YOUNG 1

Draft version August 25, 2015

ABSTRACT

We introduce the first phase of the Kepler-Swift Active Galaxies and Stars survey (KSwAGS), a simultaneous X-ray and UV survey of ~ 6 square degrees of the Kepler field using the Swift XRT and UVOT. We detect 93 unique X-ray sources with S/N ≥ 3 with the XRT, of which 60 have UV counterparts. We use the Kepler Input Catalog (KIC) to obtain the optical counterparts of these sources, and construct the f_X/f_V ratio as a first approximation of the classification of the source. The survey produces a mixture of stellar sources, extragalactic sources, and sources which we are not able to classify with certainty. We have obtained optical spectra for thirty of these targets, and are conducting an ongoing observing campaign to fully identify the sample. For sources classified as stellar or AGN with certainty, we construct SEDs using the 2MASS, UBV and GALEX data supplied for their optical counterparts by the KIC, and show that the SEDs differ qualitatively between the source types, and so can offer a method of classification in absence of a spectrum. Future papers in this series will analyze the timing properties of the stars and AGN in our sample separately. Our survey provides the first X-ray and UV data for a number of known variable stellar sources, as well as a large number of new X-ray detections in this well-studied portion of the sky. The KSwAGS survey is currently ongoing in the K2 ecliptic plane fields.

1. INTRODUCTION

The Kepler mission was designed to detect exoplanets in the habitable zone by searching for repeating transits in the light curves of over 150,000 sunlike stars. The exceptional photometric and temporal precision, high duty cycle and rapid, continuous sampling required for this task make Kepler a unique asset for the study of various other astrophysical targets in its 100 square-degree field of view (FOV). To detect exoplanets with up to year-long orbital timescales, Kepler remained continuously pointed at a region of the sky in the constellation Cygnus, chosen for its high density of observable dwarf stars. During its prime mission, Kepler collected hundreds of thousands of light curves for sources over baselines of a few months to 4.25 years by telemetering "postage stamps" of pixels around chosen stars and sampling with 30-minute cadence. In addition to high precision light curves, Kepler also produces Full Frame Images (FFIs), 29.4-minute exposures of the entire FOV, approximately once per month. The Kepler Science Center maintains that the full field contains ~ 10 million stars above the confusion limit of 20-21 mag, and the FFIs can provide photometry on monthly cadences for all objects in the Kepler FOV, regardless of whether high-cadence light curves were collected. This rich data set includes previously unidentified variable astrophysical sources over an impressive range of distance scales, both within the Galaxy and throughout the larger universe. Sources within the Milky Way include RR Lyrae stars (Guggenberger 2012), rapidly oscillating peculiar A (roAp) stars (Balona et al. 2013),

and cataclysmic variables (CVs) (Scaringi et al. 2013).

Optically variable extragalactic sources such as Seyfert 1 galaxies (Mushotzky et al. 2011) and BL Lac objects (Edelson et al. 2013) are tantalizing candidates, since the accretion physics in active galactic nuclei (AGN) is poorly understood. The size scale of the accretion disk is approximately ≤ 0.01 parsecs, or ~ 1 milliarcsec for even the nearest active galaxies. Such a measurement is still well below resolvable scales for any optical observatories. Variability studies are then the only direct probe of conditions within the disk itself, and consequently of the process of accretion. Theory predicts model-dependent light curve characteristics; for example, Reynolds & Miller (2009) predicted clear g-mode oscillations and characteristic frequencies in the power spectrum that correspond to local acoustic waves. One also expects that the characteristic timescales of the disk (i.e., the thermal, viscous, and dynamical timescales) would be evident in light curve with sufficiently rapid and regular sampling. Kepler provides the AGN community with its first opportunity to measure such effects in the optical.

Kepler's bounty of unprecedented high-precision light curves has resulted in its FOV being one of the best-studied regions of the sky. Objects in the KIC (Kepler Input Catalog) overlap with the 2-Micron All-Sky Survey (2MASS; Skrutskie et al. 2006), the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010), and the Galaxy Evolution Explorer survey (GALEX; Martin et al. 2003). Additionally, Everett et al. (2012) conducted an optical photometric survey of the field in the UBV bands. An X-ray survey of the Kepler field is therefore prudent, providing an important and unique resource for locating interesting variable objects in this field.

X-ray selection is an effective way to curate a sample of astrophysically interesting variable stars and extragalactic sources. To capitalize on the wealth of data for the objects in the *Kepler* field, both photometric and archival,

 $^{^{1}}$ Department of Astronomy, University of Maryland College Park; klsmith@astro.umd.edu

 $^{^2}$ NASA/GSFC, Greenbelt, MD 20771, USA

³ NASA Ames Research Center, Moffett Field, CA 94095, USA ⁴ NASA Exoplanet Science Institute, Caltech, Pasadena, CA 91125, USA

⁵ CASA, University of Colorado, Boulder, CO 80309, USA

we have conducted the Kepler-Swift Active Galaxies and Stars survey (KSwAGS), a Swift X-ray telescope (XRT) survey of four modules of the Kepler field that is approximately ten times deeper than the ROSAT All-Sky Survey (RASS; Voges et al. 1999). We chose these four modules to lie approximately perpendicular to the galactic plane, sampling a range of galactic latitudes. Additionally, the co-aligned Swift UV/Optical Telescope (UVOT) provides concurrent UV coverage for each KSwAGS pointing. We present here the first KSwAGS catalog of X-ray sources in the original Kepler FOV, their UVOT and archival data, and an introduction to the KSwAGS series of temporal analysis papers. This first phase of the KSwAGS survey detected 93 unique X-ray sources. This includes a number of known stellar variables and two previously identified AGN. For newly discovered sources, we present the best determination of the nature of the object via optical spectra, X-ray to optical flux ratios (f_X/f_V) , the shapes of the broadband spectral energy distribution (SEDs), and, where possible, inspection of the optical light curves. Since the Kepler FOV was chosen explicitly to be typical of the Milky Way galaxy, results should be widely relevant and offer a typical density of exotic variable sources near the galactic plane. This paper serves as an introduction to the survey, which is currently ongoing in the new Kepler (known as K2) ecliptic plane fields. The time variability physics and temporal analyses will be presented in two upcoming papers, focused separately on the stellar sources and the AGN.

This paper is organized as follows: in Section 2, we describe our X-ray and UV survey and the identification of the optical counterparts. Section 3 explains the various methods used to classify the sources as either stellar or extragalactic, and categorize the sources based on their optical spectra or archival information. In Section 4, we provide samples of the light curves and analysis of a stellar source and an AGN, to exemplify the content of the follow-up papers dedicated to each of these samples. Section 5 describes our ongoing survey in the new ecliptic plane K2 fields, and the final section summarizes the products of the survey and future directions.

2. SURVEY FIELD AND SOURCE DETECTION

KSwAGS was conducted with the Swift X-ray Telescope (XRT), which operates in the 0.2 - 10 keV range with a sensitivity of 2×10^{-14} erg cm⁻² s⁻¹ in 10^4 seconds. The XRT field of view (FOV) is 23.6×23.6 arcmin (Burrows et al. 2005). The co-aligned UV/Optical Telescope (UVOT) is sensitive to the 170-650 nm range and has a sensitivity of B = 22.3 in white light in 1000 seconds and a FOV of 17×17 arcmin (Roming et al. 2005). The UVOT has six broad-band optical and UV filters; the KSwAGS survey uses the the near-UV uvm2 filter $(\lambda_c = 2246 \text{ Å})$, since the Kepler FOV is already wellstudied in the optical. Additionally, the UVOT NUV filters suffer from a phenomenon known as "red leak," in which the NUV flux is artificially inflated by the counting of optical photons due to red tails in the filters' transmission curves. The uvm2 filter has the smallest amount of red leak of the three NUV filters (Breeveld et al. 2011).

The entire Kepler FOV consists of 21 modules. KSwAGS covers four of these modules, outlined in red in Figure 1, and subtends ~ 6 square degrees. The modules are roughly perpendicular to the galactic plane, decreas-

ing in galactic latitude from Region 1 to Region 4. Each of the four modules is covered in 56 total pointings, indexed from 00 to 55, with each pointing lasting approximately 2 kiloseconds. Figure 2 shows the locations of the XRT and UVOT pointings on the sky; note the smaller UVOT field of view.

Fig. 1.— Map of the *Kepler FOV*, with the *Swift*-surveyed modules outlined in red. Region 1 is the upper right module, with the regions increasing in number toward the galactic plane (bottom left).

For source detection, the XRT raw images and exposure maps were analyzed using XIMAGE. The background was optimized and the sources were located using the task detect with a S/N ≥ 3 , making use of the bright qualifier. The bright flag creates a weighted mean of each excess and optimizes the point-spread function (PSF), preventing the detection algorithm from erroneously interpreting one large source as several smaller "detections"; however, note that if two real sources were within the optimized PSF, our method would report only one source.

After removing duplicate sources from pointing overlaps and eliminating detections of extended emission from single sources, we have detected 93 total X-ray sources with S/N \geq 3, which corresponds to approximately 12 total counts or 0.006 cts s⁻¹ within our narrow range of exposure times and background estimates. Table 1 lists these detections, as well each source's XRT count rate and exposure time. In this table, we assign each source an identifying number (KSw #) based on increasing right ascension. We will use this ID number to refer to the sources throughout the paper and in subsequent tables.

On the Swift spacecraft, the XRT and UVOT are coaligned to allow for simultaneous multiwavelength follow-up of GRBs detected onboard. To identify the counterpart in the simultaneous UVOT images, we overplotted a contour map of each XRT source onto the coaligned UVOT image, and selected the counterpart visually. Once a counterpart is selected, we use the FTOOL

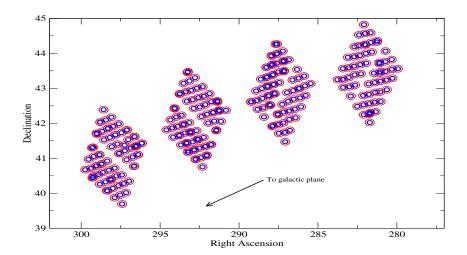


Fig. 2.— Arrangement of our XRT pointings (red) and UVOT pointings (blue). The UVOT FOV is approximately half the size of the XRT FOV. Overlapping circles occur when multiple pointings were required to obtain the full 2ks observation. The right ascension axis is inverted for easier comparison to Figure 1. Note that the shape of the UVOT FOV is actually roughly square, but is oriented at various angles within the larger XRT FOV. We use circles here to illustrate the approximate difference in UV/X-ray coverage.

uvotsource to obtain the UV source's position and flux density. This information is also given in Table 1. The UVOT FOV is approximately half the size of the XRT FOV, so some of our sources do not have UVOT counterparts listed because the XRT source was beyond the edge of the UVOT image. Note, however, that the overlap of our Swift pointings (see Figure 2) mitigates this problem to some degree, and so $\sim 65\%$ of our XRT sources have measurable UVOT counterparts.

Once all detectable UVOT counterparts had been identified, we looked up their optical counterparts in the Kepler Input Catalog (KIC). For our typical S/N ratio, the XRT can typically localize a source position to 3.5" with 90% confidence. Much of this uncertainty is due to the star-tracker attitude solution onboard the spacecraft (Goad et al. 2007). Positional uncertainty can be reduced when a UVOT sky image is present. With a PSF of 2.5'' for each filter and a pixel scale of $\sim 0.5''$, an uncorrected UVOT position is typically accurate to within 1 arcsecond (Roming et al. 2005). When stars in the UVOT field of view can be matched to the US-NOB1 catalog, the aspect correction can result in UVOT positions that are accurate to within 0.5". Therefore, if the object has a UVOT counterpart, we use this position to query the KIC. An X-ray source might not be detected as UVOT source if it suffers from heavy extinction either from dust in the Milky Way or, in the case of AGN, from innate host galaxy dust. This is certainly the case for KSw 93, Cygnus A, which is a very bright X-ray source but is also a Type 2 AGN, in which UV light from the bright nucleus cannot escape the dust in the circumnuclear torus. However, the majority of our sources without UVOT counterparts result from the relative FOV sizes between the XRT and the UVOT. Table 2 denotes which of these was the case. In the absence of a UVOT source, we query using the X-ray coordinates. The set of coordinates that was used to guery the KIC is given for each source in Table 2. In 16 cases, an object had more than one possible KIC counterpart within 5"; the KSwAGS source number of each of these targets

is indicated by an asterisk in Table 2. We have done a case-by-case analysis for each of these to determine which counterpart is the most likely. In the cases of KSw 2, 20, 35, 39, 55, 82, and 93, we have spectroscopically confirmed the listed KIC counterpart as an AGN (see Section 3.1). Since AGN are ubiquitously X-ray sources, we can be confident that this is the correct identification. In the case of KSw 85, the listed KIC counterpart is a known ROSAT source and active star, and KSw 35 is a spectroscopically-confirmed white dwarf. The remaining cases (KSw 19, 26, 37, 41, 45, 50, 72, and 77) are less certain; we determined the most likely KIC counterpart for these objects by overlaying UVOT and XRT contours on STSci-DSS III images and choosing the optical source most congruent with the available contour sets. Once determined, KIC counterpart can then be used to obtain the flux ratio f_X/f_V (Section 3.2), magnitudes from various sky surveys in other wavebands to construct broadband spectral energy distributions (SEDs) (Section 3.3), and most importantly, all quarters of Kepler time series data for the source (Section 4).

Of all 93 sources, 23 were already identified in the literature. We obtained optical spectra for an additional 30 sources on the 200-inch Hale telescope at Palomar Observatory during August 26-28 2014. These spectra were obtained using the double beam spectrograph (DBSP) with a slit width of 1", equipped with the D-55 dichroic filter to split light between the blue and red arms. The blue arm used a 1200 mm^{-1} grating with R~7700 and covered 1500 Å. The red arm used a 1200 mm⁻¹ grating with $R\sim10,000$ and covered 670 Å. We observed at least two spectrophotometric stars each night and arc lamp exposures were obtained before each source exposure at the source location. Red spectra were wavelength calibrated with a HeNeAr lamp and blue spectra with a FeAr lamp. While one night was clear and provided stable seeing at ~ 1 ", our seeing deteriorated on the second night, restricting our observations to targets with optical magnitudes $M_V \leq 17$. Data reduction was done using IRAF

two- and one-dimensional routines for spectroscopic data and produced a final one-dimensional spectrum for each observation. Optical spectra are further discussed in Section 3.1.

3. CHARACTERISTICS OF SOURCES

All sources are summarized in Table 2, which contains their most likely KIC counterparts; all available fluxes from GALEX, the Everett et al. (2012) UBV survey, and 2MASS; the X-ray to optical flux ratios; and whether or not the object has an archived Kepler light curve. We also provide any previous identifications of the sources in the literature or from the online databases of SIMBAD and NED. KSwAGS has provided new X-ray and UV data for a highly diverse mix of stellar sources, including rapid rotators, pulsating variables, eclipsing binaries, and γ Doradus, δ Scuti, and δ Cepheid type stars. We have also detected the known Seyfert 1 AGN Zw 229-15, a catalogued BL Lacertae object, and the radio galaxy Cygnus A. From the literature identifications and our optical spectra, we know with certainty the optical counterparts of 53 sources total (57%). For 9 additional sources, we can confidently assess whether the counterpart is stellar or extragalactic using a combination of apparent magnitude (e.g., an object with $V \sim 8$ is too bright to be an AGN), f_X/f_V , U-B color (e.g., a $V \sim 20$ source with a very high f_X/f_V is most likely to be an AGN), or broadband SED shape.

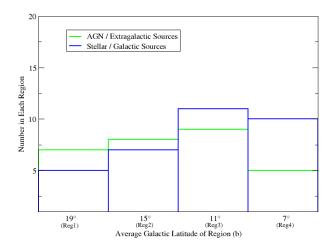


Fig. 3.— Distribution of source types by average galactic latitude of each of our 4 regions. As shown in Figure 1. Region numbers increase as they approach the galactic plane; Region 1 is furthest from the galactic plane with $b\sim 19^\circ$, while Region 4 is the closest with $b\sim 7^\circ$. Stellar sources begin to outnumber extragalactic sources closer to the plane, as expected. The plot includes the 62 sources classified by spectra, light curve behavior, or a combination of f_X/f_V ratio, U-B color, and apparent magnitude. Sources with unknown or uncertain classifications are not included in the plot.

We expected that the relative fraction of stellar and extragalactic sources in a survey region would depend on the galactic latitude of the region. Figure 3 shows the distribution in our four observing modules of the 62 sources for which we can confidently state a stellar or ex-

tragalactic origin. As the modules approach the galactic plane, the number of stellar sources outpaces the number of extragalactic sources, as expected. The diverse methods of classifying these sources prevents a robust analysis of the error; we display the trend only to illustrate the survey contents.

Below we outline the various methods used to classify the survey sources as either stellar or as AGN. Briefly: optical spectra are the most certain form of classification, but we do not have spectra for all KSwAGS targets. The X-ray to optical flux ratio offers a fairly stringent characterization at its extreme ends, but is degenerate at intermediate values. Broadband spectral energy distributions (SEDs) can be constructed for sources with adequate archival data in surveys at multiple wavelengths; the SED shape is recognizably different between stars and AGN and can be used to classify some sources. Finally, in the event that a source has very little archival data or an intermediate flux ratio value but does have a Kepler light curve, one can use the temporal behavior to rule out an AGN in cases where the variability is strongly periodic.

3.1. Optical Spectra

We obtained simultaneous blue and red optical spectra for 31 sources in our sample with the double beam spectrograph (DBSP) on the 200-inch Hale telescope at Palomar Observatory. As described above, poor seeing on one of our nights restricted our observations to targets with $M_V \leq 17$, reducing the number of faint targets and disproportionately removing AGN from the observable sample; thus, most of our spectroscopic targets are stellar in nature. In all, the Palomar spectra identified 21 stellar sources and 10 AGN. Figure 4 shows typical example spectra of three sources: a chromospherically active star, which are quite common in our sample; a type 1 AGN; and a normal A-type star. It is probable that the A star has a white dwarf companion that is producing the observed X-ray emission; alternatively, there may be confusion with a background X-ray source. Below we discuss the spectral properties of the AGN and stellar sources.

3.1.1. AGN Spectra and Measured Parameters

There are ten AGN among our Palomar spectra. Nine of them were type 1 (e.g., exhibit broad emission lines with FWHM $_{H_\beta} \geq 1000$ km/s), while one target, KSw 82, is a likely BL Lac object, exhibiting the typical flat, featureless continuum in multiple deep (~ 3200 s) exposures. Newly confirmed AGN include KSw 2, 3, 25, 27, 39, 40, 55, 68, 82 and 92. They join the three previously known AGN in our sample: the BL Lac object BZB J1848+4245 (KSw 9), the type 1 AGN Zw 229-15 (KSw 20), and the radio galaxy Cygnus A (KSw 93). Their spectral types and redshifts are given in Table 3. Our spectral analysis indicates that the KSwAGS AGN encompass a wide range of black hole masses (7.3 \leq log $\rm M_{BH} \leq$ 9.4), redshifts (0.03 \leq z \leq 1.5), and Eddington ratios (0.003 \leq $\lambda_{Edd} \leq$ 0.45).

It has long been theorized that the characteristic optical variability timescale in the accretion disk of an AGN should correlate with the mass of the supermassive black hole. This relationship has already been demonstrated

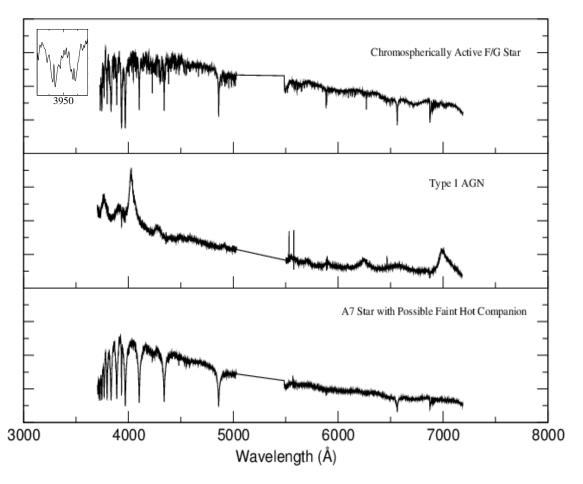


Fig. 4.— Optical spectra from the 200-inch Hale telescope at Palomar observatory, for three representative KSwAGS objects. In order from top panel to bottom, they are KSw 19, KSw 55, and KSw 69. The inset in the top panel is an expanded view of the Ca H and K lines (λ3969Å and λ3933Å), exhibiting the bright emission cores typical of chromospherically active stars.

in the X-ray, where a break frequency in the power spectrum has been detected. The timescale associated with the break is assumed to correspond to the physical size of the accretion disk (Uttley et al. 2002) and has been found to correlate with the black hole mass (McHardy et al. 2004). For further discussion, see Section 4.1. Recently, our group published the discovery of the first optical break frequency discovered in an AGN, using the Kepler light curve of Zw 229-15 (Edelson et al. 2014).

With this in mind, we calculate the redshift and black hole masses of our spectroscopically-confirmed AGN and present the values in Table 3. We calculated the black hole masses using the formulae from Wang et al. (2009); in the 7 objects that are low-redshift enough for the spectrum to contain $H\beta$, we use the relation:

$$\log\left(\frac{\rm M_{BH}}{10^6~\rm M_{\odot}}\right) = (1.39 \pm 0.14) + 0.5~\log\left(\frac{\rm L_{5100}}{10^{44}~\rm erg~s^{-1}}\right) + (1.09 \pm 0.23)~\log\left[\frac{\rm FWHM(H\beta)}{1000~\rm km~s^{-1}}\right]. \tag{1}$$

For our three AGN with z>0.6, the H β line is outside the clean region of the optical observing window, so we use the lower-wavelength Mg II $\lambda 2799$ Å line for BH mass estimation with the following relation:

$$\log\left(\frac{M_{\rm BH}}{10^6 \,\mathrm{M}_{\odot}}\right) = (1.13 \pm 0.27) + 0.5 \,\log\left(\frac{L_{3000}}{10^{44} \,\mathrm{erg} \,\mathrm{s}^{-1}}\right) + (1.51 \pm 0.49) \,\log\left[\frac{\mathrm{FWHM(MgII)}}{1000 \,\mathrm{km} \,\mathrm{s}^{-1}}\right],\tag{2}$$

where L_{3000} and L_{5100} are the continuum luminosities

at 3000 Å and 5100 Å, respectively. The Eddington ratio $\lambda_{Edd} = L_{Edd}/L_{bol}$ is a measure of the observed luminosity compared to the theoretical luminosity output of the maximal spherical accretion rate (known as the Eddington luminosity). With the masses in hand, we may calculate the Eddington luminosity for each of the sources via $L_{Edd} = 1.38 \times 10^{38} \ (M_{BH}/M_{\odot}) \ \mathrm{erg \ s^{-1}}$. The bolometric luminosity is estimated from the 0.2-10 keV X-ray luminosity using the bolometric correction factor of ~ 15 given by Vasudevan & Fabian (2007); while this correction is widely used, there is significant empirical scatter in this relation, so the Eddington ratios given in Table 3 should be assumed with caution until detailed SED modeling is performed. The AGN types, redshifts, black hole masses and Eddington ratios are given for our confirmed AGN in Table 3. In an upcoming paper, we will determine whether these AGN properties correlate with variability characteristics such as amplitude and characteristic frequency. A sample of the ongoing temporal analysis is given in Section 4.

3.1.2. Stellar Spectra

The Palomar spectra of the KSwAGS survey stars fall into roughly three groups. The first is comprised of typical M-dwarf spectra with strong Ca HK emission lines. M dwarfs with strong chromospheric activity are known to be X-ray sources, with high activity levels generally attributed to rapid rotation. Such rotation can indicate that the M dwarf is young and retains some innate formation spin, or that the star is in a binary with spin-orbit coupling (Lépine & Gaidos 2011). There is also a population of normal main-sequence spectra, which are not indicative of X-ray activity. In these cases, it is possible that there is a dim white dwarf companion contributing the X-ray flux that is too faint to affect the optical spectrum. Finally, there is a large population of G through K stars that exhibit broad and complex emission structures in their H alpha lines and the Ca HK lines (see top panel of Figure 4). The effective surface temperatures and surface gravities from the KIC for the stellar sources are given in Table 4; also given are the spectral types gathered from the Palomar spectra. The spectral type can be inferred from the effective temperature even for those objects without Palomar spectra; however, note that the KIC temperatures are derived from griz photometry and may be $\sim 100 - 200$ K too low in many cases (Pinsonneault et al. 2012).

3.2. X-ray to Optical Ratios

When an X-ray source has a UV/optical counterpart, the calculation of the X-ray to optical flux ratio can provide source classification information. As noted in Maccacaro et al. (1988) for the Einstein Extended Medium Sensitivity Survey (EMSS; Gioia et al. 1990) sources, the X-ray to optical flux ratio is a powerful tool in optical identification of X-ray sources. In general, all classes of AGN, including BL Lac objects, Seyfert galaxies and QSOs, have by far the highest f_X/f_V ratios, followed by stellar accreting binaries. Coronal stellar sources such as dMe stars typically have the lowest ratios. Krautter et al. (1999) measured f_X/f_V average values across a range of objects for a representative region of the RASS. Their average ratio values are $log[f_X/f_V] = -2.46 \pm 1.27$ for stellar sources and $log[f_X/f_V] = +0.41 \pm 0.65$ for AGN.

The optical counterparts for KSwAGS sources are drawn from the Kepler Input Catalog (KIC) (for details on counterpart identification, see Section 2). We draw our V magnitudes used in constructing these ratios from the Everett et al. (2012) UBV optical survey of the Ke-pler FOV; the fluxes in these bands for objects covered by the UBV survey are provided in Table 2.

Typical X-ray detections have too few counts per energy bin to model the X-ray spectrum; therefore, in order to obtain the X-ray flux from the XRT count rates, one must assume a photon index that fits the general continuum shape of the underlying spectrum. Since we do not know the source type, we instead use PIMMS (Mukai 1993) to calculate the flux of each object using a range of feasible photon indices, from $\Gamma = 1$ to 2.5. This range encompasses typical values of Γ for all object types, from active stellar sources to AGN. Heinke et al. (2008) found that magnetic and nonmagnetic CVs from the ASCA X-ray survey have average photon indices of $\Gamma = 1.22 \pm 0.33$ and 1.97 ± 0.20 , respectively. Values of Γ for AGN have been measured for many samples and range from $\Gamma \sim 1.5 - 2.5$ (e.g. Nandra & Pounds 1994; Page et al. 2005). In all PIMMS count-to-flux conversions, we use the galactic column density at the source position cataloged by Kalberla et al. (2005). We do not find that the choice of photon index changes the value of f_X/f_V significantly.

In Figure 5, we show the f_X/f_V ratio of all survey sources that have an optical counterpart in the KIC within 5 arcseconds of the UVOT position (or the XRT position, if the object was outside the UVOT FOV or had no UVOT counterpart). For objects without V magnitudes in the KIC, we use the Kepler magnitude (given in Table 2 as "kepmag") as a very rough proxy. The Kepler magnitude is a generic optical magnitude calculated using various available optical measurements for any given object in the FOV; its detailed determination can be found in Brown et al. (2011). Denoted in the figure are the average values for extragalactic and galactic sources from Krautter et al. (1999). The KSwAGS survey conforms to these typical ratio values: the average value for all confirmed stellar objects in our survey for which optical data was available is $log[f_X/f_V] = -2.09 \pm 0.27$; for confirmed AGN, the value is $log[f_X/f_V] = +0.44 \pm 0.81$. The calculated values of the ratio for each object are given in Table 2. Figure 5 shows that the full distribution of KSwAGS sources cluster around the AGN and stellar average values, but have a significant spread. Indeed, as Krautter et al. (1999) points out, there is overlap between the two types of objects. In particular, white dwarfs and cataclysmic binaries show very high f_X/f_V ratios for stellar sources, reaching into the lower tail of the AGN range. Therefore, in absence of a spectrum, a low or high f_X/f_V value will at least offer a reliable classification of whether an X-ray source is stellar or extragalactic. Intermediate values of f_X/f_V are not reliable classifiers, as there is significant overlap between source types for middling ratios.

3.3. *SEDs*

Using the multiple photometric data points provided from the 2MASS, GALEX, and UBV Everett et al. (2012) surveys, along with our UVOT and XRT data, we can construct broadband spectral energy distribu-

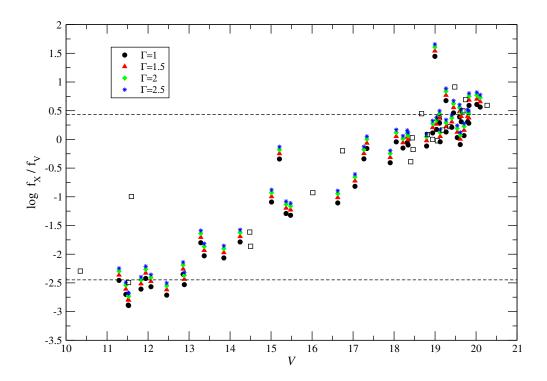


Fig. 5.— X-ray and optical flux ratios for all sources in the sample with a V magnitude given by the Everett et al. (2012) survey. Lines indicate the average value of this ratio for all stellar objects, $\langle log[f_X/f_V] \rangle = -2.46\pm1.27$, and for all AGN types, $\langle log[f_X/f_V] \rangle = 0.41\pm0.65$, as given in Krautter et al. (1999). The X-ray fluxes were estimated using a variety of values for the photon index (Γ) , shown in the legend. Black squares indicate objects for which no V magnitude is available, and so the Kepler magnitude was used as a rough proxy. These values should be considered very approximate.

tions (SEDs) for our sample across a wide wavelength range from infrared through X-ray. The archival surveys utilize varying magnitude systems, so in order to construct the SED, we converted these various systems to the consistent unit of millijanksies (mJy). The following discussion outlines this conversion process for each different survey. The final mJy fluxes are given in Table 2.

$3.3.1. \ \ GALEX \ Magnitudes$

The GALEX satellite surveyed the sky in the FUV and NUV bands, with effective wavelengths of 1538.6 Å and 2315.7 Å, respectively. GALEX data releases GR6 and GR7 included increased coverage of the Kepler FOV, resulting in the KIC-GALEX crossmatched survey. There are two possible search mechanisms for the crossmatched survey. As defined by GALEX, they are 1) the "accurate" search method, which only returns a counterpart that is within 2.5'' of the query coordinates and is unique (i.e., there are no other matches to either the KIC or GALEX source within this separation), and 2) the "complete" search method, which returns all counterparts within 5'' of the query coordinates. In order to reduce spurious information in our survey, we have provided GALEX magnitudes only when our KIC coordinates have a GALEX counterpart using the "accurate" method.

The survey uses the AB magnitude system (Oke &

Gunn 1983). The zero points of the GALEX magnitudes for the two bands were calculated by Morrissey et al. (2007) to be 18.82 (FUV) and 20.08 (NUV). Additionally, one count per second in GALEX corresponds to reference fluxes of 1.40×10^{-15} and 2.06×10^{-16} erg cm² s⁻¹Å⁻¹ in the FUV and NUV, respectively. Conversion of the given magnitudes to fluxes in erg cm² s⁻¹Å⁻¹ is thus achieved using the following formulae:

$$f_{FUV} = 1.40 \times 10^{-15} \cdot 10^{\frac{m_{AB,FUV} - 18.82}{-2.5}}$$
 (3)

$$f_{NUV} = 2.06 \times 10^{-16} \cdot 10^{\frac{m_{AB,NUV} - 20.08}{-2.5}} \tag{4}$$

Conversion to frequency units is then simply achieved by multiplying each flux by λ^2/c , where λ is the peak wavelength of the band, and can then be directly converted to mJy.

3.3.2. UBV and 2MASS Magnitudes

The conversion to flux density is simpler for the UBV and 2MASS magnitudes, as their flux density zero points are known and tabulated in the proper units for our purposes. In this case, the flux in Jy for any band A is calculated using:

$$f_A = f_{A,0} \cdot 10^{\frac{m_A}{-2.5}} \tag{5}$$

Aiming to facilitate optical source selection of interesting targets in the Kepler field, Everett et al. (2012) completed a UBV photometric survey of the field with the NOAO Mosaic-1.1 Wide Field Imager and the WIYN 0.9 m telescope on Kitt Peak. The magnitudes are in the traditional Vega-based Johnson system, and can be converted easily to fluxes using the standard tabulated fluxes at zero magnitude of the U, B, and V bands of 1823, 4130, and 3781 Jy.

The absolute calibration of the 2MASS survey was performed by Cohen et al. (2003). The fluxes at zero magnitude for the JHK filters are 1594, 1024, and 666.8 Jy, respectively.

With all given magnitudes converted to consistent flux units, we constructed the broadband SEDs for objects that have data in at least three wavebands. Plotted in Figure 6 are the SEDs of five representative objects from different regions of the f_X/f_V plot; three stellar objects and two AGN. This analysis is only informative for objects with data in 2MASS, the Everett et al. (2012) UBV survey, and/or GALEX, so we have displayed the SEDs for objects of each type with the most available data points. Note that AGN will necessarily have fewer detections in the ancillary surveys, since they are relatively much fainter on average than stellar sources in the optical and UV. Only two of the sources have GALEX data. The GALEX NUV filter overlaps with the UVOT M2 filter; however, because the observations are widely disparate in time, discrepancies in the flux values might indicate time variability. Additionally, since the 2MASS and UBV measurements are also disparate in time, SED fitting is not appropriate.

Nonetheless, one can clearly see that the AGN-type SEDs are flatter than the stellar SEDs at lower frequencies, and differ characteristically enough to allow for reliable source classification.

4. SAMPLE LIGHT CURVES

The driving motivation behind this survey is the unprecedented photometric precision of Kepler and its application to astrophysical sources beyond exoplanet detection. Over its \sim 4 year operational lifetime, Kepler routinely monitored over 150,000 stars, the overwhelming majority of which show no evidence of transiting exoplanets due to simple geometry. The unmatched photometric quality of the dataset will result in the Kepler targets being the best monitored astrophysical sources ever, and ancillary data will help insure they are also the best understood. There are many types of X-ray bright, optically variable sources both within and beyond the Galaxy. The MAST Kepler Data Search tool allows the user to input coordinates, object names, or KIC ID numbers and obtain all available quarterly light curves for any object. All Kepler data is now public, so if an object has been observed, in general one can download and analyze the light curves.

To demonstrate the temporal analyses to be carried out on the survey products, we have selected one representative object from each class (stellar and AGN). The following sections constitute a sample of results to be presented in upcoming papers focusing on the spectral and time-series analysis of each source type.

4.1. AGN: Timing Overview

The discovery of AGN in the Kepler FOV was the original primary motivation for this survey. Although a few AGN were known to be in the field, a lack of overlap with large spectroscopic surveys like SDSS prevented the curation of a sizable sample. Additionally, the known AGN in the field were typically selected by techniques known to bias the final sample. X-ray detection is the least-biased AGN selection method, as it is immune to all but the most intense dust obscuration and to the effect of dilution of the optical or infrared colors by host galaxy starlight (Mushotzky 2004). Our survey is approximately ten times deeper than the ROSAT All-Sky Survey (RASS), which included only a handful of confirmed AGN in this region of the sky.

The optical emission in an AGN is believed to originate in an accretion disk. The variability of this emission then implies stochastic processes within the disk. There are several candidate processes that theoretically give rise to rapid optical variability, including reprocessing of the variations of the central X-ray source, the orbital dynamics of the gas in the disk itself, spatial viscosity variations, and turbulent thermal processes. A clear understanding of the relationship of AGN parameters to overall variability requires a self-consistent, complete theory of accretion disks including radiative physics; this does not yet exist and there are many hurdles left for such simulations. The approach has therefore been largely empirical, involving observed correlations like the McHardy et al. (2004) study showing a relationship between the characteristic timescale of X-ray variability and black hole mass spanning many orders of magnitude, from stellar-mass black hole systems like Cygnus X-1 to Type 1 Seyfert galaxies. Such observations remain unexplained, but seem to be robust for the 2-10 keV band (e.g., González-Martín & Vaughan 2012; Ludlam et al. 2015). Additional approaches have involved mathematical modeling of observed variability as a damped random walk model (MacLeod et al. 2010) and propagating fluctuations that produce flicker noise (Lyubarskii 1997).

The Kepler data are superior to all previous AGN light curves ever obtained, in both photometric precision and continuous sampling frequency. The proper analysis techniques to analyze these light curves must be carefully constructed to mitigate the systematic errors known to be present in the Kepler data, such as the Moiré pattern drift noise (Kolodziejczak et al. 2010) and the interquarter discontinuities introduced by spacecraft rolls.

Orbital timescales for typical AGN black hole masses $(10^6-10^9M_{\odot})$ span a few days to months; timescales which we can probe using the *Kepler* light curves. Edelson et al. (2014) reported the first detection of an optical timescale break, detected at ~ 5 days, for one of our X-ray detected previously-known AGN (Zw 229-15). A small number of our confirmed AGN have continuous *Kepler* monitoring (see Table 2, columns with "Y"). Our original intent was to propose for *Kepler* to monitor all KSwAGS X-ray sources as soon as we had confirmed them; however, only four of the newly discovered sources were being monitored at the time of the failure of the second reaction wheel that put an end to the original *Kepler* mission. For those objects without archived light curves, we are able to construct coarsely sampled

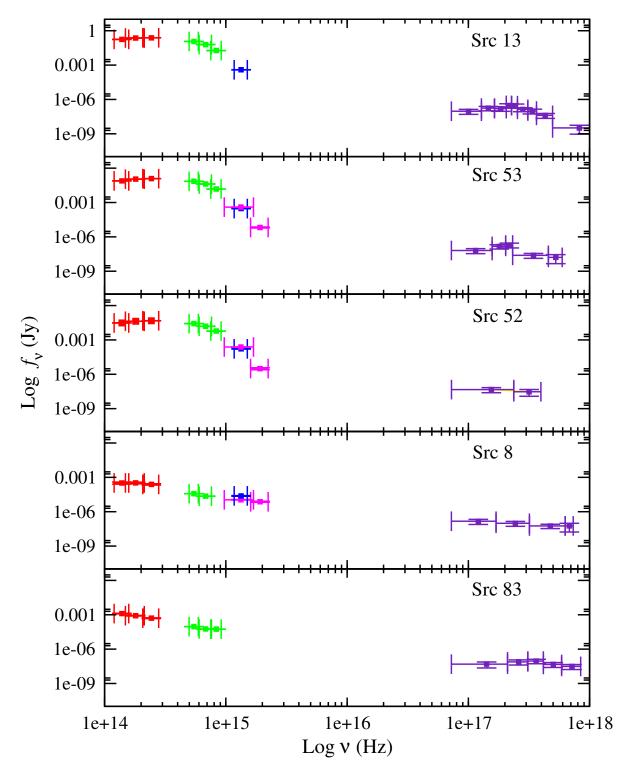


Fig. 6.— Broadband SEDs for three stellar objects (top three panels) and two AGN (bottom two panels). Red points are the 2MASS JHK colors, green points are UBV fluxes calculated from the Everett et al. (2012) survey, blue points are UVOT M2 filter fluxes, magenta points are GALEX FUV and NUV fluxes, and purple points are XRT fluxes from this survey. The objects were selected as stellar or AGN based on their log f_X/f_V values (i.e., their position on Figure 5).

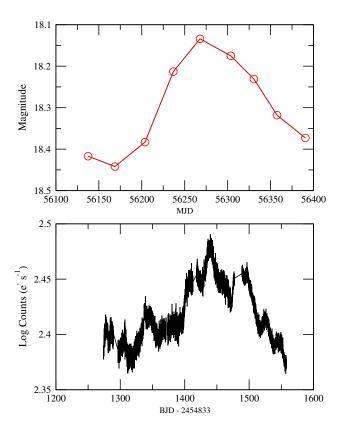


FIG. 7.— The full-frame image (FFI) light curve with 30-day sampling (top panel) and the standard *Kepler* light curve with 30-minute sampling (bottom panel) for KSw 9 (KIC 7175757), a BL Lac type AGN. The bottom panel's flux units have been put into a log scale for consistency with the magnitude units in the top panel. Both light curves are the output of our custom pipeline. While the FFI light curve involves different extraction apertures and procedures, as well as entirely different source images, the behavior of the variability is faithfully tracked.

light curves with 30-day cadence for the entirety of the 4 year mission using the full-frame images (FFIs): snapshots of the entire FOV downloaded each month to verify pointing calibrations. We have written a customized pipeline to handle the FFI data cubes and produce a light curve for any source that was on silicon, whether or not it was included in the Kepler Input Catalog (KIC). Figure 7 demonstrates that our FFI method faithfully tracks the variability in the archived light curve for KSw 9 (KIC 7175757; BZB J1848+4245). The displayed data is typical of the AGN light curves in our sample: aperiodic and stochastic, with both short- and long-term variability and with higher amplitudes at longer timescales.

An upcoming paper in this series will explore in detail the variability of the AGN in our sample, using our custom pipelines for both the FFIs and the archived data. It will also include all of the spectra and measurable X-ray properties of our confirmed AGN. We plan to use a variety of time series analysis techniques to search for characteristic timescales and correlations of variability properties with the measured parameters. Our spectroscopic campaign is currently continuing on the 4.3-meter Discovery Channel Telescope at Lowell Observatory.

4.2. Stars: Timing Overview

As described in Section 3.1.2, the Palomar spectra of the KSwAGS survey stars fall into roughly three groups: M dwarfs with strong line emission, normal main sequence spectra, and G through K stars with broad and complex emission structures in their H alpha lines and the Ca H and K lines. Their vsini measurements cluster around roughly 100 km/sec, implying that, as a group, they are rapid rotators. Rapid rotation and X-ray luminosity are strongly correlated, and such stars are concentrated in two basic stellar populations: young stars, which have not had time to lose their angular momentum, and binary stars, where tidal transfer of orbital momentum maintains the rotational angular momentum.

Preliminary investigation of the 27 Kepler light curves of KSwAGS stellar sources supports this. Fourier analysis of these sources detects highly significant periods in 22 of the 27 objects. Twenty have periods of 10 days or less, and nine of these have periods less than one day. Most show evidence of slow period and amplitude evolution over multiple Kepler quarters. Figure 8 shows the light curves and dynamic power spectra over two years for KSw 47 (KIC 6365080). In this example, we note the complex interplay between two fundamental periods at ~ 2.8 days and ~ 0.64 days, with constant frequencies but dramatically varying amplitudes. Mc-Quillan et al. (2014) include this object in their large sample of rotationally variable stars in the Kepler field, and attribute the longer period to rotation; however, they only exclude pulsating stars by making a simple cut in effective temperature, and have likely not excluded all pulsators. The effective temperature in the KIC is given as $T_{eff} = 5900 \text{ K}$ from griz photometry; however, our Palomar spectrum suggests an F type star. This is not necessarily unusual: the KIC temperatures may be $\sim 100-200 \mathrm{K}$ too cool, as reported by Pinsonneault et al. (2012). If the shorter period is indeed due to pulsation, then the frequency and stellar type suggest the object is an RR Lyrae star, which typically have periods of 0.2 - 1 days. Such complex, multi-periodic light curves are typical for a number of KSwAGS targets. Further investigation of Kepler photometry will allow us to track the growth, migration, and decay of starspots, differential rotation, activity cycles, and flaring on a wide variety of single and binary stars, offering a unique opportunity to measure magnetic activity cycles for a large sample of late-type stars, which could provide important constraints for developing better stellar dynamo models and a clearer understanding of how they function. The timing properties of the KSwAGS stellar sources will be fully investigated in an upcoming paper in this series.

5. CONTINUATION IN THE K2 FIELDS

Since the second reaction wheel failure and the resulting loss of pointing stability in the original FOV, the Ke-pler mission has been modified and repurposed as "K2". The new mission utilizes solar radiation pressure and the remaining two wheels to maintain pointing for approximately 3 months at a time, in fields aligned along the ecliptic plane (Howell et al. 2014). The new incarnation has been proven to produce photometric precision on par

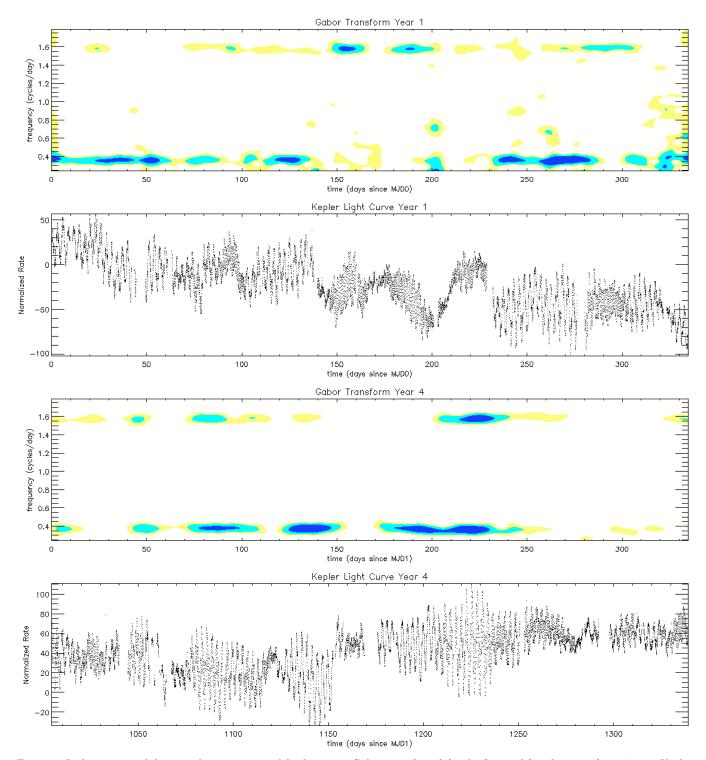


Fig. 8.— Light curves and dynamical power spectra (also known as Gabor transforms) for the first and fourth years of continuous Kepler monitoring of the variable star KSw 47 (KIC 6365080). There are two dominant periods with constant frequency but varying amplitude. Such light curves appear frequently in our sample of X-ray bright, Kepler-monitored stars.

with that of the nominal mission, according to the K2 photometry status report conducted after the redesign in December 2013.

We have surveyed K2 Field 4 with Swift using the same array of pointings as our original survey described in this paper. We supplemented our successful K2 monitoring proposal with sources from various additional X-ray missions including ROSAT, Chandra, and XMM-Newton, as well as from the Million Quasar Catalog ("Milliquas") 6 . Additionally, we have submitted the pointing coordinates for K2 Fields 8 and 10 to Swift; the survey in those fields will begin presently. We expect to continue to publish future versions of the KSwAGS survey as we increase our sample in the new fields; additionally, all future KSwAGS sources will have 30-minute cadence light curves for the full 3 month duration of each field pointing. The K2 campaign covers a wide range of galactic latitudes; the field we have surveyed so far, Field 4, is in the constellation Taurus at an approximate galactic latitude of $b \sim 15^{\circ}$. We have communicated with the Kepler and K2 Guest Observer (GO) offices to add our X-ray and UV survey products to the KIC and the EPIC (Ecliptic Plane Input Catalog), so that the wider astronomical community can access these data for their own analyses.

6. SUMMARY

This paper has introduced and described the KSwAGS survey, a Swift XRT and UVOT survey of four modules of the Kepler FOV. The survey discovered 93 total Xray sources with S/N \geq 3, with exposure times of \sim 2000 seconds per pointing. Of these, 60 have counterparts that were observed simultaneously with UVOT (the remaining 33 were not in the corresponding UVOT images of any of our XRT pointings, due to the smaller FOV of the UVOT telescope). The aim of the survey was to obtain X-ray sources that are likely to have optical counterparts with variability of astrophysical interest, especially AGN. The survey also produced a large number of stellar sources, both new and previously known in the literature. In most cases, the KSwAGS survey provides the first X-ray and UV observations for these objects.

Twenty-three of the source counterparts had optical

classifications in the literature. We obtained optical spectra at Palomar for an additional 30 sources. Of these 53 total sources with certain identification, 13 are AGN and 40 are stars. In the absence of spectra, we demonstrate that most of the survey sources can be categorized as either stellar or extragalactic using the flux ratio f_X/f_V or broadband SED shape.

As a sample of the future analysis to be carried out on the KSwAGS sources, we have shown example light curves and dynamical power spectra of a typical star from our survey, and both types of light curves (FFI and standard Kepler) for an AGN.

The KSwAGS survey has identified numerous new Xray sources in the original Kepler field which can be followed up either using archived light curves from the KIC database, or by constructing 30-day cadence light curves using the FFIs, which can be done for any source in the survey regardless of whether it was monitored by Kepler. This opens up a new phase space of X-ray and UV bright targets with high-quality optical time sampling. The survey is currently continuing in Fields 4, 8 and 10 of the K2 mission, the new extension of Kepler to the ecliptic plane, and will continue to yield a rich crop of Xray bright, optically variable targets for monitoring with the most exquisite photometer of our time.

We would like to thank the referee for a helpful report which improved the manuscript. We acknowledge Trisha Doyle for her assistance during the Palomar observing run. We also acknowledge the extremely helpful and accommodating staff at Palomar Observatory. The GALEX data for many of our KSwAGS sources was obtained thanks to A. Brown's GALEX GO programs GI4-056 and GI5-055, a UV survey specifically designed to locate active stars in the Kepler field. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. KLS is grateful for support from the NASA Earth and Space Sciences Fellowship (NESSF), which enabled the majority of this work.

REFERENCES

Baade, W. & Minkowski, R. 1954, ApJ, 119, 206

Balona, L.A. 2012, MNRAS, 423, 3420

Balona, L.A., Catanzaro, G., Crause, L., Cunha, M.S., Gandolfi, D., Hatzes, A., Uytterhoeven, K. & De Cat, P. 2013, MNRAS,

Breeveld, A.A., Landsman, W., Holland, S.T., Roming, P., Kuin, N.P.M. & Page, M.J. 2011, in AIP Conf. Ser. 1358, ed. J.E. McEnery, J.L. Rascusin & N. Gehrels (Melville, NY: AIP), 373 Brown, T.M., Latham, D.W., Everett, M.E. & Esquerdo, G.A.

2011, AJ, 142, 112

Burrows, D.N. et al. 2005, SSRv, 120, 165

Cannizzo, J.K., Smale, A.P., Wood, M.A., Still, M. & Howell, S.B. 2012, ApJ, 747, 117

Carini, M.T. & Ryle, W.T. 2012, ApJ, 749, 70

Catanzaro, G. et al. 2011, MNRAS, 411, 1167

Cohen, M., Wheaton, W.A. & Megeath, S.T. 2003, AJ, 126, 1090

Coughlin, J.L., López-Morales, M., Harrison, T.E., Ule, N. & Hoffman, D.I. 2011, AJ, 141, 78

Debosscher, J., Blomme, J., Aerts, C. & De Ridder, J. 2011, A&A, 529, 89

Edelson, R., Mushotzky, R., Vaughan, S., Scargle, J., Gandhi, P., Malkan, M. & Baumgartner, W. 2013, ApJ, 766, 16

Edelson, R., Vaughan, S., Malkan, M., Kelly, B.C., Smith, K.L., Boyd, P.T. & Mushotzky, R.M. 2014, ApJ, 795, 2

Everett, M.E., Howell, S.B. & Kinemuchi, K. 2012, PASP, 124,

Gaulme, P., McKeever, J., Rawls, M.L., Jackiewicz, J., Mosser, B. & Guzik, J.A. 2013, ApJ, 767, 82

Gioia, I.M., Maccacaro, T., Schild, R.E., Wolter, A., Stocke, J.T., Morris, S.L. & Henry, J.P. 1990, ApJS, 72, 567 Goad, M.R. et al. 2007, A&A, 476, 1401

González-Martín, O. & Vaughan, S. 2012, A&A, 544, 80

Guggenberger, E. 2012, Astronomische Nachrichten, 333, 1044 Heinke, C.O., Ruiter, A.J., Muno, M.P. & Belczynski, K. 2008, in

AIP Conf. Proc. 1010, 136

Howell, S.B. et al. 2014, PASP, 126, 398

Milliquas is unpublished but can be accessed http://quasars.org/milliquas.htm or via the NASA HEASARC at http://heasarc.gsfc.nasa.gov/W3Browse/all/milliquas.html.

Kalberla, P.M.W., Burton, W.B., Hartmann, Dap, Arnal, E.M.,
Bajaja, E., Morras, R. & Pöppel, W.G.L. 2005, A&A, 440, 775
Kapanadze, B.Z. 2013, AJ, 145, 31

Kolodziejczak, J. et al. 2010, SPIE, 7742, 38

Krautter, J., Zickgraf, F.-J., Appenzeller, I., Thiering, I., Voges, W., Chavarria, C., Kneer, R., Mujica, R., Pakull, M.W., Serrano, A. & Ziegler, B. 1999, A&A, 350, 743

Lépine, S. & Gaidos, E. 2011, AJ, 142, 138

Ludlam, R.M., Cackett, E.M., Gültekin, K., Fabian, A.C., Gallo, L. & Miniutti, G. 2015, MNRAS, 447, 2112

Lyubarskii, Y.E. 1997, MNRAS, 292, 679

Maccacaro, T., Gioia, I.M., Wolter, A., Zamorani, G. & Stocke, J.T. 1988, ApJ, 326, 680

MacLeod, C.L. et al. 2010, ApJ, 721, 1014

Martin, C. et al. 2003, SPIE, 4854, 336

Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A.,
Perri, M., Piranomonte, S. & Sclavi, S. 2009, A&A, 495, 691
McHardy, I.M., Uttley, P., Taylor, R.D. & Seymour, N. 2004,
AIPC, 714, 174

McQuillan, A., Mazeh, T. & Aigrain, S. 2014, ApJS, 211, 24 Morrissey, P. et al. 2007, ApJS, 173, 682

Mukai, K. 1993, Legacy 3, 21-31

Mushotzky, R.F. 2004, in Astrophysics and Space Sciences Library, Vol. 308, Supermassive Black Holes in the Distant Universe, ed. A.J. Barger, 53

Mushotzky, R.F., Edelson, R., Baumgartner, W. & Gandhi, P. 2011, ApJ, 743, 12

Nandra, K. & Pounds, K.A. 1994, MNRAS, 268, 405

Oke, J.B. & Gunn, J.E. 1983, ApJ, 619, L7

Page, K.L., Reeves, J.N., O'Brien, P.T. & Turner, M.J.L. 2005, MNRAS, 364, 195

Pigulski, A., Pojmanski, G., Pilecki, B. & Szczygiel, D.M. 2009, AcA, 59, 33

Pinsonneault, M.H., An, D., Molenda-Zakowicz, J., Chaplin, W.J., Metcalfe, T.S. & Bruntt, H. 2012, ApJS, 199, 30 Prša, A. et al. 2011, AJ, 141, 83

Reynolds, C.S. & Miller, M.C. 2009, ApJ, 692, 896

Roming, P.W.A. et al. 2005, SSRv, 120, 95

Scaringi, S., Körding, E., Uttley, P., Groot, P.J., Knigge, C., Still, M. & Jonker, P. 2012, MNRAS, 427, 3396

Scaringi, S., Groot, P.J., Verbeek, K., Greiss, S., Knigge, C. & Körding, E. 2013, MNRAS, 428, 2207

Schmidt, E.G., Rogalla, D. & Thacker-Lynn, L. 2011, AJ, 141, 53

Skrutskie, M.F. et al. 2006, AJ, 131, 1163 Slawson, R.W. et al. 2011, AJ, 142, 160

Tadhunter, C., Marconi, A., Axon, D., Wills, K., Robinson, T.G. & Jackson, N. 2003, MNRAS, 342, 861

Uttley, P., McHardy, I.M. & Papadakis, I.E. 2002, MNRAS, 332, 231

Uytterhoeven, K. et al. 2011, A&A, 534, 125

Vasudevan, R.V. & Fabian, A.C. 2007, MNRAS, 381, 1235

Voges, W. et al. 1999, A&A, 349, 389

Wang, J.-G. et al. 2009, ApJ, 707, 1334

Wright, E.L. et al. 2010, AJ, 140, 1868

TABLE 1 $\,$ Swift XRT and UVOT Sources in the Kepler FOV

7 281.8198 42.348	Src	X-ray RA	X-ray Dec	Region	Pointing	Ct Rate	Exp Time (s)	S/N	UV RA	UV Dec	UVOT Flux (mJy)	Notes
2		280.9950	43.4720	1		0.0105	1829.18	3.839	280.9955	43.4743	8.075	
4												
5 28 15498												
6 2 81.7771												
7									281.5518	42.6183	0.007	No HVOT data
82 22:1510 44:843 1 32 0.0129 1668:11 4.184 28:21502 44:8241 0.024 170 28:22:161 42:7489 1 1 35 0.028 168:31 81.11 28:29:163 42:769 0.031 No UVO									281 8200	10 3336	0.018	No UVOT data
92 821,966 42,7612 1 35 0.228 1589.43 18.11 282,1963 42,7609 0.031 No UVO 11 282,3341 43,7350 1 37 0.0137 1688.35 4.43 No UVO												
10 282,2451 43,7389 1 37 0.0125 1666,28 3.998 No UVO 12 282,3970 43,7171 1 37 0.00752 1920,81 3.25 282,677 43,4447 0.390 No UVO 12 282,3970 43,7471 1 37 0.00752 1920,81 3.25 282,677 43,4447 0.390 No UVO 15 282,2570 43,4471 1 37 0.00752 1920,81 3.25 282,677 43,4447 0.390 No UVO 15 282,8570 43,4471 0.390 No UVO 3.288 32,477 42,4447 0.390 0.00747 1931,31 3.155 283,1236 43,6753 1 52 0.00853 1870,03 3.381 283,1242 43,6752 0.044 0.0058 0.00747 1931,31 3.155 0.00747 1931,31 3.155 0.00747 1931,31 3.155 0.00747 1931,31 3.155 0.00747 1931,31 3.155 0.00747 1931,31 3.155 0.00747 1931,31 0.00747 1931,31 0.00747 1931,31 0.00747 1931,31 0.00747 1931,31 0.00747 0.0074					35							
11 282,3391 43,7350 1 37 0,0137 1888,35 4.43									202.1000	12.1000	0.001	No UVOT data
12 282,3970 43,7171 1 37 0,00752 1920,81 3,25 3,25 3,241 3,441 3,390 14 282,7376 43,4456 1 43 0,00341 1940,96 7,538 282,737 42,9819 1,130 1,13												No UVOT data
14 287,7376 429,920			43.7171									No UVOT data
15	13		43.4456	1				7.538	282.6572	43.4447		
16												
17 283,4805									283.1242	43.6752	0.044	
18												Out of FOV
19 286.3436 43.4668 2 8 0.0104 1440.55 3.024 286.3436 43.4675 0.115 0.151									202 - 104	10.0000	0.051	Out of FOV
20						0.0094						
21 286,5829 42,4333 2				2								
22 286,8068 41,5243 2 20 0.0796 1274,54 8.031				2					200.3301	42.4011	0.451	Out of FOV
23 286.8176 44.0189 2 16 0.122 1573.93 11.24 287.0224 43.7961 2 24 0.0106 1863.42 3.92 287.0419 43.7962 0.009 25 287.1229 42.3448 2 2 25 0.0118 1611.42 3.761 287.1238 42.344 0.123 No UV 27 287.2975 41.5552 2 20 0.0184 1598.75 4.455 28 287.7050 42.9275 2 36 0.0121 3357.91 5.152 287.7059 42.9268 3.410 29 287.7355 43.5900 2 40 0.00531 347.552 3.79 287.7359 43.5907 0.044 30 287.8162 44.1634 2 35 0.00492 3035.28 3.361 31 287.8831 42.8539 2 36 0.00565 2787.61 3.06 287.8829 42.856 0.008 32 287.996 42.0781 2 39 0.00365 2787.61 3.06 287.8829 42.856 0.008 32 287.996 42.0781 2 39 0.0037 3131.29 2.998 32 287.996 42.0781 2 39 0.0038 349.98 4.565 287.9983 41.8504 0.020 43 288.80440 43.1298 2 44 0.00996 2662.11 4.21 288.0438 43.1288 0.054 35 288.85454 42.036 2 47 0.0119 1629.74 3.688 288.2551 42.2034 0.120 36 288.3293 42.4070 2 42 0.0303 423.119 3.138 38 288.5717 42.6082 2 49 0.0248 169.374 6.477 0.014 of 38 288.5717 42.6082 2 49 0.0248 169.374 6.477 Out of 38 288.85717 42.6082 2 49 0.0248 169.34 6.56 288.5718 42.6089 0.046 39 288.86939 42.43320 2 52 0.0134 1709.98 4.119 288.6932 42.3918 0.080 41 291.1622 42.7210 3 3 0.00728 1767.81 3.078 42 291.3922 41.7268 3 4 0.0108 171.13 3.989 41 291.1622 41.7268 3 4 0.00088 171.13 3.846 291.392 41.7271 0.012 42 291.3922 41.7268 3 3 0.0048 1379.1 3.989 42 291.5946 41.5510 3 8 0.0041 115.95 9.203 0.0060 44 291.291.501 42.7573 6 3 15 0.0058 1751.79 9.203 10.0060 45 291.6717 42.1556 3 3 0.0048 1379.1 3.989 46 292.2361 43.0941 3 18 0.00669 18.879.4 3.01 46 292.2104 41.7510 3 8 0.00669 18.879.4 3.01 47 292.1626 41.5510 3 8 0.0041 115.95 9.203 0.0060 48 292.1595 42.733 3 16 0.00669 18.879.4 3.01 48 292.1595 42.733 3 16 0.00669 18.595 4.0059 292.235 43.0936 0.004 49 292.2361 43.0941 3 17 0.0066 1867.94 3.01 40 292.2361 43.0941 3 17 0.0066 18.595 4.0059 292.235 43.0936 0.000 40 292.2361 43.0941 3 17 0.0066 18.596.0 4.009 292.231 42.8074 0.007 40 292.2479 42.8080 3 17 0.00669 18.595 4.0059 292.238 41.6053 0.009 40 292.2503 43.268 3 10.0060 2.004 2.004 2.0093 2.004 4.0098 2.0093 2.0093 2.0093 2.				$\frac{2}{2}$								Out of FOV
25 287.1229 42.3448 2 2 25 0.018 1611.42 3.761 287.1238 42.344 0.123 No UV of 27 287.2975 41.560 2 2 60 0.00793 1714.99 3.133 No UV of 28 287.7956 42.9276 42.9268 3.410 Out of 28 287.7956 42.9276 42.9268 3.410 Out of 3.7352 3.79 287.7359 42.9268 3.410 Out of 3.7352 3.79 287.7359 43.5907 0.044 3.7352 3.79 287.7359 43.5907 0.044 31 287.8813 42.8539 2 36 0.00665 287.615 3.361 287.892 42.8559 0.008 Out of 31 287.8973 41.8501 2 39 0.00375 3131.29 2.998 Out of 32 287.9973 41.8501 2 39 0.0078 33.49.98 4.565 287.9983 41.8504 0.020 32 287.9973 41.8501 2 39 0.0078 33.49.98 4.565 287.9983 41.8504 0.020 32 287.8933 42.4670 2 42 0.0303 423.119 3.138 Out of 37 288.5651 42.0827 2 47 0.0119 1629.74 3.688 288.2551 42.2034 0.120 37 288.5651 42.0827 2 47 0.0344 1629.74 6.477 Out of 38 288.5717 42.6082 2 49 0.0248 1649.34 5.6 288.5718 42.6089 0.046 288.7612 43.3321 2 51 0.0155 1714.79 4.496 288.7612 43.323 0.060 0 41 291.1622 4.27210 3 3 0.00728 170.998 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.998 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.998 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.000 0 41 42.91.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.000 0 41 42.91.1622 4.7210 3 3 0.00728 170.918 4.909 0 42.773 4 0.000 0 42.918 4.				$\frac{2}{2}$								Out of FOV
25 287.1229 42.3448 2 2 25 0.018 1611.42 3.761 287.1238 42.344 0.123 No UV of 27 287.2975 41.560 2 2 60 0.00793 1714.99 3.133 No UV of 28 287.7956 42.9276 42.9268 3.410 Out of 28 287.7956 42.9276 42.9268 3.410 Out of 3.7352 3.79 287.7359 42.9268 3.410 Out of 3.7352 3.79 287.7359 43.5907 0.044 3.7352 3.79 287.7359 43.5907 0.044 31 287.8813 42.8539 2 36 0.00665 287.615 3.361 287.892 42.8559 0.008 Out of 31 287.8973 41.8501 2 39 0.00375 3131.29 2.998 Out of 32 287.9973 41.8501 2 39 0.0078 33.49.98 4.565 287.9983 41.8504 0.020 32 287.9973 41.8501 2 39 0.0078 33.49.98 4.565 287.9983 41.8504 0.020 32 287.8933 42.4670 2 42 0.0303 423.119 3.138 Out of 37 288.5651 42.0827 2 47 0.0119 1629.74 3.688 288.2551 42.2034 0.120 37 288.5651 42.0827 2 47 0.0344 1629.74 6.477 Out of 38 288.5717 42.6082 2 49 0.0248 1649.34 5.6 288.5718 42.6089 0.046 288.7612 43.3321 2 51 0.0155 1714.79 4.496 288.7612 43.323 0.060 0 41 291.1622 4.27210 3 3 0.00728 170.998 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.998 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.998 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.080 0 41 291.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.000 0 41 42.91.1622 4.7210 3 3 0.00728 170.918 4.119 288.6932 42.3918 0.000 0 41 42.91.1622 4.7210 3 3 0.00728 170.918 4.909 0 42.773 4 0.000 0 42.918 4.				$\bar{2}$					287.0419	43.7962	0.009	0 40 01 1 0 1
26 287.2975				2								
27 287.2975 41.5352 2 20 0.0184 1598.75 4.455				2				3.133				No UV CP
28 287.7660 42.9274 2 36 0.0121 3357.91 5.152 287.7059 42.9288 3.410 29 287.7355 43.5900 2 40 0.00531 3473.52 3.79 287.7359 43.5907 0.044 30 287.8162 44.1634 2 35 0.00492 3035.28 3.361 31 287.8831 42.8539 2 36 0.00565 2787.61 3.06 287.8829 42.856 0.008 32 287.9496 42.0781 2 39 0.00375 3131.29 2.998 33 287.9973 41.8501 2 39 0.00375 3131.29 2.998 34 288.0440 43.1298 2 44 0.00906 2662.11 4.21 288.0438 43.1288 0.054 36 288.3293 42.4670 2 42 0.0303 423.119 3.138 37 288.5651 42.0827 2 47 0.019 1629.74 3.688 288.2551 42.2034 0.120 36 288.3293 42.4670 2 42 0.0303 423.119 3.138 38 288.5717 42.6082 2 49 0.0248 1649.34 5.6 288.5718 42.6089 0.046 39 288.6929 42.3920 2 55 0.0134 1709.98 4.119 288.6932 42.3918 0.080 40 288.7612 43.3231 2 51 0.0155 1714.79 4.496 288.7613 43.323 0.060 41 291.1622 42.7210 3 3 0.0028 1767.81 3.078 42 291.3922 41.7268 3 4 0.0108 1711.13 3.846 291.392 41.7271 0.012 42 291.3922 41.7268 3 4 0.0108 1711.13 3.846 291.392 41.7271 0.012 43 291.5466 42.7565 3 6 0.0086 1867.94 3.01 42 91.6264 41.5510 3 8 0.0841 1115.95 9.203 44 291.6264 41.5510 3 8 0.0841 1115.95 9.203 47 292.1626 41.736 3 16 0.0066 1867.94 3.01 48 292.1953 42.7736 3 16 0.0066 1867.94 3.01 49 292.2316 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.046 48 292.1953 42.7736 3 15 0.0016 1893.66 3.99 292.313 42.6764 0.027 49 292.2321 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.204 49 292.2318 24.6770 3 15 0.0116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00669 1852.89 2.999 292.502 42.2138 0.065 51 292.4318 3.0341 3 25 0.00669 1852.89 2.999 292.502 42.2138 0.065 52 293.5059 42.2173 3 19 0.00669 1852.89 2.999 292.502 42.2138 0.065 52 293.5059 42.2173 3 19 0.00669 1852.89 2.999 292.502 42.2138 0.065 52 293.5059 42.2373 3 3 0.0146 1893.66 3.99 292.331 42.6764 0.027 52 292.5099 42.2374 3 28 0.0331 1854.99 6.099 292.502 42.2138 0.065 52 293.5059 43.2437 3 28 0.034 18.506 0.0099 292.8021 43.2430 0.066 52 293.9162 41.0456 3 37 0.0166 1893.68 3.918 2.999 292.502 42.2138 0.066 52 293.9179 42.4809 3 3 3 0.0141 1566.88 3.9	27	287.2975	41.5352	2	20	0.0184	1598.75	4.455				Out of FOV
September Sept		287.7060	42.9274	2	36			5.152	287.7059	42.9268		
31 287.8831 42.8539 2 2 36 0.00565 2787.61 3.06 287.8829 42.856 0.008 32 287.996 42.0781 2 39 0.00675 3131.29 2.998 0.01 of 33 287.9973 41.8501 2 39 0.0078 3349.88 4.565 287.9983 41.8504 0.020 0.054 288.0440 43.1298 2 44 0.00906 2662.11 4.21 288.0438 43.1288 0.054 288.2515 42.2034 0.120 2.00 0.00 0.00 0.00 0.00 0.00 0.0				2		0.00531			287.7359	43.5907	0.044	
22 287,9496				2								Out of FOV
34 288.0440 43.1298 2 44 0.00906 2662.11 4.21 288.438 43.1288 0.054 35 288.5245 42.2036 2 42 0.0303 423.119 3.138 0.060 37 288.5651 42.0827 2 47 0.0344 1629.74 6.477 0.010 38 288.5717 42.6082 2 49 0.0248 1649.34 5.6 288.7818 42.6089 0.066 40 288.7612 43.3231 2 51 0.0155 1714.79 4.496 288.7613 43.3231 0.000 41 291.622 41.7268 3 4 0.0108 1711.13 3.846 291.392 41.7271 0.012 43 291.5486 42.7566 3 3 0.0148 1379.1 3.989 41.7271 0.012 44 291.6260 41.7436 3 10 0.00688 1751.02 3.12 0.0064 0.204 <tr< td=""><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>287.8829</td><td>42.856</td><td>0.008</td><td>0 . 4</td></tr<>				2					287.8829	42.856	0.008	0 . 4
34 288.0440 43.1298 2 44 0.00906 2662.11 4.21 288.438 43.1288 0.054 35 288.5245 42.2036 2 42 0.0303 423.119 3.138 0.060 37 288.5651 42.0827 2 47 0.0344 1629.74 6.477 0.010 38 288.5717 42.6082 2 49 0.0248 1649.34 5.6 288.7818 42.6089 0.066 40 288.7612 43.3231 2 51 0.0155 1714.79 4.496 288.7613 43.3231 0.000 41 291.622 41.7268 3 4 0.0108 1711.13 3.846 291.392 41.7271 0.012 43 291.5486 42.7566 3 3 0.0148 1379.1 3.989 41.7271 0.012 44 291.6260 41.7436 3 10 0.00688 1751.02 3.12 0.0064 0.204 <tr< td=""><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>007 0000</td><td>41.0504</td><td>0.000</td><td>Out of FOV</td></tr<>				2					007 0000	41.0504	0.000	Out of FOV
35 288.2545 42.2036 2 47 0.0119 1629.74 3.688 288.2551 42.2034 0.120 36 288.3293 42.4670 2 42 0.0303 423.119 3.138 Out of 37 288.5651 42.6082 2 49 0.0248 1649.34 5.6 288.5718 42.6089 0.046 39 288.6929 42.3920 2 52 0.0134 1709.98 4.119 288.6932 42.3918 0.060 41 291.1622 42.7210 3 3 0.00728 1767.81 3.078 0 0ut of 42 291.3922 41.7268 3 4 0.0108 1711.13 3.846 291.392 10.012 0ut of 42 291.6924 41.7266 3 3 0.0148 1379.1 3.989 0ut of 0ut of 42 291.6264 41.5510 3 8 0.0841 1115.59 9.203 0ut of				2								
Section Sect				2								
37 288.5651 42.0827 2 47 0.0344 1629.74 6.477 6.477 6.477 6.477 6.477 6.478 7.62 6.478 6.477 6.477 6.478 6.477 6.478				2					200.2001	42.2004	0.120	Out of FOV
38 288.5717 42.6082 2 49 0.0248 1649.34 5.6 288.5718 42.6089 0.046 39 288.6929 42.3920 2 52 0.0134 1709.98 4.119 288.6929 42.3918 0.080 40 288.7612 43.3231 2 51 0.0155 1714.79 4.496 288.7613 43.323 0.060 41 291.622 42.7210 3 3 3 0.00728 1767.81 3.078 42 291.3922 41.7268 3 4 0.0108 1711.13 3.846 291.392 41.7271 0.012 43 291.5486 42.7656 3 3 0.0148 1379.1 3.989 Out of 42 291.6264 41.5510 3 8 0.0841 1115.95 9.203 Out of 45 291.6717 42.1556 3 6 0.00668 1751.02 3.12 Out of 45 291.6717 42.1556 3 6 0.00668 1751.02 3.12 Out of 46 292.0210 42.0779 3 10 0.0666 1867.94 3.01 Out of 48 292.1953 42.7736 3 15 0.00715 1836.44 3.109 292.1957 42.7734 0.009 47 292.1626 41.7436 3 16 0.0011 1878.94 3.611 Out of 48 292.1953 42.7736 3 15 0.00715 1836.44 3.109 292.1957 42.7734 0.009 48 292.2361 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.204 49 292.2361 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.204 50 292.3142 42.6770 3 15 0.0116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00643 1997.72 3.101				$\frac{2}{2}$								Out of FOV
39 288.6929 42.3920 2 52 0.0134 1709.98 4.119 288.6932 42.3918 0.080 40 288.7612 43.3231 2 51 0.0155 1714.79 4.496 288.7613 43.323 0.060 Out of 41 291.1622 42.7210 3 3 0.00728 1767.81 3.078 0.00 Out of 42 291.3922 41.7268 3 3 0.0148 1379.1 3.989 0.04 0ut of 42 291.6264 41.5510 3 8 0.0841 1115.95 9.203 0ut of 0ut of 46 292.0210 42.0779 3 10 0.0066 1867.94 3.01 0ut of No UV 48 292.1953 42.7736 3 15 0.00115 1836.44 3.10 292.1957 42.7734 0.009 49 292.3142 42.6770 3 15 0.0116 1894.62 6.291 292.35				2					288.5718	42.6089	0.046	Out of 1 O v
40 288.7612 43.3231 2 51 0.0155 1714.79 4.496 288.7613 43.323 0.0600 41 291.3922 41.7268 3 4 0.00108 1711.13 3.846 291.392 41.7271 0.012 43 291.5346 42.7656 3 3 0.0148 1379.1 3.989 Out of 44 291.6264 41.5510 3 8 0.0841 1115.95 9.203 Out of 45 291.6274 42.1556 3 6 0.00688 1751.02 3.12 Out of 46 292.0210 42.0779 3 10 0.0066 1850.94 3.01 Very 292.1626 41.7436 3 16 0.0101 1878.94 3.01 Very 292.1626 41.7436 3 15 0.00715 1836.44 3.109 292.1957 42.7734 0.009 48 292.1953 42.7736 3 15 0.00715 1836.44 3.109 292.1957 42.7734 0.009 49 292.2361 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.204 50 292.3424 42.6770 3 15 0.00116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00643 1997.72 3.101 No UV 52 292.5009 42.2127 3 19 0.00669 1852.89 2.999 292.502 42.2138 0.165 53 292.6304 42.8299 3 23 0.0148 1948.25 4.669 292.6299 42.8293 0.293 54 292.6719 43.0381 3 25 0.00965 2027.3 3.918 Out of 55 292.8015 43.2247 3 28 0.0331 1885.49 6.909 292.8021 43.2243 0.465 Out of 57 293.1699 42.8071 3 33 0.0136 1785.2 4.055 293.1702 42.8074 0.048 58 293.1876 41.0621 3 37 0.00863 1573.6 3.3 No UV 59 293.2583 41.6922 3 42 0.00461 3048.38 3.052 293.2581 41.6923 0.016 60 293.3043 43.1656 3 43 0.0141 1565.68 3.917 293.3041 43.1653 0.009 61 293.492 41.1218 3 37 0.0146 1343.14 4.118 Out of 62 293.5059 41.3211 3 46 0.0248 2363.78 6.557 293.5067 41.3207 0.006 63 293.6725 42.4138 3 45 0.0213 1475.13 4.429 Out of 64 293.8478 41.2915 3 46 0.00948 2363.78 6.557 293.5067 41.3207 0.006 65 293.95074 42.8962 3 47 0.0111 1231.23 4.395 293.9013 42.896 0.040 66 293.9578 42.3660 3 51 0.00478 2707.55 3.142 293.9579 42.366 0.099 67 294.0044 41.9892 3 49 0.00803 2040.93 3.407 294.0054 41.791 0.445 0.000 66 293.9578 42.3660 3 51 0.00478 2707.55 3.142 293.9579 42.366 0.099 0.000 67 294.094 41.9892 3 49 0.00803 2040.93 3.407 294.0054 41.791 0.445 0.000 67 294.0424 42.4103 3 51 0.0015 2672.43 1.112 43.313 41.685 0.000 67 294.0424 41.9892 3 49 0.00803 2040.93 3.407 294.0054 4				$\bar{2}$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2								
43 291.5486 42.7656 3 8 0.0841 1115.95 9.203 Out of 45 291.6717 42.1556 3 6 0.00688 1751.02 3.12 Out of 46 292.0210 42.0779 3 10 0.0066 1867.94 3.01 No UV 47 292.1626 41.7436 3 16 0.0101 1878.94 3.611 48 292.1953 42.7736 3 15 0.00715 1836.44 3.109 292.1957 42.7734 0.009 49 292.2361 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.204 50 292.3142 42.6770 3 15 0.0116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00643 1997.72 3.101	41	291.1622	42.7210	3	3	0.00728	1767.81	3.078				Out of FOV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									291.392	41.7271	0.012	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3								Out of FOV
46 292.0210 42.0779 3 10 0.0066 1867.94 3.01 Out of 47 292.1626 41.7436 3 16 0.0101 1878.94 3.611 0.009 Out of 48 292.1953 42.7736 3 15 0.00715 1836.44 3.109 292.1957 42.7734 0.009 49 292.2361 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.204 50 292.3142 42.6770 3 15 0.0116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00669 1852.89 2.999 292.502 42.2138 0.165 52 292.6304 42.8299 3 23 0.0148 1848.25 4.692 292.6299 42.8293 0.293 54 292.8015 43.0247 3 28 0.0317 1885.49 6.992												Out of FOV
47 292.1626 41.7436 3 16 0.0101 1878.94 3.611 48 292.1953 42.7736 3 15 0.00715 1836.44 3.109 292.1957 42.7734 0.009 49 292.2361 43.0941 3 177 0.0261 1824.52 6.291 292.235 43.0936 0.204 50 292.3142 42.6770 3 15 0.0116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00643 1997.72 3.101 52 292.5009 42.2127 3 19 0.00669 1852.89 2.999 292.502 42.2138 0.165 53 292.6304 42.8299 3 23 0.0148 1948.25 4.669 292.6299 42.8293 0.293 54 292.6719 43.0381 3 25 0.00965 2027.3 3.918 55 292.8015 43.2247 3 28 0.0331 1885.49 6.909 292.8021 43.2243 0.465 56 293.0162 41.0456 3 37 0.0176 1095.07 4.012 57 293.1699 42.8071 3 33 0.0136 1785.2 4.055 293.1702 42.8074 0.048 58 293.1876 41.0621 3 37 0.00863 1785.2 4.055 293.1702 42.8074 0.048 58 293.1876 41.0621 3 37 0.00863 1573.6 3.3 59 293.2583 41.6922 3 42 0.00461 3048.38 3.052 293.2581 41.6923 0.016 60 293.3043 43.1656 3 43 0.0141 1565.68 3.917 293.3041 43.1653 0.009 61 293.4492 41.1218 3 37 0.0141 1565.68 3.917 293.3041 43.1653 0.009 61 293.492 41.1218 3 46 0.0248 2363.78 6.557 293.5067 41.3207 0.006 62 293.5059 41.3211 3 466 0.0248 2363.78 6.557 293.5067 41.3207 0.006 63 293.6725 42.4138 3 45 0.0213 1475.13 4.429 64 293.8478 41.2915 3 46 0.00478 2707.55 3.124 293.9579 42.366 0.040 64 293.8978 42.3660 3 51 0.00478 2707.55 3.124 293.9579 42.366 0.092 67 294.0024 41.9892 3 49 0.00803 2040.93 3.407 294.0035 41.9896 0.015 68 294.1042 42.4103 3 51 0.0115 2672.43 4.812 294.1045 42.4106 0.039 69 294.1987 41.7921 3 53 0.00658 2544.91 3.11 294.3319 41.6852 2.700 71 294.3559 41.7774 3 53 0.00658 2544.91 3.11 294.3319 41.6852 2.700 71 294.3559 41.7774 3 53 0.00658 2544.91 3.11 294.3319 41.6852 2.700 71 294.3559 41.7774 3 53 0.00658 2544.91 3.11 294.3319 41.6852 2.700 71 294.3559 41.7774 3 53 0.00658 2544.91 3.11 294.3319 41.6852 2.700 71 294.3559 41.7774 3 53 0.00658 2544.91 3.11 294.3319 41.6852 2.700 71 294.3559 41.7774 3 53 0.00658 2544.91 6.22 294.2041 41.791 0.445 70 294.3325 41.6892 3 53 0.00658 2544.91 6.22 294.2041 41.791 0.445 70 294.3355 41.6892 3 53 0.00658 2544.91 6.22 29												
48 292.1953 42.7736 3 15 0.00715 1836.44 3.109 292.1957 42.7734 0.009 49 292.2361 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.204 50 292.3142 42.6770 3 15 0.0116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00643 1997.72 3.101 52 292.5009 42.2127 3 19 0.00669 1852.89 2.999 292.502 42.2138 0.165 53 292.6304 42.8299 3 23 0.0148 1948.25 4.669 292.6299 42.8293 0.293 54 292.6719 43.0381 3 25 0.00965 2027.3 3.918 55 292.8015 43.2247 3 28 0.0331 1885.49 6.909 292.8021 43.2243 0.465 56 293.0162 41.0456 3 37 0.0176 1095.07 4.012												
49 292.2361 43.0941 3 17 0.0261 1824.52 6.291 292.235 43.0936 0.204 50 292.3142 42.6770 3 15 0.0116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00643 1997.72 3.101 No UV 52 292.5009 42.2127 3 19 0.00669 1852.89 2.999 292.502 42.2138 0.165 53 292.6019 42.8299 3 23 0.0148 1948.25 4.669 292.6299 42.8293 0.293 54 292.6719 43.0381 3 25 0.00965 2027.3 3.918 0.465 55 292.8015 43.2247 3 28 0.031 1885.49 6.909 292.8021 43.2243 0.465 56 293.0162 41.0456 3 37 0.0176 1095.07 4.011 57									202 1057	49 7734	0.009	Out of FOV
50 292.3142 42.6770 3 15 0.0116 1893.66 3.99 292.313 42.6764 0.027 51 292.4233 41.2553 3 22 0.00643 1997.72 3.101 No UV 52 292.5009 42.2127 3 19 0.00669 1852.89 2.999 292.5029 42.2138 0.165 53 292.6719 43.0381 3 25 0.00965 2027.3 3.918 0.293 0.293 54 292.8015 43.2247 3 28 0.031 1885.49 6.909 292.8021 43.2243 0.465 56 293.0162 41.0456 3 37 0.0176 1095.07 4.012 0.048 0.048 58 293.1876 41.0621 3 37 0.0166 1785.2 4.052 293.2581 41.6923 0.016 60 293.3043 43.1656 3 43 0.0141 1565.68 3.917 293.3041 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
51 292.4233 41.2553 3 22 0.00643 1997.72 3.101 No UV 52 292.5009 42.2127 3 19 0.00669 1852.89 2.999 292.502 42.2138 0.165 53 292.6304 42.8299 3 23 0.0148 1948.25 4.669 292.6299 42.8293 0.293 54 292.6719 43.0381 3 25 0.00965 2027.3 3.918 Out of 55 292.8015 43.2247 3 28 0.0331 1885.49 6.909 292.8021 43.2243 0.465 56 293.1699 42.8071 3 33 0.0136 1785.2 4.055 293.1702 42.8074 0.048 58 293.1876 41.0621 3 37 0.00863 1573.6 3.3 0.016 60 293.3583 41.6922 3 42 0.00461 3048.38 3.052 293.2581 41.6923 0.016 <td></td>												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											****	No UV CP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52			3	19				292.502	42.2138	0.165	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	292.6304		3	23	0.0148	1948.25	4.669		42.8293		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								3.918				Out of FOV
57 293.1699 42.8071 3 33 0.0136 1785.2 4.055 293.1702 42.8074 0.048 58 293.1876 41.0621 3 37 0.00863 1573.6 3.3 0.016 59 293.2583 41.6922 3 42 0.00461 3048.38 3.052 293.2581 41.6923 0.016 60 293.3043 43.1656 3 43 0.0141 1565.68 3.917 293.3041 43.1653 0.009 61 293.492 41.1218 3 37 0.0141 1433.14 4.118 0.009 62 293.5059 41.3211 3 46 0.0248 2363.78 6.557 293.5067 41.3207 0.006 63 293.6725 42.4138 3 45 0.0213 1475.13 4.429 0ut of 64 293.8917 42.8962 3 47 0.0111 2231.23 4.395 293.9013 42.896 0.040									292.8021	43.2243	0.465	0
58 293.1876 41.0621 3 37 0.00863 1573.6 3.3 No UV 59 293.2583 41.6922 3 42 0.00461 3048.38 3.052 293.2581 41.6923 0.016 60 293.3043 43.1656 3 43 0.0141 1565.68 3.917 293.3041 43.1653 0.009 61 293.4492 41.1218 3 37 0.0141 1433.14 4.118 62 293.5059 41.3211 3 46 0.0248 2363.78 6.557 293.5067 41.3207 0.006 0.006 63 293.6725 42.4138 3 45 0.0213 1475.13 4.429 0.006 0.040									000 1500	40.00=4	0.040	Out of FOV
59 293.2583 41.6922 3 42 0.00461 3048.38 3.052 293.2581 41.6923 0.016 60 293.3043 43.1656 3 43 0.0141 1565.68 3.917 293.3041 43.1653 0.009 61 293.4492 41.1218 37 0.0141 1433.14 4.118 Out of 62 293.5059 41.3211 3 46 0.0248 2363.78 6.557 293.5067 41.3207 0.006 63 293.6725 42.4138 3 45 0.0213 1475.13 4.429 Out of 64 293.8478 41.2915 3 46 0.00992 2484.73 4.114 Out of 65 293.9017 42.8962 3 47 0.0111 2231.23 4.395 293.9013 42.896 0.040 66 293.99578 42.3660 3 51 0.00478 2707.55 3.142 293.99579 42.366 0.092									293.1702	42.8074	0.048	No HV CD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		293.1870 202.2522							202 2521	41 6022	0.016	NO UV CP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									200.0041	10.1000	0.003	Out of FOV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									293.5067	41.3207	0.006	O 40 O1 1 O V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											0.000	Out of FOV
65 293.9017 42.8962 3 47 0.0111 2231.23 4.395 293.9013 42.896 0.040 66 293.9578 42.3660 3 51 0.00478 2707.55 3.142 293.9579 42.366 0.092 67 294.0024 41.9892 3 49 0.00803 2040.93 3.407 294.0035 41.9896 0.015 68 294.1042 42.4103 3 51 0.0115 2672.43 4.812 294.1045 42.4106 0.039 69 294.1987 41.7921 3 53 0.00566 2544.91 3.224 294.2041 41.791 0.445 70 294.3325 41.6892 3 53 0.00658 2544.91 3.11 294.3319 41.6852 2.700 71 294.3559 41.7774 3 53 0.0204 2544.91 6.22 294.3562 41.7774 0.098 72 294.4295 41.7054 3 55 0.00585 3116.57 3.366 294.43 41.7055 0.015 73 296.4893 41.7504 4 3 0.0104 1948.69 4.04 74 296.5844 40.7630 4 4 0.0102 2099.18 4.029												Out of FOV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		293.9017							293.9013	42.896	0.040	
68 294.1042 42.4103 3 51 0.0115 2672.43 4.812 294.1045 42.4106 0.039 69 294.1987 41.7921 3 53 0.00566 2544.91 3.224 294.2041 41.791 0.445 70 294.3325 41.6892 3 53 0.00658 2544.91 3.11 294.3319 41.6852 2.700 71 294.3559 41.7774 3 53 0.0204 2544.91 6.22 294.3562 41.7774 0.098 72 294.4295 41.7054 3 55 0.00585 3116.57 3.366 294.43 41.7055 0.015 73 296.4893 41.7504 4 3 0.0104 1948.69 4.04 Out of 74 296.5844 40.7630 4 4 0.0102 2099.18 4.029 No UV 75 296.8341 40.9947 4 5 0.00906 1913.95 3.571 296.8311 40.9946 91.958												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									∠94.43	41.7055	0.015	Out of FOV
75 296.8341 40.9947 4 5 0.00906 1913.95 3.571 296.8311 40.9946 91.958												No UV CP
									296 8311	40 9946	01 058	110 0 V OF
76 296.9863 41.5419 4 8 0.0118 1781.26 3.856 296.9858 41.541 0.020												
											0.020	Out of FOV

TABLE 1 - Continued

Src	X-ray RA	X-ray Dec	Region	Pointing	Ct Rate	Exp Time (s)	S/N	UV RA	UV Dec	UVOT Flux (mJy)	Notes
78	297.1825	39.9171	4	11	0.0132	1977.29	4.41	297.1835	39.9169	108.980	
79	297.3499	41.5886	4	17	0.0959	1822.85	11.45	297.3492	41.5892	0.021	
80	297.3761	41.6051	4	17	0.00916	1871.98	3.457	297.3765	41.6054	0.009	
81	297.3857	39.6107	4	15	0.00652	1896.59	3.008	297.3849	39.6103	0.264	
82	297.5560	42.1157	4	20	0.012	1641.57	3.661				Out of FOV
83	297.7414	40.9773	4	19	0.0117	2939.39	5.362				Out of FOV
84	297.8264	41.3590	4	29	0.0259	1515.32	5.037				Out of FOV
85	297.8535	40.7351	4	26	0.00933	1792.64	3.514	297.8532	40.7355	21.210	
86	297.9148	40.1621	4	28	0.00922	1731.57	3.493				No UV CP
87	297.9698	41.6411	4	32	0.00926	1558.74	3.061				Out of FOV
88	298.4782	40.8922	4	43	0.00871	1525.06	3.182				Out of FOV
89	298.6474	41.4640	4	39	0.00835	1703.89	3.221	298.647	41.4643	2.831	
90	298.7180	41.9749	4	44	0.00662	1817.06	3.02				No UV CP
91	298.7625	40.9228	4	43	0.013	1710.56	4.163	298.7625	40.9219	0.311	
92	298.9334	41.9845	4	44	0.0301	1817.79	6.659				No UV CP
93	299.8686	40.7339	4	55	0.607	1634.21	28.82				No UV CP

TABLE 2 Broadband fluxes and properties of Swift sources

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Binary Star δ Cepheid ^{1,2} BL Lac ^{3,4} Variable ² Puls. Var ⁵ Variable ² Xw 229 (Sy1) ^{6,7} K Star ⁸ MV Lyr ⁹
3 7582708 19.18 0.019 0.021 0.04 0.05 0.04 0.05 0.04 0.05 0.08 0.129 6.46 39.26 98.81 385.56 422.57 319.99 -2.61 Y X 2.94 7 6837514 19.67 0.008 0.129 6.46 39.26 98.81 385.56 422.57 319.99 -2.61 Y X 2.94 7 6837514 19.67 0.007 0.011 0.02 0.04 0.24 0.33 0.32 0.7 UV 0.03 12 7939256 18.37 0.021 0.037 0.1 0.11 0.12 22 0.002 X 3.6 13 7739264 10.95 18.59 61.26 115.14 238.17 228.61 173.27 -2.36 Y UV 1.8 14* 7339343 11.52 18.72 49.02 116.65 94.08 64.14 Y UV 0.6 15 7871931 18.86 0.016 0.035 0.06 0.07 0.07	BL Lac ^{3,4} Variable ² Puls. Var ⁵ Variable ² Variable ² W 229 (Sy1) ^{6,7} K Star ⁸
4 7091410 20.4 0.04 0.05 0.04 UV 0.6 6 7869590 10.87 0.008 0.129 6.46 39.26 98.81 385.56 422.57 319.99 -2.61 Y X 2.94 7 6837514 19.67 0.001 0.011 0.02 0.04 0.24 0.33 0.32 0.7 UV 0.14 9 717575 18.13 0.036 0.07 0.08 0.1 -0.02 X 3.6 13 7739964 10.95 18.59 61.26 115.14 238.17 228.61 173.27 -2.36 Y UV 1.8 14* 7339343 11.52 18.72 49.02 116.65 94.08 64.14 Y UV 1.8 14* 7339343 11.52 2.666 146 573.86 30.99 33.42 29.07 -0.72 Y X 4.92 18 7587184 18.81 0.013 0.04 0.23 0.38 0.66 UV 0.6	BL Lac ^{3,4} Variable ² Puls. Var ⁵ Variable ² Variable ² W 229 (Sy1) ^{6,7} K Star ⁸
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BL Lac ^{3,4} Variable ² Puls. Var ⁵ Variable ² Variable ² W 229 (Sy1) ^{6,7} K Star ⁸
7 6837514 19.67 UV 0.6 8 8669504 18.95 0.007 0.011 0.02 0.04 0.24 0.33 0.32 0.7 UV 1.14 9 7175757 18.13 0.036 0.07 0.08 0.1 1.54 Y UV 0.3 12 7939256 18.37 0.021 0.037 0.1 0.11 0.12 -0.02 X 3.6 13 7732964 10.95 18.59 61.26 115.14 238.17 228.61 173.27 -2.36 Y UV 1.8 14* 7339343 11.52 18.72 49.02 116.65 94.08 64.14 Y UV 1.44 15 7871931 18.86 0.016 0.035 0.06 0.07 0.07 0.22 UV 0.66 16 7505473 16.22 2.669 146 573.86 30.99 33.42 29.07 -0.72 Y X 4.92 20** 6932990 11.13 1.01 1.2 2.5 <td>BL Lac^{3,4} Variable² Puls. Var⁵ Variable² Variable² W 229 (Sy1)^{6,7} K Star⁸</td>	BL Lac ^{3,4} Variable ² Puls. Var ⁵ Variable ² Variable ² W 229 (Sy1) ^{6,7} K Star ⁸
8 8669504 18.95 0.007 0.011 0.02 0.04 0.24 0.33 0.32 0.7 UV 1.14 9 7175757 18.13 0.036 0.07 0.08 0.1 1.54 Y UV 0.3 12 7939256 18.37 0.021 0.037 0.1 0.11 0.12 -0.02 X 3.6 13 7732964 10.95 18.59 61.26 115.14 238.17 228.61 173.27 -2.36 Y UV 1.8 14* 7339343 11.52 18.72 49.02 116.65 94.08 64.14 Y UV 1.64 15 7871931 18.86 0.016 0.035 0.06 0.07 0.07 0.07 0.22 UV 0.66 16 7505473 18.81 0.013 0.04 7.029 3.342 29.07 -0.72 Y X 4.92 18 7587184 18.81 0.013 0.04 27.29 63.46 64.49 46.9 -2.26 Y	Variable ² Puls. Var ⁵ Variable ² Zw 229 (Sy1) ^{6,7} K Star ⁸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variable ² Puls. Var ⁵ Variable ² Zw 229 (Sy1) ^{6,7} K Star ⁸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Puls. Var ⁵ Variable ² Zw 229 (Sy1) ^{6,7} K Star ⁸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Puls. Var ⁵ Variable ² Zw 229 (Sy1) ^{6,7} K Star ⁸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variable ² Zw 229 (Sy1) ^{6,7} K Star ⁸
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zw 229 (Sy1) ^{6,7} K Star ⁸
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zw 229 (Sy1) ^{6,7} K Star ⁸
20* 6932990 11.13 4.22 5.9 0.32 Y UV 0.3 Z 22 6190679 9.03 41.27 225.71 1934.14 2035.64 1542.87 Y X 0.78 23 8153411 12.64 4.04 3.46 3.13 0.72 0.74 0.56 -0.25 Y X 0.78 24 7948154 14.14 0.83 3.5 7.58 25.88 28.44 20.91 -1.69 UV 0.36 UV 0.36 25 6849023 18.32 0.041 0.104 0.13 0.18 0.2 0.23 0.36 0.51 -0.06 UV 0.54 UV 0.54 26* 822218 20.27 X 1.56 27 6191857 16.52 0.17 0.27 0.47 2.13 2.68 3.34 -0.25 X 0.96 28 7350496 9.326 0.042 4.014 136.27 875.97 733.67 507.61 Y UV 1.2 29 7811562 18.86 0.03 0.05 0.06 0.03 0.05 0.06 0.05 0.05 0.13 UV 0.3 31 7270227 16.43 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Zw 229 (Sy1) ^{6,7} K Star ⁸
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K Star^8$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K Star ⁹ MV Lyr ⁹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MV Lyr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C C
30 8223265 19.13 0.04 0.05 0.05 0.05 0.16 X 2.28 31 7270227 16.43 0.23 0.52 0.85 1.22 1.2 0.79 -1.01 UV 0.78 32 6594085 18.47 0.05 0.05 0.05 X 4.38 33 6431946 19.36 UV 0.12 34 7516296 18.73 0.015 0.05 0.07 0.31 UV 0.24 35* 6766476 17.98 0.13 0.14 0.17 UV 0.12 37* 6595746 19.48 0.83 1.01 1.45 X 1.74 38 7107762 13 3.84 10.44 18.33 36.79 35.08 25.12 -1.71 Y UV 0.54	G Star
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
33 6431946 19.36 UV 0.12 34 7516296 18.73 0.015 0.05 0.05 0.07 0.31 UV 0.24 35* 6766476 17.98 0.13 0.14 0.17 UV 0.12 37* 6595746 19.48 0.83 1.01 1.45 X 1.74 38 7107762 13 3.84 10.44 18.33 36.79 35.08 25.12 -1.71 Y UV 0.54	
34 7516296 18.73 0.015 0.05 0.05 0.07 0.31 UV 0.24 35* 6766476 17.98 0.13 0.14 0.17 UV 0.12 37* 6595746 19.48 0.83 1.01 1.45 X 1.74 38 7107762 13 3.84 10.44 18.33 36.79 35.08 25.12 -1.71 Y UV 0.54	
35* 6766476 17.98 0.13 0.14 0.17 UV 0.12 37* 6595746 19.48 0.83 1.01 1.45 X 1.74 38 7107762 13 3.84 10.44 18.33 36.79 35.08 25.12 -1.71 Y UV 0.54	
37* 6595746 19.48 0.83 1.01 1.45 X 1.74 38 7107762 13 3.84 10.44 18.33 36.79 35.08 25.12 -1.71 Y UV 0.54	
39* 6853073 18.27	
40 7674095 18.09 0.07 0.06 0.06 0.56 UV 0.3 41* 7198225 18.89 0.05 0.38 X 2.76	
41 7130223 10.03 0.06 VV 0.42 42 6362752 19.02 0.03 0.66 UV 0.42	
43 7199582 19.52 0.04 0.04 0.69 X 4.08	
45* 6691018 X 2.28	
46 6606776 19.11 X 3.72 47 6365080 11.45 29.81 63.79 92.73 112.64 94.08 66.55 -2.8 Y X 1.8	Rot. Var. ⁵
48 7201595 18.46	1000. var.
49 7446357 15.8 0.7 0.47 0.44 0.57 0.44 0.46 -0.06 Y UV 0.72	$V1504 \ Cyg^{10}$
50* 7119467 18.44 UV 2.46	
52 6779613 12.62 0.003 0.238 5.91 15.57 26.55 46.83 42.73 30.22 -2.44 Y UV 0.24	$\gamma \text{ Doradus}^5$
	l. Binary ^{5,8,11,12}
54 7447756 7.27 53.46 16191.55 24791.34 24050.85 X 1.5 55* 7610713 16.74 1.01 1.3 1.94 Y UV 0.72	M Star
56 5794742 17.65 0.027 0.051 0.11 0.12 0.23 1.04 1.56 1.76 0.05 X 1.68	
57 7286410 13.05 2.17 8.32 16.98 48.09 51.37 37.29 -1.93 Y UV 0.06	$Variable^{5,8,13}$
59 6289488 18.4 UV 0.6	
60 7532798 19.46 0.05 0.07 0.09 0.38 UV 1.98 61 5881515 19.09 X 1.44	
62* 6047927 18.67 0.17 0.41 0.56 UV 1.38	
64 5966921 14.49 0.13 0.83 2.44 23.49 28.89 22.32 -1.23 Y X 4.02	
65 7288925 19.06 0.07 0.09 0.1 0.21 UV 0.6	Tr. G.
66 6870455 7.66 36.44 11420.58 18702.51 14870.67 UV 0.48 67 6529378 13.82 1.07 4.7 10.93 38.7 42.73 32.5 -1.97 Y UV 0.66	K Star
67 6529378 13.82 1.07 4.7 10.93 38.7 42.73 32.5 -1.97 Y UV 0.66 68 6956279 19.12 0.04 0.05 0.06 UV 0.18	
69 6371741 14.5 2.13 4.29 2.85 1.95 Y UV 0.66	
70 6293269 18.13 0 84.65 33.15 38.15 30.72 0.05 X 1.08	
71 6372268 11.44 6.15 27.67 63.16 229.56 260.56 189.12 -2.33 Y UV 0.72	
72* 6372529 19.05 UV 0.54 73 6380580 11.38 24.77 57.86 93.59 133.32 115.96 80.6 -2.79 Y X 1.08	$\gamma \text{ Doradus}^5$
75 5724440 7.874 1808.37 1259.8 847.09 Y UV 3.72	δ Scuti ^{14,15}
76 6224104 15.16 0.66 1.67 2.7 4.07 3.43 2.43 -1.2 UV 0.18	
77* 6062112 19.74 X 2.46	
78 4857678 7.01 5139.12 3759.24 2572.35 Y UV 0.96	$F Star^{15}$
79 6225816 10.34 671.26 709.09 538.93 Y UV 2.76	
80 6305971 19.47 0.05 0.4 UV 0.36 81 4585976 12.23 9.03 23.5 39.45 65.24 52.42 37.77 -2.62 Y UV 0.036	Rot. Var. ⁵
82* 6714686 16.01	Rot. Var. ⁵
83 5728924 18.16 0.06 0.06 0.09 0.5 0.82 1.26 0.27 X 4.32	

TABLE 2 — Continued

Src	KIC ID	Kep Mag	GALEX FUV	GALEX NUV	U	В	V	J	Н	K	$\log f_X/f_V$	Light Curve?	Query Coords	Angular Sep. (")	ID
84 85*	6065241 5557932				0.19	1.11	3.74	43.9 2321.07	49.97 1901.52	38.76 1329.02	-1	Y	X UV	1.68 0.48	G Star
88 89	5646749 6150124					0.13	0.26	$0.58 \\ 8695.38$	$0.7 \\ 8431.41$	$0.39 \\ 6085.98$	-0.31	Y	$_{ m UV}^{ m X}$	$0.36 \\ 0.6$	G Star
91 92	5733906 6550385				11.55 274.15	32.96 661.84	$56.18 \\ 74.34$	$106.39 \\ 0.35$	$100.9 \\ 0.59$	$73.71 \\ 0.12$	$-2.47 \\ 0.77$	Y	$_{ m X}^{ m UV}$	$0.66 \\ 1.38$	Puls. Var ¹⁶
93*	5568067	11.59						2.19	3.23	3.24		Y	X	1.26	Cyg A^{17}

Note. — The nearest KIC counterparts to the X-ray / UV sources, out to a maximum separation of 5'', and their corresponding Kepler magnitudes and fluxes in the FUV and NUV (from GALEX), the optical UBV bands (from the Everett et al. (2012) survey) and the infrared (from 2MASS). All fluxes are shown in mJy. Also given are the f_X/f_V ratios plotted in Figure 5, whether an archived light curve is available in the KIC, whether the X-ray or UV coordinates were used to query the KIC, the angular separation between the query coordinates and the KIC source, and any identifications of the objects in NED or SIMBAD. The references for the IDs are as follows: 1 Schmidt et al. (2011), 2 Pigulski et al. (2009), 3 Kapanadze (2013), 4 Massaro et al (2009), 5 Debosscher et al. (2011), 6 Mushotzky et al. (2011), 7 Carnizzo et al. (2012), 1 Coughlin et al. (2011), 1 Prša et al. (2011), 1 Slawson et al. (2011), 1 Catanzaro et al. (2011), 1 Cytterhoeven et al. (2011), 1 Balona (2012), 1 PBaade & Minkowski (1954).

18

TABLE 3
PARAMETERS OF SPECTROSCOPIC AGN

Smith et al.

KSw Num.	Type	z	$Log M_{BH}$	λ_{Edd}
2	Sy 1	1.506	8.53	1.474
3	Sy 1	1.177	8.404	0.452
9 (BZB J1848+4245)	BL Lac			
20 (Zw 229-15)	Sy 1	0.0266	7.29	0.038
25 `	Sy 1	0.609	8.898	0.042
27	Sy 1	0.056		
39	Sy 1	0.533	8.382	0.113
40	Sy 1	0.38	8.111	0.109
55	Sy 1	0.437	8.783	0.069
68	Sy 1	0.36	8.553	0.026
82	BL Lac?			
92	Sy 1	0.182	8.473	0.017
93 (Cyg A)	Radio Galaxy	0.056	9.398	0.003
, , ,	Ť			

Note. — Spectroscopic type, redshifts, black hole masses and Eddington ratios of spectroscopically-confirmed AGN. Redshifts and black hole masses are not measurable for BL Lacs due to the lack of optical lines. Values of M_{BH} were obtained using the FWHM of the Mg II $\lambda 2799$ Å or the H β line for high and low redshifts, respectively. Unfortunately, the redshift in source 27 was such that H β fell in the dichroic break and was too low for measurement of Mg II. Values of redshift and black hole mass for KSw 93, which is Cygnus A, were obtained from Tadhunter et al. (2003). See Section 3.1.1 for details on how values were obtained.

 $\begin{array}{c} {\rm TABLE~4} \\ {\rm Parameters~of~Spectroscopic~Stars} \end{array}$

KSw Num.	T_{eff}	Log g	Spectral Type
_	5050	4.00=	
1	5953	4.297	F
6	4478	2.64	~
13			G
14	5607	4.307	G
16			G
19	4817	4.093	K
22	4551	1.941	
23	8973	4.001	
24	4590	2.485	
28	5453	3.744	G
35			\mathbf{F}
38	4967	4.376	K
47	5899	4.232	\mathbf{F}
49	9046	4.014	
52	5513	3.7	
53			
54			M
57	4667	3.317	K
64	3831	4.291	M
66			M
67			
69	8742	3.929	A
71			K
73	5570	3.906	
75	7292	3.566	
76	6165	4.282	\mathbf{F}
78			\mathbf{F}
79			
81	5641	3.902	
84			M
85	5617	4.21	G
89			$\widetilde{\mathrm{G}}$
91	5241	3.688	K
		5.500	

Note. — Effective surface temperature, surface gravities, and spectral types indicated by the Palomar spectra for the 33 confirmed stellar KSwAGS sources. The temperatures and gravities are from the Kepler Input Catalog (KIC), while the spectral types are given only for those objects with Palomar spectra.