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A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in 
a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter 
radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region 
is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case 
where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The 
interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior 
is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical 
expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously 
varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature 
and heat flux results are given to show the effect of variations in refractive index and optical thickness through 
the multilayer laminate. 

Nomenclature 
a1 = absorption coefficient of jth sublayer, m' 
D = total thickness of the composite plane 

layer, m 
D. = thickness of jth subláyer in composite, m 
E 1 , E2 , E3 = exponential integral functions, 

E,(x) = f"	 exp(—xlp.) dj. 
F(n) = function of refractive index defined in 

Eq. (19a) 
n- = index of refraction of jth sublayer 
q = heat flux, W/m2 
q 1 , q 2 = externally incident radiative flux, W/m2 

= dimensionless radiative heat flux, 
q,/(q 1 - q2) 

R1 = quantity p;/(l - pJ) 
T = absolute temperature, K 

= dimensionless temperature function, 
(oT4 - q 2)I(q 1 	 q2) 

X. = dimensionless local coordinate in jth 
sublayer, x1/D1 

x = coordinate normal to boundaries of 
composite plane region, m; x1, local 
coordinate in jth sublayer, m 

KD = optical thickness of entire layer 
K1 + K2 +	 + K1	 K,j optical thickness of 
the jth sublayer (a + o-1)D1 

= optical depth in a sublayer (a 1 + 
extinction coefficient in the complex index of 
refraction 

A0 = radiation wavelength in vacuum 
p, p° = reflectivity of interface for internally and 

externally incident radiation 
= Stefan-Boltzmann constant, WI(m2 . K) 
= scattering coefficient in jth sublayer, m'
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T', T°	 = transmissivity of interface for internally and

externally incident radiation 

= dimensionless temperature function, Eq. (3) 
'I'	 = dimensionless radiative heat-flux function, 

Eq. (4) 

Subscripts
f, s = first (x1 = 0) and second (x1 = D.) internal 

interfaces of a sublayer within the composite 
H, L = higher and lower values	 - 
i, o = incoming and outgoing radiation 
J = total number of sublayers in the composite 
j = jth sublayer in the multilayer composite, 

1jJ	 -	 - 
r = radiative quantity	 - 

Superscripts
= inside surface of an interface 

o = outside surface of an interface

Introduction 

T
HE use of ceramic parts or coatings is of interest for 
high-temperature applications. Some parts may have 

reinforcing layers or may be laminated, so it is necessary to 
consider heat transfer in composite materials. Surrounding 
temperatures are usually high, so there can be appreciable 
heating by radiation. Since some ceramics are semitranspar-
ent, their temperature distributions are influenced by internal 
radiative heat flow. The refractive indices of the sublayers in 
a composite can have a considerable effect on the temperature 
distribution and radiative heat flow. Surface reflections de-
pend on the refractive indices on both sides of the interface, 
so the refractive indices influence both the external energy 
transmitted into the interior of a material and the amount of 
internal energy reflected back into the interior. Within a ma-
terial, emission depends on its refractive index squared; hence, 
internal emission can be many times that for a blackbody 
radiating into a vacuum. Since internal radiation exiting through 
an interface into a vacuum cannot exceed that of a blackbody, 
there can be considerable reflection at the internal surface of 
an interface, partially by total internal reflection. If there is 
a gradient of refractive index in the material, it will cause 
some of the radiation to be refracted backward when initially 
directed into a region with a smaller refractive index. These 
effects distribute internal energy within the material and make 
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the temperature distribution more uniform than in a region 
with a refractive index close to unity. This article will provide 
some insight into these effects by examining the limiting case 
where heat transfer is only by radiation. 

In Siegel and Spuckler"2 it was shown that for radiative 
equilibrium (no conduction or convection) in a single- or two-
layer gray medium with diffuse interfaces, the temperature 
distribution and radiative heat flux for any refractive index 
can be readily obtained from available results for a single 
layer with a refractive index of one. This article uses these 
ideas extended to a multilayer laminate to determine radiative 
transfer characteristics in a layer with a continuous variation 
of refractive index. Analytical expressions that are readily 
evaluated are obtained for the temperature distribution and 
radiative heat flow. Each sublayer emits, absorbs, and iso-
tropically scatters radiation. For simplicity, the external me-
dium on each side of the entire laminate has a refractive index 
of one. 

The outer surfaces of the laminate, and all interfaces be-
tween adjacent layers, are assumed diffuse. This is probably 
a reasonable approximation for ceramics that have not been 
polished and are bonded together. When transmitted radia-
tion, or radiation emitted from the interior, reaches the inner 
surface of an interface, it is assumed diffuse as a result of 
scattering within the medium. If the index of refraction of the 
material is greater than that of the surrounding medium, some 
of this diffuse energy is in angular directions for which there 
is total internal reflection. These reflections provide a trap-
ping effect that retains energy within the layer with the larger 
refractive index, and tends to equalize the local temperature 
distribution in this layer. 

There have been many studies of radiative tfansfer in semi-
transparent layers. However, very little has been done to 
examine the effects of a variable refractive index, especially 
with regard to computing internal temperature distributions 
when there is internal emission and scattering. To predict heat 
treating and cooling of glass plates, Gardon 3 developed an 
analysis for temperature distributions in absorbing-emitting 
layers, including uniform refractive index effects. The inter-
faces were optically smooth, and specular reflections at the 
interfaces were computed from the Fresnel reflection rela-
tions. A similar application, Fowle et al., 4 predicted heating 
in a window of a re-entry vehicle. Some recent papers5-8 
further examined the effects of Fresnel boundary reflections 
and a nonunity uniform refractive index. Many analyses of 
both steady and transient heat transfer to single or multiple 
plane layers, such as Amlin and Korpela 9 and Tarshis et al.,'° 
have used diffuse conditions at the interfaces as in the present 
study. Thomas" set up a solution procedure to include a 
ceramic interface that is partially specular and diffuse. Ritchie 
and Window' 2 and Snail' 3 analyzed the reflection behavior of 
thin films with a graded refractive index. The results are con-
cerned with the effect of thin films on the absorption of solar 
radiation and do not consider their internal temperature dis-
tribution.

Analysis 
A laminated plane layer consists of an arbitrary number of 

I sublayers of different materials with thicknesses D 1 , D2, 
D,, . . . , D,, as in Fig. la. Each sublayer absorbs, 

emits, and isotropically scatters radiation. The limiting case 
is examined here where energy transfer within the laminated 
region is dominated by radiation, so heat conduction is ne-
glected (in the literature this limit is referred to as "radiative 
equilibrium"). An analytical solution is obtained which can 
provide a helpful basic limiting case for numerical studies in 
which conduction is included. Each sublayer has a constant 
n,; it is the effect of the different refractive indices and the 
different optical thicknesses of the sublayers that is investi-
gated here. The materials are assumed to provide significant 
scattering, so the energy fluxes are assumed diffuse at the
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Fig. 1 Laminated multilayer geometry: a) coordinate systems in lay-
ers, and nomenclature designating interfaces and their heat fluxes; b) 
detailed nomenclature for the jth layer. 

interfaces between sublayers and between the outer sublayers 
and the surrounding air or vacuum. For simplicity, the re-
fractive index of the surroundings is one. 

As shown in Fig. la the laminated region is subjected to 
diffuse q, and q from the external surroundings onto the 
two outer boundaries x, = 0 and x1 = D1 ; for convenience 
q, > q 2 . Within each sublayer, the analysis will use outgoing 
and incoming fluxes, q0 , and q 1 , that are moving away from 
or toward each interior interface of each sublayer. Since scat-
tering is inclUded, the local optical depth within each sublayer 
is related to its individual x1 coordinate by K, = (a, + o,,)x, 
= (a1 + o,)D,X, = KD/X. 

The temperature distribution in each sublayer is governed 
by an integral equation (Siegel and Howell' 4) with index of 
refraction factors included to give for the jth sublayer 

nT(X, KDI) = {qO , fE2(KD,X) + q0JE2[KD,(1 

- X)]} + Ko	 ffT(X7)El(KDJIX - X71) dX7

(1) 

where q011 and q0 , are the outgoing internal radiative fluxes 
from the first and second interfaces of the jth layer as shown 
in Fig. 1. The energy equation dq,Idx = 0 shows that q, being 
transferred through the entire laminated layer is constant for 
the present conditions of radiative equilibrium (negligible in-
ternal heat conduction). The relation of q, to the temperature 
distribution in any of the sublayers is obtained by using the 
expression for q, within a plane layer as given in Ref. 14. This 
is evaluated at x = 0 to give for the jth sublayer 

q,(K01) = q,,,,1 - 2q0.,,$E3(KDJ) 

	

- 2nKo,	 T(X)E2(K01) dX	 (2) 
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The following dimensionless groups are now defined for each 	 q, = q0,1,1 - q-,1,1 
sublayer:

q0,1,f = q1,1 _ 1 'r°,1 + q-Jfp;f 

1 (X, K01)	 n1oT(X,, K01) -	
(1 < < J) (3) 

	

q0,1,1	 q0,1, 

'I'1(K01) 
=	 q,(ic,)	 (1	 I < J.)	 (4)


q0,,,1 

In terms of these quantities Eqs. (1) and (2) become 

F1(X, KDI) = E2(KDJX,) + K01 
f 

1(X, KJ) 

	

x E1(K01I X, - X7I) dX)	 (1 j^J)	 (5) 

C' 
= 1 - 2KDJ I 1(X1 , K01)E2 (K01X) dX1 

Jo 

(1jJ)	 (6) 

Equations (5) and (6) are valid for each of the J sublayers. 
It is important to observe that 4 ,, and "I',, are not functions of 
n1 . Hence, to obtain '1 and "1',, for all n1 ^ 1, it is necessary 
to solve Eq. (5) numerically, only once, for each value of the 
parameter K01 and use each result to evaluate Eq. (6). This 
has already been done, and tabulated results for 1F(X, ,D) 
and 'I'(K0 ) from numerical solutions are in references such 
as Heaslet and Warming15 and Siegel and Spuckler."2 

Although the numerical solutions for t(X, K0 ) and 4'(K0) 
are available, the solutions required here for q, through the 
composite layer, and for the 7(X1 ) in each of the sublayers, 
have not yet been obtained. This is because Eqs. (3) and (4) 
contain unknown outgoing fluxes q 0Jf , and q01 , at the first 
and second interfaces of each sublayer. These boundary fluxes 
for each of the j sublayers must be expressed in terms of known 
quantities. This is accomplished by looking in detail at the 
outer boundary and interior interface conditions. 

At the two outer boundaries of the composite laminated 
layer, the internal fluxes leaving the internal interfaces of the 
first and Jth layers are related to the transmission of external 
flux from the surroundings and the reflection of incoming 
internal flux by

q0 11 = q, 1 T if + q,fpIf	 (7a) 

	

q0,1, =	 +	 (7b) 

The superscripts o and i designate properties for radiation 
incident on the outside or inside of an interface. Thus TJf is 
on the outside of the first interface of the jth sublayer as 
shown in Fig. lb. At the inside surfaces of the two outer 
boundaries, the following relations exist between the radiative 
flux being transferred and the outgoing and incoming fluxes: 

	

q, =	 - q , , ,1	 (8a) 

	

= -	 + q j ,	 (8b) 

Equations (7a) and (8a) are combined to eliminate q-, 1 and 
similarly Eqs. (7b) and (8b) are used to eliminate q• 1 ,. This 
yields

q0 , 1 ,1 = [11(1 - p, 1)](qr 1 -	 (9a) 

q0,1, = [11(1 - p,,)J(q 2 r	 + q,p,,5 )	 (9b) 

For the jth layer, at the first internal interface I, f, the two 
equations that involve reflected and transmitted fluxes are

The q11 , 1 is eliminated to yield 

q011 = [1/(1 - p,f)](q,J_1,rf - q,p; 1)	 (lOa) 

At the second internal interface of the j - 1 layer, j - 1, s, 
the radiative flux is written in terms of incoming and outgoing 
fluxes as

= q, ,1_	 - q0,1_ 1,s 

This is used to eliminate q ,1 _ from Eq. (lOa) which gives 
the following relation between the outgoing fluxes and the 
radiant flux q, being transferred: 

q0Jf = [11(1 - p;,f)J(q,,J_1,Tf - q,p1f + qTJf)	 (lOb) 

As a result of total reflections at interfaces when radiation 
passes into a medium with a lower refractive index, there are 
the following relations at the first and last internal interfaces 
of the entire layer and athe first internal surface of the jth 
sublayer2'16:

	

= (1 - p; 1)n	 (ha) 

	

= (1 - p',)n3	 (lib) 

r71 = (1 - p;,1)(n1/n_1)2 (lic) 

Equation (11) is used to eliminate the r from Eqs. (9) and 
(lOb) to yield

q0,l,f = nq 1 - R1,fq,	 (12a) 

q0,j, = n3q + R1, q,	 (12b) 

= (n1/n,_1)2q0,_,,, - q,[R/f - (n1/n1_,)2] (12c) 

where R1 p , /( l - ps). Equation (4) is now rearranged and 
used in Eqs. (12) to eliminate the q01 fluxes at the second 
interface of each sublayer. This yields a set of simultaneous 
equations in terms of, the q01j fluxes at the first interfaces, 
the radiative flux q, and the 'I'J function. These equations are 
arranged into the following array: 

f—o—	 t —q, 1	 q,2 

q0,2,1	 FR2,1	 1	 1 
S\	

+ 
fl -
	

fl•'\	 '4i)]	 n 

	

'f= — [i' —	 -	
°"—"f	 (13) 

	

- 1& - . ( -	 + 

n3	
i" 

L n3	 n3_ "	 'tI'j_')j	 n_, 

-'= —q 2 - ;(R1.. 
+
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The equations in (13) are now added, which eliminates all of 
the q0 terms; this yields the equation for the radiative flux q,, 
as

q2 = 

=	 1	
(14) 

R 1 	 ' fR1 ,	 1 \	 R1 	 '	 1 

The temperature distributions in the individual sublayers 
are now obtained. Using the set of Eqs. (13), the firstj equa-
tions are added to obtain 

	

q0, 1, - nJq + {R i +	 FR, ,I 	 1 
nJq,	 n	 k..2[flfl_1(1'k_I)]}

(15) 

The desired temperature distribution 1,(X) is now written in 
terms of a dimensionless function T (Xi,) as 

= 0-TI - q = nrT7 - nJq	 q, 
q'1 - q 2 	 q	 nJ(q - q2)	 (16) 

=	 q,	 (n lo.TI - q0,1, + q0•1, , - 

	

q, - q 2 \	 nqr	 n;2q, 

The ratio of Eqs. (3) and (4) is substituted into the first term 
in parentheses of Eq. (16) to obtain 

=	 q,	
(-s- + q

0,1 - nq	
(17) 

	

q, - q,° \n'I'1 	 n,2q,	 / 

The negative of Eq. (15) is now inserted into the parentheses 
on the right side of Eq. (17). After rearrangement and using 
Eq. (4), the result for the temperature distribution (in terms 
of the dimensionless function T) of the jth sublayer is 

q, ___ 
'	 q1 - q 2 I n'1'1 	 fl	 k=2 L n 

-	 ( -	
(1 <j < J)	 (18a) 

The first and last sublayers are special cases, and by similar 
manipulations their dimensionless temperature function dis-
tributions are obtained from 

ci,	 (R±1_4)i\ 

q 1 - q 2 n	 n'I'1 )	
( 18b) 

	

q,	 (R1 .	 4J \ =
q'1 - q 2 	 +	

( 18c) 

The temperature distributions in all the layers can therefore 
be evaluated from Eqs. (18) after the dimensionless radiative 
flux q,/(q, - q 2) has been obtained from Eq. (14). 

To' use these relations, the internal interface reflectivity 
p , values are needed to evaluate the R- for various refractive 
indices of the sublayers. In the absence of better information, 
the following relations are used. The externally incident ra-
diation is diffuse, and as a result of internal scattering and 
diffuse emission it is assumed that the internal radiation is 
also diffuse at the interfaces. Although the interfaces are not 
optically smooth, it is assumed that each bit of roughness acts 
as a smooth facet so that the reflectivity can be obtained from 
the Fresnel interface relations for a dielectric medium. The

reflected energy integrated over all incident directions for a 
diffuse incident distribution gives the relation for p i(n) 14 

1	 (3n+1)(n-1) 
p1(n)F(n)=—+	

6(n+1)2 

+ 
n 2(n 2 - 1) 2 , (n_—	 - 2n 3(n 2 + 2n —1) 

(n 2 + 1)	 n + i)	 (n 2 + 1)(n 4 - 1) 

8n 4(n 4 + 1) 
+ (n 2 + 1)(n 4 - 1)2 &(n)	 (19a) 

This is for diffuse radiation incident on a material with a higher 
refractive index, where n = H'L (nH and L are the "higher" 
and "lower" n values). When diffuse radiation is traveling in 
the reverse direction from a higher to a lower n value material, 
pi is given by'6 

pi(n) = 1 - (11n 2)[1 - F(n)]	 (n = flH/flL) (19b) 

The reflectivity relations in Eq. (19) are derived for surfaces 
of dielectrics in the limit of infinite electrical resistivity, and 
for this condition they do not attenuate radiation internally. 
As discussed by Cox,' 7 in the spectral regions where ceramic 
materials are reasonably transparent to radiation, so that in-
ternal radiation will affect the temperature distribution, the 
extinction coefficient K (not to be confused with its optical 
thickness) in the complex index of refraction (n - iK) is 
usually not large enough to significantly affect the surface 
reflectivity. Hence, Eq. (19) for nonattenuating dielectrics 
often provides reasonable reflectivity results for attenuating 
dielectrics. The absorption coefficient a in a material, is re-
lated to its extinction coefficient K by a = 41rKIA,. Since 
wavelengths for thermal radiation are in the micrometer range, 
only a small value of K is required to yield a large value for 
a. If K is large enough to influence the interface reflectivity 
relations, a = 4 IrK/A0 will be so large that the radiating layer 
is essentially opaque, unless its thickness is much smaller than 
the ceramic layers considered here. 

The 4) and 4' are the building blocks to evaluate the present 
solution for a laminated composite layer that includes refrac-
tive index effects and interface reflections. To evaluate results 
from Eqs. (14) and (18), the exact functions 4)(X, ,<) and 

can be used as obtained from numerical solutions of 
Eqs. (1) and (2); these functions are available in the literature 
as referenced earlier. Exact functions from the numerical in-
tegration are tabulated in Siegel and Spuckler' for optical 
thicknesses, 0.1 K 100. A convenient alternative to use 
for the functions 4)(X, K0) and 'I'(KD ) are the diffusion so-
lution results which have the advantage of being simple an-
alytical expressions. The use of these approximate functions 
to build up solutions was found to give accurate results for a 
two-layer composite. 2 The diffusion functions for a plane layer 
are given by14

I'(KD) = [1/(K0 + 1)]	 (20a) 

4)(X, K0 ) = '4!(K0)[K0(1 - X) + fl	 (20b) 

Very good comparisons were obtained for the present re-
sults evaluated by using both the exact and the diffusion func-
tions for 4)(X, K0 ) and 'I'(K0 ). For this reason, and because 
tabular results for the exact solution are limited, the diffusion 
solution is recommended for simplicity and sufficient accuracy 
for heat flux and temperature distribution calculations using 
the present analytical equations. When used in Eqs. (14) and 
(18), Eqs. (20) provide rapid predictions of heat flux and 
temperature distributions for any refractive indices and op-
tical thicknesses of the individual sublayers in the laminate. 
For the graphical results shown here, 4)(X, K0) and 'I'(K0) 
were obtained from Eqs. (20), but the exact functions in Ref.
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1 can also be used to yield similar results as shown on one of 
the figures.

Results and Discussion 

Effect of Variation of Refractive Index 

Figure 2 shows the effect on the dimensionless temperature 
function of having -the refractive index increase across the 
thickness of a plane layer. In Fig. 2a, the refractive index 
increases from one to three in equal increments within the 
five sublayers comprising the total thickness; in Fig. 2b the 
number of sublayers is increased to 21 to provide a more 
continuous variation of n over the same range of n. A large 
n increases the local internal radiation emission which is pro-
portional to n 2 for a gray material. A larger refractive index 
in a material relative to its surroundings also increases the 
amount of internal reflection at its bounding interfaces. This 
is the result of total internal reflection when radiation is di-
rected out of a material with a higher refractive index. These 
effects of refractive index act to distribute energy across a 
layer by virtue of emission and internal reflections. As a re-
sult, in Fig. 2 the temperature profiles become more uniform 
as the n value increases across the layer thickness. 

Effect of Total Optical Thickness 

Figure 2 also shows the effect of the total optical thickness 
of the layer. For this figure, the optical thicknesses of each 
of the sublayers are all equal so that for each value of KD, 
KDJ = KD/J, where J is the total number of layers. When KD 
= 0.1, the optical thickness of each sublayer is small enough 
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Fig. 2 Dimensionless temperature distributions in a composite region 
with the index of refraction increasing from one to three through the 
total thickness. The total optical thicknesses are IC0 = 0.1, 1, 10, 100, 
and the sublayers have equal thicknesses so that 1(Dj = i/J: a) number 
of layers, J= 5; b) number of layers, J = 21.

so that the temperature in each sublayer is almost uniform, 
as is characteristic of an optically thin region. There are tem-
perature jumps between layers. These temperature discon-
tinuities occur at interfaces that separate regions of different 
refractive indices when heat transfer is only by radiation (the 
limiting condition analyzed here). The presence of heat con-
duction would eliminate the temperature discontinuities at 
the interfaces, but there can be large local temperature gra-
dients near the interfaces if conduction is small, relative to 
radiation. As shown in Fig. 2, the discontinuities decrease as 
the optical thickness increases. For KD = 100, the temperature 
profile in Fig. 2b is essentially continuous. 

As optical thickness increases, the resistance to radiative 
heat flow increases, so that the temperature gradients increase 
throughout the entire layer and within each sublayer. For 'D 
= 0.1 the layer is optically thin, and the change in the di-
mensionless temperature function across the entire layer is 
only about 0.25. For 1D = 100, however, the range in the 
temperature function increases to about 0.95. The dimen-
sionless radiative heat fluxes (given in the figure legend) il-
lustrate how the heat flux decreases as the optical thickness 
is increased. Making n more continuous by increasing the - 
number of sublayers increased q, slightly. 

Effect of Increasing and Decreasing Refractive Indices in a Layer 

For the distributions in Fig. 2, the refractive index increased 
in uniform increments across the entire composite layer. Fig-
ure 3a shows the effect of a uniform incremental increase 
from n = 1 in- the first layer to n = 3 in the central two 
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Fig. 3 Dimensionless temperature distributions in a 10- layer com-
posite region with the index of refraction varying in the range from 
one to three. The total optical thicknesses are D = 0.1, 1, 10, 100, 
and the sublayers have equal thicknesses so that 1(Dj = KI10: a) 
refractive index increases from one to three and then decreases to one; 
b) refractive index decreases from three to one and then increases to 
three; symbols show solution using exact P and 'I functions, dashed 
lines are results using diffusion relations for 'I' and 'I). 

1.0 

C 
0

0.8 

-	 0.6 

0 

,( 
C -. 
.2 b 
C 

E

T ii T T i T [T 

- 

0. 1	 0. 449 
1.0	 0.401 
tO	 0.194 \\ 
100	 0.032 

I'I 1 -r i- CT T I 

-5-
.5-

I	 0. 1	 0. 258 
I	 ---.---	 1.0	 0.241 0 

I	 ----- tO	 0.147 

L-	
tOO	 0.030



1.0 

C 
0

0.8 C

0• 

- 0Q5 

o.

a. 
-

>( 

C _

0.2 

o_ a 

n=1 1.5 2 2.5 3 

'C, 

0.36 

3.6',,
0.18

03 
0. 76

C 

gI 

I.I 

- __1 
1.93	 0.339 
19.3	 0.130 

0.0	 0.2	 0.4	 0.6	 0.8 
a)	 Dimensionless coordinate, X=x/D 

1. C 

C 
0

0.8 

°b0.6 

E o 

It: 

0j3 2.5 2 1.5 

IC1 

5. 2 - 
1.1 7.6 

_0.52 011

---&
0. 1 8 

b.o	 0.2	 0.4	 0.6	 0.8	 1.0 
b)	 Dimensionless coordinate, X=x/D 

SIEGEL AND SPUCKLER: VARIABLE REFRACI1VE INDEX EFFECTS
	

629 

sublayers, and then a uniform incremental decrease to reach 
n = 1 in the final sublayer. The optical thicknesses of the 
sublayers are all equal so that for each sublayer 1 Dj = 
where J = 10. The same total optical thicknesses are used as 
in Fig. 2,	 = 0.1, 1, 10, 100. In Figs. 3a and 3b there is 
the same portion of the total layer thickness at each of the 
refractive indices, as in Fig. 2a. Each of the sublayers in Fig. 
2a has been divided in half and the order of the resulting 10 
layers rearranged. Thus, useful comparisons can be made 
between Figs. 3a and 2a. In Fig. 3a the dimensionless tem-
perature distributions become flat in the central portion of 
the layer where the refractive index is largest. The profiles 
are asymmetric about the center plane. The effect of increas-
ing the optical thickness on the temperature distribution through 
the entire laminate is not as pronounced as in Fig. 2. Com-
paring the heat fluxes in Figs. 3a and 2a shows the rearrange-
ment of the layers to begin and end with the same index as 
the surroundings has resulted in a small increase in q,. 

Effect of Order of Refractive Indices in Heat Flow Direction 
In Fig. 3b the 1D values are the same as in Fig. 3a. The n 

values, however, are interchanged so that the largest refrac-
tive index, n = 3, is now adjacent to each of the two outer 
boundaries. Then proceeding toward the center, the n de-
creases in uniform increments to one, such that the n variation 
is symmetric across the entire layer. As compared with Fig. 
3a, the different distribution of n values changes the distri-
bution of totally reflected energy within the sublayers. There 
is also partial reflection of the incident flux q 1 ; this did not 
occur for the conditions in Fig. 3a where n = 1 in the out-
ermost sublayers, and therefore, matches the n of the sur-
roundings. The dimensionless temperature function distri-
butions have their largest gradients in the center of the layer 
where n has its lowest value. Compared with Fig. 3a, the 
variation of 1D has a larger effect. The profiles are again 
asymmetric about the center plane. For small KD, there is a 
significant reduction in the radiative flux being transferred, 
compared to Figs. 2 and 3a. 

Figure 3b also provides a comparison with solutions com-
puted using the exact functions for cI(X, ,cD) and 'I'(KD); the 
exact solutions are plotted for two values of 1D using square 
and circular symbols to make them distinct from the dashed 
lines that were obtained using the diffusion functions. The 
comparisons are excellent showing the validity of using the 
very convenient diffusion relations for these basic functions. 

Reciprocal Behavior of Dimensionless Temperatures 
Figure 4 illustrates a general reciprocal behavior for the 

temperature results; an example with five sublayers is used. 
The reciprocal behavior is valid for an arbitrary number of 
layers and for a continuous variation in n. In Fig. 4a, the n 
increases linearly in an incremental fashion from one to three 
progressing from the hot to the cold side. Rather than having 
equal 1Dj as in Figs. 2 and 3, the ICDJ have various values to 
illustrate the nature of i,, variations. The physical thicknesses 
of the sublayers is shown as equal, but they could be unequal, 
as the solution depends only on the optical thicknesses 1Dj 

(this will be discussed in Fig. 4c). In Fig. 4b, both the n values 
and the optical thicknesses of the five layers are reversed in 
their order, relative to the hot side as compared to Fig. 4a. 
The reciprocal result obtained is that rotating Fig. 4a by 180 
deg gives the same dimensionless temperature distributions 
as in Fig. 4b. It was also found that the radiative heat flux 
through the laminate is independent of reversing the order of 
the multiple layers relative to the side with larger incident 
radiation; hence, in Fig. 4b, the heat fluxes remain the same 
as in Fig. 4a. 

Although the radiative behavior depends on the lCD) , rather 
than the physical thicknesses D1 of the layers, the temperature 
gradients depend on the D1. As an illustration, the solution 
in Fig. 4a is given in Fig. 4c, with three of the sublayers having 
small physical thicknesses as might be characteristic of rein-
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Fig. 4 Dimensionless temperature distributions in a five - layer com-
posite region with the index of refraction increasing from one to three 
through the total thickness. The effect is shown of having different 
optical thicknesses for each sublayer. Total optical thickness are 1C0 

= 1.93 and 19.3: a) refractive index increases from one to three for 
various sc0 ; b) variations in both n1 and K01 are reversed compared 
with part a; and c) part a with layers having unequal physical thick-
nesses. 

forcing layers in a ceramic material or a coated part. The 
temperature variation through each sublayer remains the same, 
but in a sublayer with a smaller physical thickness, the local 
gradient of the dimensionless temperature function is in-
creased. 

Figure 5 shows the effect of having different rates of in-
crease of the index of refraction within a layer. Consider the 
three solid curves; they are all for a total optical thickness of 

= 100. As shown in the legend, the three thicknesses of 
the solid lines correspond to different increases in the refrac-
tive index within the layer. For the curve drawn with a thin 
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ill'

puting multilayer results for any distribution of optical thick-
ness. 

Illustrative dimensionless temperature function distribu-
tions and radiative fluxes are given for a variety of refractive 
index variations and optical thicknesses of the layers. A rec-
iprocity relation was found for the temperature function dis-
tributions. If the order of the indices of refraction of the 
sublayers is reversed as well as their optical thicknesses, the 
temperature distributions become inverted mirror images while 
the radiative heat flux is unchanged. It was found that in-
creasing the local refractive index in a layer makes the local 
temperature distribution more uniform by means of increased 
internal reflection of energy. The effect that this has on the 
radiative energy transfer depends on the optical thickness of 
the composite. 

0.0	 0.2	 0.4	 0.6	 0.8 

Dimensionless coordinole, Xx/D 

Fig. 5 Effect of the rate of increase of the refractive index within the 
layer for various optical thicknesses. 

line, n = 1.5 throughout the layer. For the curve with a 
medium thickness line, n increases in a stepwise fashion of 
An1 = 0.2 for each sublayer, so the first and final sublayers 
have n = 1.5 and 2.5. For the heaviest line, An1 = 0.5, so 
that n has the range 1.5-4.0 across the layer. Increasing the 
n variation results in increased curvature of the dimensionless 
temperature function. For ,D = 10 there are the same trends, 
this is shown by the three curves drawn with the longer dashes. 
The remaining three curves drawn with the short dashes are 
for a smaller optical thickness, D = 1. In this instance it was 
found that the curves do not cross and the temperatures in-
crease as An becomes larger. 

The dimensionless radiative heat flux also has different trends 
as the optical thickness changes from ito 100. For 1D = 1, 
the radiative flux decreases as the gradient in refractive index 
increases (larger An1). For an optically thick layer, the be-
havior is reversed and a greater increase of n with x increases 
the radiant energy transfer. 

Conclusions 
A method was developed for obtaining temperature dis-

tributions and radiative heat fluxes in a plane layer with an 
index of refraction and optical density that varies within its 
thickness. The approach that was derived is to analyze a lam-
inated region with many layers that can each have a different 
refractive index and optical thickness. The interfaces between 
layers are assumed diffuse with the intent of providing infor-
mation on the limiting case of energy transfer only by radia-
tion in a ceramic material with layers having various com-
positions. Radiative energy is incident on each outer boundary. 
The multilayer laminate is in radiative equilibrium (limiting 
case of zero heat conduction) and emits, absorbs, and iso-
tropically scatters radiation. The method yields results for 
multiple laminated layers with arbitrary indices of refraction 
by using the known dimensionless temperature and heat flux 
functions for a single semitransparent radiating layer with n 
= 1. These functions are combined through the coupling at 
the interfaces to build up solutions for a multilayer laminated 
region. The coupling relations include transmission through 
the interfaces and all internal reflections within the layers. 
The result is a set of simple algebraic expressions for the 
temperature distribution in each of the sublayers and for the 
radiative heat flux through the laminated composite region. 
Sample results were evaluated using the basic functions for a 
single layer with n = 1 obtained by exact numerical integra-
tion and by diffusion methods. The results using diffusion 
functions were found to be within engineering accuracy. Using 
these functions provides an especially simple way for corn-
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