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Abstract 26 

The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= 27 

NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from 28 

orbital HCHO column observations. It is also a benchmark for overall mechanism performance with 29 

regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the 30 

Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and 31 

its major first-generation oxidation products allows us to define both a “prompt” yield of HCHO 32 

(molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO 33 

mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values 34 

(roughly 0.1 – 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9), while background 35 

HCHO increases by more than a factor of 2 (from 1.5 to 3.3 ppbv). We apply the same method to 36 

evaluate the performance of both a global chemical transport model (AM3) and a measurement-37 

constrained 0-D chemical box model. Both models reproduce the NOx dependence of the prompt HCHO 38 

yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the 39 

link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate 40 

background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of 41 

later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. 42 

Moreover, we find that the total organic peroxy radical production rate is essentially independent of 43 

NOx, as the increase in oxidizing capacity with NOx is largely balanced by a decrease in VOC reactivity. 44 

Thus, the observed NOx dependence of HCHO mainly reflects the changing fate of organic peroxy 45 

radicals. 46 

 47 

1. Introduction 48 

Formaldehyde (HCHO) is a ubiquitous byproduct of volatile organic compound (VOC) oxidation. While 49 

methane is the principal HCHO precursor in remote regions, larger VOC are the main source over 50 

continents. HCHO is also directly emitted via biomass burning (Lee et al., 1997), fossil fuel combustion 51 

(Luecken et al., 2012), natural gas flaring (Knighton et al., 2012), ethanol refining (de Gouw et al., 2015), 52 

possibly vegetation (DiGangi et al., 2011) and agricultural activity (Kaiser et al., 2015a), but chemical 53 

production dominates the global budget (Fortems-Cheiney et al., 2012). Photolysis and reaction with OH 54 
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destroy HCHO with a characteristic lifetime of several hours during midday, implying that the HCHO 55 

abundance reflects recent hydrocarbon oxidation. 56 

 Globally, isoprene is the main precursor of near-surface HCHO. A highly reactive diene emitted 57 

by vegetation, isoprene comprises roughly one third of all non-methane VOC emissions (Guenther et al., 58 

2012). Oxidation of isoprene in the presence of nitrogen oxides (NOx = NO + NO2) stimulates the 59 

production of ozone (Trainer et al., 1987) and organic aerosol precursors (Xu et al., 2015), impacting air 60 

quality and climate in many continental regions. Despite the central role of isoprene, biogenic emission 61 

inventories struggle to accurately represent the spatiotemporal variability of isoprene emissions, with 62 

model-measurement discrepancies and differences among emission inventories approaching a factor of 63 

2 or more (Carlton and Baker, 2011; Warneke et al., 2010). Such differences directly impact predicted 64 

ozone and aerosol distributions (Hogrefe et al., 2011).  65 

Numerous studies have applied satellite-based HCHO column observations as a top-down 66 

constraint on isoprene emissions (see Kefauver et al. (2014) for a review). Typically, a chemical transport 67 

model is employed to relate HCHO column concentrations to isoprene emission strength. Early studies 68 

utilized linear steady-state relationships (Palmer et al., 2003), while recent computational advances have 69 

permitted full inversions that more fully account for transport, multiple sources and varying chemical 70 

regimes (Fortems-Cheiney et al., 2012). Such techniques have informed isoprene emission inventories in 71 

North America (Abbot et al., 2003; Millet et al., 2008; Millet et al., 2006; Palmer et al., 2006; Palmer et 72 

al., 2003), South America (Barkley et al., 2013; Barkley et al., 2008), Europe (Curci et al., 2010; Dufour et 73 

al., 2009), Africa (Marais et al., 2012), Asia (Fu et al., 2007; Stavrakou et al., 2014), and globally 74 

(Fortems-Cheiney et al., 2012; Shim et al., 2005; Stavrakou et al., 2009). Future geostationary 75 

observations, such as the NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO, 76 

http://science.nasa.gov/missions/tempo/) mission, will permit an even more detailed investigation of 77 

the spatial and temporal variability of isoprene emissions and other VOC sources. 78 

 Chemistry dictates the relationship between HCHO columns and underlying isoprene emissions. 79 

Many of the above-listed studies apply 0-D box model calculations to evaluate the yield of HCHO from 80 

isoprene as a function of oxidation time, NOx regime and chemical mechanism. In all cases, it is found 81 

that NOx enhances both the production rate and ultimate yield of HCHO. Slower production at lower 82 

NOx can lead to “smearing,” whereby HCHO production is displaced relative to the isoprene source. 83 

Palmer et al. (2003) define a characteristic smearing length scale, which can range from 10 to 100 km or 84 

more. Furthermore, accumulation of oxygenated VOC over multiple generations of isoprene 85 



4 

degradation can contribute to substantial background HCHO production, which is not directly linked 86 

with fresh isoprene emissions. Long-lived primary anthropogenic or biogenic emissions, like methane 87 

and methanol, can also contribute to this background. Background column concentrations are typically 88 

on the order of 5  1015 cm-2, equating to 20% or more of the isoprene-driven HCHO column 89 

enhancement (Barkley et al., 2013; Millet et al., 2006). A wave of recent theoretical (Peeters et al., 2014; 90 

Peeters and Müller, 2010; Peeters et al., 1999), laboratory (Crounse et al., 2012; Crounse et al., 2011; 91 

Paulot et al., 2009a; Paulot et al., 2009b) and field (Mao et al., 2012) research has highlighted 92 

shortcomings in low-NOx isoprene oxidation schemes. Such issues translate directly into top-down 93 

emission estimates; for example, Marais et al. (2012) report an uncertainty of 40% in OMI-derived 94 

African isoprene emissions at high-NOx and 40-90% at low-NOx. Coarse resolution of averaged satellite 95 

observations and model simulations (typically 1°  1° or more) has partly mitigated these problems in 96 

prior work, as variability in NOx-dependent smearing and background production is averaged out. A 97 

more careful treatment will be needed to harness the enhanced resolution of near-future orbital 98 

observations (e.g., 8  4.5 km2 for TEMPO), especially since these measurements will include diurnal 99 

variability. 100 

 Here, we use a comprehensive set of in situ observations to quantify the impact of NOx on the 101 

isoprene-HCHO chemical link. Using isoprene and its unique first-generation products, we segregate 102 

HCHO into two categories. The first, defined as “prompt” HCHO, is produced from fresh isoprene 103 

emissions (on a timescale of less than a day) and retains the signature of isoprene emission source 104 

strength. The second category is “background” HCHO stemming from oxidation of longer-lived isoprene 105 

oxidation products and other VOC. We examine the NOx dependence of both quantities. Applying the 106 

same method to 0-D and global model simulations, we evaluate the ability of current chemical 107 

mechanisms to replicate the observed trends. Box model results are also used to elucidate the 108 

mechanistic underpinnings of the NOx influence on HCHO production. 109 

 110 

2. SENEX Observations 111 

The Southeast Nexus (SENEX) mission was an airborne campaign designed to examine the interaction of 112 

natural and anthropogenic emissions. During June and July of 2013, the NOAA WP-3D aircraft logged 113 

114 flight hours over 18 research flights in a range of environments throughout the southeast United 114 

States, including urban centers, power plant plumes, natural gas extraction regions, agricultural areas 115 
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and forests. The payload included a suite of gas- and particle-phase instrumentation (Warneke et al., in 116 

preparation, 2015); details and data are accessible on the SENEX website 117 

(http://www.esrl.noaa.gov/csd/projects/senex/). Here we utilize observations of HCHO, isoprene, 118 

methyl vinyl ketone (MVK), methacrolein (MACR), NO and NO2. HCHO was measured at 1 Hz by the 119 

NASA In Situ Airborne Formaldehyde (ISAF) instrument, which relies on the laser-induced fluorescence 120 

technique and has an accuracy of ±10% (Cazorla et al., 2015). Isoprene, MVK and MACR were measured 121 

by both a quadrupole proton transfer reaction mass spectrometer (PTR-MS) and the NOAA improved 122 

whole-air sampler (iWAS) with offline gas chromatography. The PTR-MS (de Gouw and Warneke, 2007) 123 

has a stated accuracy of 20% and sequentially sampled masses for isoprene (m/z +69) and the sum of 124 

MVK and MACR (m/z +71) for 1 s each with a duty cycle of 14 s. The iWAS measurement uncertainty for 125 

speciated MVK and MACR is 20% (de Gouw et al., 2015). NO and NO2 were measured at 1 Hz via 126 

chemiluminescence coupled with a photolytic NO2 converter (Pollack et al., 2010; Ryerson et al., 1999) 127 

with an accuracy of 5%. Data are filtered to include only daytime boundary layer conditions (solar zenith 128 

angle < 60°, radar altitude < 1 km). Influence from biomass burning (acetonitrile > 210 pptv and CO > 129 

300 ppbv) and very fresh power plant plumes (log(NOx) values exceeding a mean + 3 threshold) are 130 

also removed. This procedure excludes 50% of all fast (1 Hz) data. After accounting for missing data, we 131 

retain 8435 1 Hz data points and 81 iWAS samples. 132 

 Measurements of MVK and MACR can include a positive bias from conversion of isoprene 133 

hydroxyhydroperoxides (ISOPOOH) on hot metal surfaces in the sampling system (Liu et al., 2013; 134 

Rivera-Rios et al., 2014). Theoretically, this mechanism could give rise to an analogous artifact in HCHO 135 

observations. ISOPOOH mixing ratios of roughly 0 to 2 ppbv were observed during SENEX (see 136 

supporting information (SI)). It is difficult to quantify the magnitude of any such interference from field 137 

observations alone. Based on a comparison to observations of other isoprene oxidation products and to 138 

0-D box model results (SI), we argue that such artifacts are negligibly small in the PTR-MS and ISAF 139 

observations for SENEX. We cannot rule out a potential positive bias in the iWAS MVK measurement; 140 

nonetheless, as we show below, the correspondence between observed MVK and MACR mixing ratios is 141 

consistent with our current understanding of isoprene oxidation. 142 

 SENEX sampled a wide spectrum of chemical regimes (Figure 1). For the daytime boundary-layer 143 

observations presented here, maximum 1 Hz isoprene and NO mixing ratios respectively reach 8.1 and 144 

95 ppbv, while minima are less than a few pptv. The distributions of both isoprene and NO observations 145 

are approximately log-normal (top and right panels of Fig. 1), peaking at 1.5 ppbv and 50 pptv, 146 
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respectively. Though these distributions may be biased towards areas of urban influence, the range of 147 

environments encountered during SENEX is representative of the Southeast U.S. summertime boundary 148 

layer. The long tail at the low end of the isoprene distribution is mostly associated with regions lacking 149 

significant tree cover, notably Illinois and Indiana, where isoprene emissions are generally lower. The NO 150 

distribution spans two orders of magnitude (10 – 1000 pptv), over which radical chemistry changes 151 

markedly. At NO mixing ratios of a few hundred pptv or more, organic peroxy radicals (RO2) react mostly 152 

with NO. At low NO (10’s of pptv or less), reaction with HO2, other RO2 and isomerization dominate. The 153 

bulk of the NOx distribution lies in a transition region for radical chemistry, making this dataset ideal for 154 

probing the anthropogenic influence on biogenic VOC oxidation. 155 

 HCHO mixing ratios (color shading in Fig. 1) range from 0.8 to 14 ppbv with a mean value of 4.3 156 

ppbv. HCHO is most abundant in regions where both isoprene and NOx are elevated. High NOx is often 157 

accompanied by increased concentrations of anthropogenic VOC; however, constrained box-model 158 

calculations demonstrate that isoprene is the dominant HCHO precursor even in these cases (Sect. 5). 159 

Thus, chemistry (and not co-variance of NOx and anthropogenic VOC) drives the observed NOx 160 

dependence of HCHO abundance. 161 

 162 

3. Linking Observed and Emitted Isoprene 163 

The isoprene photochemical cascade is a multi-step process. Isoprene oxidation is initiated by reaction 164 

with the hydroxyl radical (OH), ozone or the nitrate radical (NO3). In the Southeast U.S., typical daytime 165 

levels for OH, ozone and NO3 are 4  106 cm-3, 50 ppbv and 0.1 pptv, respectively (OH and NO3 are 166 

estimated from median box model output, see Sect. 5). The corresponding isoprene lifetimes at 298K 167 

are 0.7 h, 17 h and 160 h, respectively. Thus, reaction with OH typically constitutes 95% or more of the 168 

total daytime isoprene sink in this environment. Addition of OH and reaction with O2 generates one of 169 

several isoprene hydroxyperoxy radicals (ISOPO2). ISOPO2 isomers interconvert rapidly due to reversible 170 

O2 addition (Peeters et al., 2009) but are eventually destroyed via reaction with NO, hydroperoxy radical 171 

(HO2), other organic peroxy radicals (RO2) or isomerization. Most branches have the potential to 172 

produce HCHO, with varying yields. The laboratory-derived first-generation HCHO yield from the NO 173 

pathway is ~0.6 (Atkinson and Arey, 2003), though this value may be less representative of the real 174 

atmosphere due to the very high isoprene concentrations (and very short RO2 lifetimes) in early 175 

chamber experiments. The first-generation yield from the HO2 pathway is ~0.06 (Liu et al., 2013). 176 
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Isomerization chemistry is less well understood; the 1,5-H-shift is believed to produce HCHO with a unity 177 

yield, while the much faster 1,6-H-shift should not produce any HCHO (da Silva et al., 2010; Fuchs et al., 178 

2013; Peeters et al., 2014; Peeters and Müller, 2010; Peeters et al., 2009). Regardless of the specific 179 

pathway, MVK or MACR are always co-produced with HCHO in the first generation. HCHO is also 180 

generated in subsequent chemistry, but on a longer timescale and from a much larger suite of 181 

precursors. For example, the OH lifetimes of MACR and MVK are respectively 3.5 and 5 times longer 182 

than that of isoprene. 183 

 Boundary layer composition reflects a mixture of emissions with various degrees of 184 

photochemical processing. To isolate the impact of “fresh” isoprene emissions, we exploit the relatively 185 

simple chemistry of MVK and MACR, which are produced via isoprene oxidation and lost primarily via 186 

reaction with OH. 187 

ISOP + OH  yMACRMACR + yMVKMVK   k1 = 2.710-11 e390/T   (R1) 188 

MACR + OH  products     k2 = 8.010-12 e380/T   (R2) 189 

MVK + OH  products     k3 = 2.610-12 e610/T   (R3) 190 

Rate constants (k) are taken from the IUPAC database (Atkinson et al., 2006). These reactions form the 191 

basis for a photochemical clock of isoprene oxidation (de Gouw et al., 2005; Roberts et al., 2006; Stroud 192 

et al., 2001). Integration of the kinetic equations for this system shows that the product/parent ratios 193 

are a function of the rate constants, yield (y), reaction time (t) and the mean OH concentration averaged 194 

over reaction time. In the case of MACR, for example: 195 

[𝑀𝐴𝐶𝑅]

[𝐼𝑆𝑂𝑃]
=

𝑦𝑀𝐴𝐶𝑅𝑘1

𝑘2−𝑘1
(1 − 𝑒(𝑘1−𝑘2)[𝑂𝐻]𝑡)        (1) 196 

An analogous expression holds for MVK. As noted by Stroud et al. (2001), this “sequential reaction 197 

model” is purely chemical and does not account for the effects of mixing and transport. Indeed, this 198 

analysis relates daughter/parent ratios to an “average” photochemical age, when in fact there is a broad 199 

distribution of ages in any mixed air mass. We also implicitly assume that direct emissions (Fares et al., 200 

2015) and deposition (Karl et al., 2010) of MVK and MACR do not significantly influence the budget of 201 

these compounds. 202 

 Two potential issues arise when applying this model to the real atmosphere. First, the yields of 203 

MVK and MACR are dependent on ISOPO2 branching and are thus a non-linear function of NOx. Previous 204 
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applications of this method (de Gouw et al., 2005; Roberts et al., 2006; Stroud et al., 2001) have 205 

assumed lab-derived high-NOx yields of 0.33 and 0.23 for MVK and MACR, respectively (Atkinson and 206 

Arey, 2003), but this may not be appropriate in the present case; furthermore, these yields are not fully 207 

consistent with current chemical mechanisms (Fig. S4). We explicitly examine the effects of NOx-varying 208 

yields below using yield curves derived from box model simulations (see SI for details). Second, the 209 

photochemical age (t) implied by any observed daughter/parent ratio depends on the concentration of 210 

OH, which was not measured and varies as an air mass ages. Rather than assume a single “typical” value 211 

for OH, we express photochemical age in terms of “exposure,” defined here as the product of OH 212 

concentration and reaction time integrated over the photochemical lifetime of an air mass. 213 

 Figure 2 compares the observed relationship of MVK/isoprene and MACR/isoprene ratios 214 

against theoretical trends predicted by the sequential reaction model. Theoretical ratios are calculated 215 

at fixed exposures of 2, 4, 8, 12 and 16 106 OH cm-3 h using two sets of yields: high NO (NO = 1000 pptv, 216 

yMVK = 0.41, yMACR = 0.28) and low NO (NO = 50 pptv, yMVK = 0.21, yMACR = 0.19). Observed ratios of 217 

MVK/isoprene versus MACR/isoprene exhibit a tight linear correlation (Fig. 2). Higher ratios are often 218 

associated with higher NOx, likely reflecting enhanced OH and higher HCHO yields in these air masses. 219 

Far downwind from isoprene and NOx source regions, we would expect to see higher MVK/isoprene and 220 

MACR/isoprene ratios associated with lower NOx due to removal of the latter. The theoretical slope 221 

agrees well with observations, indicating exposures of 1 – 16  106 OH cm-3 h. For a typical daytime OH 222 

concentration of 4  106 cm-3, this corresponds to processing times of 15 minutes to 4 hours. 223 

The ratio of yMVK to yMACR dictates the location of the theoretical line and thus the 224 

correspondence between daughter/parent ratios and exposure. For example, a MACR/isoprene ratio of 225 

1 would be consistent with an exposure of 4.9 x 106 OH cm-3 h at high-NOx conditions (NO = 1000 pptv) 226 

versus 6.1 x 106 OH cm-3 h at low-NOx (NO = 50 pptv). Thus, for any given daughter/parent ratio, a higher 227 

assumed yield gives a smaller derived exposure. Observations in Fig. 2 fall above the high-NOx 228 

theoretical relationship. As discussed in the SI, however, iWAS MVK measurement may contain a 229 

positive artifact on the order of 50%. This potential systematic error (thick black line in Fig. 2) overlaps 230 

both the high and low-NOx theoretical relationships. Given the wide range of conditions sampled, it is 231 

most appropriate to use a NOx-dependent yield for MVK and MACR. For this purpose, model-derived 232 

yields (Fig. S4 and SI) are interpolated to observed NO mixing ratios.  233 
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 We can effectively reverse this photochemical clock to derive a proxy for the total isoprene 234 

emissions that had been released into the sample air masses (de Gouw et al., 2005). First, we calculate 235 

OH exposures from observed daughter/parent ratios by inverting Eqn. (1). To perform this calculation 236 

with PTR-MS data (which has far greater coverage), we partition the measured sum between MVK and 237 

MACR using MVK/MACR ratios from box model calculations (Sect. 5). Modeled MVK/MACR ratios (with 238 

an output interval of 1 minute) are linearly interpolated to the 14-second observational time base. The 239 

MVK/MACR ratio does not vary dramatically (mean ± 1: 1.3 ± 0.2), and using a constant ratio instead 240 

alters results by less than 4%. Calculated exposures range from 0.5 to 18 × 106 OH cm-3 h (Fig. S5A). 241 

Exposures derived from MACR are 6% higher than those from MVK on average, and we use the mean of 242 

these two values. Next, an “initial” isoprene mixing ratio, ISOP0, is estimated via reverse integration of 243 

isoprene’s first-order loss rate: 244 

[𝐼𝑆𝑂𝑃]0 = [𝐼𝑆𝑂𝑃]𝑒𝑘1[𝑂𝐻]𝑡         (2) 245 

ISOP0 represents the amount of isoprene that an air parcel would have to start with to generate the 246 

amount of isoprene, MVK and MACR observed. Thus, it is an observationally-constrained surrogate for 247 

isoprene emission strength (modulated to some degree by boundary layer height, as it is a volume-248 

based quantity). ISOP0 mixing ratios are typically 2 – 10 times higher than observed isoprene (Fig. S5B). 249 

 250 

4. The Yield of HCHO from Isoprene 251 

The definition of “yield” can vary with context and requires careful consideration when quantifying the 252 

isoprene-HCHO relationship. In a mechanistic sense, the “first generation yield” refers to the amount of 253 

HCHO produced per unit isoprene consumed in the first stage of oxidation. This is analogous to the 254 

yields of MVK and MACR used in the above calculation of initial isoprene. The model-derived first-255 

generation HCHO yield from isoprene varies by more than a factor of 2 over the range of chemical 256 

environments encountered during SENEX (Fig. S4). An alternative definition is that of the “total yield” 257 

(sometimes referred to as the “molar yield,” e.g. Millet et al. (2006)), a time-dependent quantity that 258 

describes the total amount of HCHO produced over multiple generations of oxidation. The total yield is 259 

typically derived from model simulations and used to relate satellite HCHO column observations to 260 

isoprene emissions (Marais et al., 2012; Millet et al., 2006). Early studies acknowledged the NOx 261 

dependence of the total yield (Millet et al., 2006; Palmer et al., 2003) and more recent work has 262 
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attempted to account for the dependence using NO2 column observations (Marais et al., 2012). Here, 263 

we define the “prompt yield” as the change in observed HCHO per unit change in ISOP0 (yp = 264 

HCHO/ISOP0). This is not the same as the first-generation yield, since yp can include HCHO production 265 

and loss over several hours (depending on the photochemical exposure of an air mass). Nor is it the 266 

same as the total yield, which inherently does not account for HCHO loss as an air mass ages. The 267 

prompt yield is effectively a quantity that relates isoprene emission strength to observed HCHO 268 

abundance. As we will demonstrate, yp is well-suited for segregating the various drivers of HCHO and for 269 

benchmarking model performance. 270 

Figure 3A shows the relationship between calculated ISOP0 and observed HCHO. The overall 271 

correlation is linear with a striking NOx gradient. To quantify this NOx dependence, we sort the data by 272 

log(NOx), group it into 20 bins such that each bin contains the same number of points (N = 416), and 273 

perform a major-axis linear fit of HCHO versus ISOP0 for each bin. Individual fits give r2 values of 0.6-0.8, 274 

except for the highest NOx bin (r2 = 0.48) that contains some heavily-polluted air masses, such as 275 

downwind from power plants. Results are independent of the number of bins chosen or time resolution 276 

(e.g., 1-second versus 1-minute data). 277 

 The HCHO-ISOP0 slope (Fig. 3B) represents the prompt yield. This yield varies by a factor of 3 278 

over the range of observed NOx, from 0.3 for NOx mixing ratios of a few hundred pptv to 0.9 at NOx > 1 279 

ppbv. At low NOx, yp is comparable to the MCM-predicted direct first-generation yield of HCHO (0.3-0.4 280 

at NO = 10-40 pptv, Fig. S4), while at high NOx it is somewhat higher than the predicted first-generation 281 

yield (0.74 at NO = 1000 pptv). This likely reflects the inclusion of more than one generation of HCHO 282 

production at higher NOx, where oxidation is more rapid (median exposures increase by 38% over the 283 

range of observed NOx values). Most of this portion of the HCHO budget, however, stems from first-284 

generation production. 285 

 The intercept (Fig. 3C) represents the abundance of “background” HCHO. This portion of the 286 

HCHO budget stems mainly from air that either has not encountered strong isoprene emissions or is so 287 

aged that most of the isoprene has reacted away and can no longer be linked to a specific source region. 288 

Some of this background may also stem from oxidation of long-lived primary emissions like methane or 289 

methanol. Box model calculations (Sect. 5) indicate average HCHO budget contributions of 0.3 ± 0.2 290 

ppbv and 0.2 ± 0.1 ppbv from methane and methanol, respectively. Background HCHO also exhibits a 291 

marked NOx dependence, increasing from 1.6 to 3.3 ppbv over the observed NOx range. As with yp, we 292 
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expect such behavior since NOx regulates the fate of all organic peroxy radicals (see Sect. 6). Assuming a 293 

1 km mixed layer depth (Wagner et al., 2015), the corresponding HCHO column density for this 294 

background is 4 – 8 x 1015 cm-2. This is comparable to the background reported by previous 295 

investigations of satellite-derived HCHO columns (Barkley et al., 2013; Millet et al., 2006). None of these 296 

studies explicitly account for the NOx dependence of the background, though it can represent a 297 

substantial fraction of the total HCHO column – maximum summertime HCHO columns over the 298 

southeast U.S. are ~25 x 1015 cm-2 (Millet et al., 2008). Given the strong NOx dependence of both yp and 299 

background HCHO, grouping HCHO column observations by NOx (e.g. using simultaneous observations of 300 

NO2 columns (Marais et al., 2012) or model-derived NOx) and performing an analysis similar to that 301 

described here should provide a robust means of accounting for these influences. 302 

 303 

5. Model Evaluation 304 

To illustrate the utility of this analysis, we compare the observed HCHO-ISOP0 relationship to results 305 

from a global chemical-transport model and a 0-D box model. Goals? 306 

The GFDL AM3 model is an atmospheric general circulation model with interactive chemistry 307 

(Donner et al., 2011), including recent updates to the representation of isoprene degradation (Mao et 308 

al., 2013; Naik et al., 2013). Model simulations were carried out at 50 × 50 km2 resolution with 309 

horizontal winds nudged to NCEP GFS analyses and sampled along the SENEX flight tracks at a time 310 

resolution of 1 minute. Further details are available elsewhere (Li et al., 2015).  311 

The University of Washington Chemical Box Model (UWCM v2.2) is a versatile 0-dimensional 312 

framework for simulating various chemical systems, including lab chamber experiments (Wolfe et al., 313 

2012) and observations from ground (Kim et al., 2015; Kim et al., 2013; Wolfe et al., 2014) and airborne 314 

(Marvin et al., 2015) platforms. Multiple chemical mechanisms are available within UWCM; here we use 315 

the latest version of the Master Chemical Mechanism (MCM v3.3, Jenkin et al. (2015)). UWCM is 316 

constrained with 1-minute average observations of isoprene, NO2, ozone, CO, PAN, methane, methanol 317 

and meteorology and assumes clear-sky conditions for photolysis frequencies. The chemical system is 318 

integrated forward in time to diel steady state (total integration time of 3 days) for each set of 319 

measurements. This setup inherently assumes that the atmosphere is in chemical steady state – that is, 320 

that production and loss of HCHO, MVK, MACR and other species are roughly balanced. This assumption 321 

is rarely strictly true and may fail for highly-aged air masses (where isoprene is depleted) or close to 322 
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strong local emissions. Nonetheless, it is a fair approximation for the daytime well-mixed boundary layer 323 

observations that prevailed during SENEX. Monoterpenes and anthropogenic VOC are excluded from the 324 

simulation since observations of these species (from the iWAS) are relatively sparse. Separate sensitivity 325 

simulations utilizing the iWAS data suggest that observed monoterpenes and anthropogenic VOC (a 326 

subset of alkanes, alkenes and aromatics) increase modeled HCHO by 1 ± 2 % and 2 ± 3 %, respectively. 327 

A more detailed evaluation of box model performance is forthcoming (Marvin et al., 2015).  328 

Output from both models is filtered for daytime, boundary-layer, non-biomass burning points 329 

using the same criteria as that for observations (Sect. 2).  Both models adequately reproduce observed 330 

HCHO mixing ratios (Fig. S6). We perform the same analyses as described above to derive model yp and 331 

background HCHO. Because of the reduced time resolution, we group results into 10 NOx bins, instead of 332 

20, before fitting. For AM3, this results in 172 points per bin and typical r2 values of 0.5 – 0.8. For 333 

UWCM, there are 157 points per bin and all r2 values are > 0.9. 334 

 Both AM3 and UWCM reproduce the observed NOx dependence of the prompt yield (Fig. 4A). 335 

AM3 agrees well with observations in both magnitude and trend, though with some scatter at mid-NOx 336 

levels. UWCM tends be slightly high throughout the whole NOx range, which may reflect an over-337 

estimation of first-generation HCHO production due to holding isoprene constant throughout the model 338 

step and/or assuming diel steady state. Regardless, these results suggest that both models provide 339 

excellent representation of early generation isoprene oxidation across NOx regimes. 340 

 Background HCHO mixing ratios are under-predicted by 0.5 – 1 ppbv by both models (Fig. 4B). 341 

The range of under-prediction is consistent with the offsets between observed and modeled total HCHO 342 

abundances (Fig. S6 fit x-intercepts: 0.3 ppbv (AM3) and 0.9 ppbv (UWCM)). It is possible that both 343 

models are missing some HCHO precursors (e.g. from multi-generation isoprene oxidation or other VOC 344 

not related to isoprene). This is especially plausible for the UWCM simulation, which only includes 345 

isoprene, methane and methanol as primary VOC and does not account for horizontal transport. Under-346 

estimated OH concentrations might also explain part of this discrepancy, though we cannot easily 347 

evaluate this possibility. AM3 performs somewhat better than UWCM in terms of overall magnitude but 348 

exhibits a less clear NOx trend, which may reflect dilution over fairly large grid scales (note that the 349 

range of binned NOx values is smaller for AM3 than both observations and the UWCM). This result again 350 

highlights the need to consider this background before using a model to interpret observed HCHO 351 

columns that effectively integrate HCHO sources over space and time. 352 
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 353 

6. Mechanistic Drivers of the NOx – HCHO Relationship 354 

Despite the complexity of gas-phase organic chemistry, the impact of NOx on HCHO production 355 

essentially reduces to two factors: radical cycling and RO2 branching. Increasing NO enhances the 356 

conversion of HO2 to OH (R4) and thus accelerates VOC oxidation (R5) and HCHO loss. Subsequent 357 

production of HCHO depends on the structure and fate of RO2 intermediates, which can react with NO, 358 

HO2, other RO2, or isomerize (R6).  359 

NO + HO2  NO2 + OH          (R4) 360 

VOC + OH  RO2          (R5) 361 

RO2 + (NO, HO2, RO2, isomerization)  HCHO       (R6) 362 

Here,  represents a bulk branching ratio for HCHO production weighted over all RO2 reactions. The RO2 363 

lifetime is typically less than 100 s during the day, so (R5) is the rate-limiting step in HCHO formation. 364 

The HCHO production rate is then equal to the product of the total RO2 production rate and the bulk 365 

branching ratio. 366 

 To disentangle these factors, we extract chemical rates from the diel steady-state UWCM 367 

simulations discussed in Sect. 5. Figure 5 shows the gross production rates of total peroxy radicals and 368 

HCHO as a function of NOx. Consistent with our earlier discussion, total HCHO production increases by 369 

more than a factor of 3 from low to high NOx. In contrast, RO2 production is effectively constant within 370 

model variability. Closer investigation (results not shown) reveals that a factor of 3 – 4 increase in OH 371 

concentrations between low and high NOx is more than offset by a similar reduction in isoprene. The 372 

ratio of HCHO to RO2 production rates gives an estimate for , which increases from 0.14 to 0.39 across 373 

this NOx range (Fig. 5). Though the total RO2 production rate includes reactions that do not make HCHO, 374 

 is still a useful metric for the relationship between HCHO production and overall VOC oxidation. Based 375 

on this analysis, we conclude that changes in RO2 branching are the dominant factor driving the NOx 376 

dependence of HCHO production and abundance. 377 

Increased OH also reduces the lifetime of HCHO, which may affect the HCHO budget if this 378 

reaction becomes competitive with photolysis. UWCM predicts an average HCHO photolysis lifetime of 4 379 

hours and OH reaction lifetimes that range from 3 hours at high NOx to 12 hours at low NOx. Thus, 380 
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photolysis is typically the dominant loss process and the scaling of HCHO lifetime with OH is typically 381 

weak. As a result, the net chemical tendency of HCHO (production minus loss, not shown) is positive and 382 

increasing throughout the range of model NOx conditions. Faster loss due to reaction with OH therefore 383 

only slightly dampens the enhancement in HCHO production. 384 

 385 

7. Conclusions 386 

Using SENEX aircraft observations, we have quantified the NOx dependence of the relationship between 387 

isoprene emission strength and HCHO mixing ratios. Simultaneous measurements of isoprene, MVK and 388 

MACR define a photochemical clock for isoprene oxidation, allowing separation of prompt HCHO 389 

production (which retains the isoprene source signature) and background HCHO from late-generation 390 

isoprene oxidation products, methane and other long-lived VOC. The prompt HCHO yield increases by a 391 

factor of 3 (0.3 to 0.9 mol/mol) and the average background HCHO mixing ratio more than doubles (1.6 392 

to 3.3 ppbv) over the range of NOx values encountered in the southeast U.S. This analytical method is 393 

applied to evaluate the performance of a global chemical transport model and a 0-D box model. Both 394 

models accurately reproduce the observed NOx trend of the prompt HCHO yield, indicating that both 395 

chemical mechanisms accurately capture early-stage isoprene oxidation. On the other hand, both 396 

models also under-predict background HCHO abundance by 0.5 – 1 ppbv, which may be a significant 397 

fraction of total HCHO in some cases. This may suggest insufficient build-up of isoprene-derived long-398 

lived precursors in the models, missing VOC not related to isoprene, or insufficient OH. Box model 399 

results also provide insight into the mechanistic drivers of the observed NOx trends. We find that 400 

increasing NOx does not significantly affect total RO2 production due to the cancelling effects of higher 401 

OH and lower VOC, and thus the positive correlation between NOx and HCHO primarily reflects the 402 

changing fate of RO2 radicals. 403 

 To our knowledge, there are no direct laboratory measurements of HCHO yields from low-NOx 404 

isoprene chemistry; thus, the results presented here constitute the first measurement-constrained 405 

evaluation of the isoprene-HCHO link across NOx regimes. The AM3 and MCMv3.3 mechanisms differ 406 

substantially (the former is highly condensed while the latter is explicit), but both contain recent 407 

updates to isoprene degradation. We expect that other mechanisms will also perform well if they 408 

accurately reflect our current best understanding. The observations presented here do not include the 409 

extremely-low NOx regime (NOx < 0.1 ppbv) typical of remote regions like the Amazon and equatorial 410 
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Africa. In such pristine regions, smearing of HCHO production is expected to be more severe (Barkley et 411 

al., 2013), and total HCHO production may be significantly lower if the RO2 fate favors functionalization 412 

over fragmentation (e.g. isomerization). More work is needed to map out this area of the urban-rural 413 

spectrum. It may also be possible to apply the methods developed here to evaluate the chemistry of 414 

glyoxal, another key tracer of VOC oxidation that is also amenable to orbital observations (Kaiser et al., 415 

2015b; Li et al., 2015) and is believed to be an important precursor for SOA (McNeill et al., 2012). 416 

 These results also carry implications for top-down isoprene emission estimates. Uncertainties in 417 

low-NOx chemistry are often cited as the largest source of potential error in derived emissions (Marais et 418 

al., 2012; Palmer et al., 2006). Based on our analysis, current mechanisms appear to capture low-NOx 419 

production of HCHO, MVK and MACR, thus such errors are likely less severe than commonly asserted. 420 

Recent work has acknowledged the impact of NOx on the prompt yield of HCHO from isoprene (Marais 421 

et al., 2012). We advocate considering the NOx dependence of background HCHO as well, since this can 422 

constitute a significant fraction of the total HCHO column. For scale, the derived background HCHO 423 

mixing ratio of 1.6 – 3.3 ppbv is 37 – 77% of the campaign-mean observed HCHO mixing ratio of 4.3 424 

ppbv. Forthcoming geostationary observations will deliver sufficient resolution to delineate local 425 

gradients in chemical regime, and smearing and background HCHO production will become problematic 426 

even in high-NOx regions. Indeed, even current-generation orbital instruments are capable of resolving 427 

urban-rural gradients in HCHO columns (Boeke et al., 2011). When applying advanced statistical 428 

techniques like inversion, model results will only be as accurate as the chemical mechanisms driving 429 

them. Continued field observations are crucial for providing confidence in our ability to link HCHO to its 430 

sources. 431 
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 676 

Figure 1. Co-variation of isoprene, NO and HCHO mixing ratios in the summertime southeast U.S. Data 677 

are limited to daytime boundary layer observations. Histograms show the sampled NO and isoprene 678 

distributions. 679 
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 681 

Figure 2. A photochemical clock of isoprene oxidation defined by the progression of daughter/parent 682 

ratios. Solid circles show the observed ratios calculated from iWAS observations, colored by NOx. 683 

Blue/purple symbols, dashed lines, and text indicate the theoretical exposures (the product of OH 684 

concentration and time) corresponding to any given daughter/parent relationship. Theoretical values 685 

are calculated at 298K using MVK and MACR yields for NO values of 50 pptv (triangles) and 1000 pptv 686 

(squares). The thick black line denotes the systematic error due to a potential 50% positive artifact in 687 

MVK observations (see SI).  688 
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 689 

Figure 3. (A) NOx modulates the relationship between observed HCHO and calculated initial isoprene 690 

mixing ratios. Symbols denote all 1-second data points. Dashed lines illustrate representative major-axis 691 

fits of NOx-grouped subsets at mean NOx values of 170, 380 and 810 pptv (see text for details of fitting 692 

procedure). The slope (B) and intercept (C) of these fits are the prompt HCHO yield and background 693 

HCHO mixing ratio, respectively. Error bars in (B) and (C) are 3 fitting uncertainties. 694 
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 696 

Figure 4. Comparison of observed and model-derived relationship between HCHO and initial isoprene 697 

versus NOx. Slopes (A) and intercepts (B) are calculated as described in the text. The observed values 698 

(blue line with shading) are the same as those shown in Figs. 3B-C. Symbols represent fit results for the 699 

global AM3 model (red circles) and the 0-D UWCM box model (black diamonds). Error bars denote 3 700 

fitting uncertainties. 701 
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 703 

Figure 5. NOx dependence of chemical properties related to HCHO production, extracted from the 704 

UWCM simulation of SENEX observations. Production rates for HCHO (blue) and total RO2 (orange) are 705 

averaged over NOx using 10 bins with equal numbers of points. Solid lines show the mean, shading is 1 706 

variability. Note that RO2 production is scaled down by a factor of 10. The ratio of HCHO to RO2 707 

production gives the bulk HCHO branching ratio (dashed line).  708 


