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Flammability experiments on silicone samples were conducted in anticipation of the 

Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 

6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 

0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame 

spread using Test 1 procedures, downward opposed-flow flame spread, horizontal and angled 

flame spread, and forced-flow upward and downward flame spread. In addition to these 

configurations, upward and downward  tests were conducted in a chamber with varying 

oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not 

burn the entire sample. As thickness was increased, the flame spread distance decreased 

before flame extinguishment. For the thickest sample, ignition could not be achieved. In the 

downward tests, the two thinnest samples permitted the flame to burn the entire sample, but 

the spread rate was lower compared to the corresponding upward values. The other two 

thicknesses could not be ignited in the downward configuration. The increased flammability 

for downward spreading flames relative to upward ones is uncommon. The two thinnest 

samples also burned completely in the horizontal configuration, as well as at angles up to 75 

degrees from the horizontal. Upward tests in air with an added forced flow were more 

flammable. The upward and downward flammability behavior was compared in atmospheres 

of varying oxygen concentration to determine a maximum oxygen concentration for each 

configuration. Complementary analyses using EDS, TGA, and SEM techniques suggest the 

importance of the silica layer deposited downstream onto the unburned sample surface. 

Nomenclature 

Cp,s = Specific heat of silicone, J/kg-K 

Cp,SiO2 = Specific heat of silicon dioxide, J/kg-K 

EDS = Energy dispersive X-ray spectroscopy 

MOC = Maximum Oxygen Concentration 

PMMA = Polymethyl methacrylate 

ρs = Density of silicone, kg/m3 

ρSiO2 = Density of silicon dioxide, kg/m3 

𝑞̇” = Critical heat flux needed to ignite sample, W/m2 

Saffire = Spacecraft Fire Experiment 

SIBAL = Custom fuel fabric made of cotton-fiberglass blend 

τ = Burn time, s 

Tign = Ignition temperature, K 

T∞ = Ambient temperature, K 

δs = Thickness of silicone 

δSiO2 = Thickness of silicon dioxide 

TGA = Thermogravimetric Analysis 

SEM = Scanning Electron Microscopy 

ULOI = Upward Limiting Oxygen Index 

                                                           
1 Research Engineer, 21000 Brookpark Rd., MS 77-5, Cleveland, OH 44135 
2 Staff Scientist, USRA, 21000 Brookpark Rd., MS 110-3, Cleveland, OH 44135 
3 Senior Scientist, 21000 Brookpark Rd., MS 77-5, Cleveland, OH 44135 
4 Spacecraft Fire Safety Demonstration Project Manager, 21000 Brookpark Rd., MS 77-5, Cleveland, OH 44135 



 

International Conference on Environmental Systems 
 

 

2 

I. Introduction 

HE Spacecraft Fire Experiment 

(Saffire) will be used to study 

microgravity flame spread with larger 

fuel samples than have been burned to 

date.1,2,3 Saffire is funded by the 

Advanced Exploration Systems 

Program, and was initiated to develop 

spacecraft fire safety technology. The 

experimental data will also be used to 

verify complex numerical models of 

microgravity combustion events.   

 The Saffire experiments will be 

performed on three sequential flights of 

Orbital Science’s Cygnus resupply 

vehicle after it deberths from the ISS. All 

three Saffire flight units have a sample 

card installed in the middle of a large 

flow duct. Saffire I and III will have a 40-

cm-wide by 94-cm-long sample of 

SIBAL fuel (75% cotton and 25% 

fiberglass blend) burned at two different 

flow speeds, and Saffire II will have nine 

samples that are 5-cm wide by 30-cm 

long. Figure 1 shows a schematic of the 

flight payload for Saffire II and Figure 2 

shows details of the samples. 

 The Saffire-II samples were chosen 

to match the size specified in the NASA 

6001 Test 1 flammability test standard.4 

This is a “worst case” upward 

flammability test, and the material is 

said to fail if more than 15 cm is 

consumed. One main objective of the 

Saffire-II experiment is to ascertain if 

the flammability limits determined in 1-

g using NASA-STD-6001 Test 1 are the 

same as those in low-gravity. 

 Four of the samples on Saffire II will 

be silicone. Silicone was chosen because 

its flammability limit is close to the 

expected test atmosphere (air; 21% O2, 

1 atm), and different thicknesses were 

available to enable producing a variety 

of burn lengths in upward 1-g testing. 

Downward flame spread tests in 1-g 

were conducted to determine if upward 

flame spread of silicone represents the 

worst case flammability scenario. The 

objective of this paper is to describe the 

results of the upward and downward 

flame spread tests in 1-g. The results 

T 

 

 
 

Figure 2. Schematic of the Saffire-II flight sample card. Nine 5–

cm-wide x 30-cm-long samples (left). Picture of sample card (right). 

 
Figure 1. Saffire-II flight unit. Shows schematically the direction of flow 

from bottom to top, sample card, flow duct, and avionics bay. 
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obtained from several other burning configurations are also presented 

to help interpret the results of the upward and downward burning tests. 

 Previous research has shown that burning samples at various 

angles of inclination ranging from 0 degrees (horizontal) to 90 degrees 

(vertical) impacts the flame spread and can help understand 

differences between upward and downward flammability. Kashiwagi 

and Newman burned thin cellulose at various angles and concluded 

that the flame spread rate of the bottom flame had little dependence on 

the angle of inclination.5 Huang and Gollner showed how burning 

PMMA at various angles affected turbulent transition.6 When the 

bottom flame became unstable, the flame spread rate increased 

significantly. Quintiere reported findings on angled burns over thin 

fuels.7  He concluded that upward (90 degrees) is the fastest spreading 

configuration and that for angled configurations, upward spread on the 

bottom is generally faster than upward spread on the top. Gollner 

found faster spread rates at angles slightly less than vertical for thick 

fuels.8 

 A forced convective flow also impacts material flammability and was studied in this work. Loh conducted 

experiments on thin-fuel samples with concurrent flow up to 4 m/s.9  He determined that at low flow speeds (< 1 m/s), 

the flame spread rate increased with flow speed, and that the flame length decreased. At higher flow speeds, the flame 

spread rate was independent of flow speed. Chao performed flame spread studies over thick PMMA samples in 

concurrent flow up to 2 m/s.10  It was determined that the flame spread rate increased with flow speed and oxygen 

concentration. 

 One of the measures of flammability used by NASA is the Maximum Oxygen Concentration (MOC). The MOC 

is the maximum percent oxygen by mole for which all of the six samples self-extinguish before spreading 15 cm, i.e., 

pass Test 1. The ULOI is the Upward Limiting Oxygen Index for which 50% of the repeat samples pass and 50% fail 

Test 1. Hirsch et al. determined the MOC 

for silicone samples as shown in Table I 

using the standard Test 1 chemical 

igniter.11 Furthermore, they demonstrated 

that using a particular hot-wire igniter 

instead of the chemical igniter did not result 

in a significant difference in oxygen 

concentration flammability thresholds. 

Therefore we chose to use a hot-wire 

igniter, matching the power and duration 

reported by Hirsch et al. 

II. Test Facilities 

 Normal-gravity upward (concurrent 

flow), downward (opposed flow), angled, 

and horizontal flame spread tests were 

performed. For some tests, upward forced 

air flow was added. 

Most of the samples were burned in the 

material flammability test chamber at 

NASA Glenn Research Center as shown 

schematically in Figure 3.  The chamber 

contained an unsealed enclosure 

approximately one cubic meter in volume. 

The top of the chamber was connected to 

Thickness MOC ULOI 

1.00 mm 22 23.4 

0.61 mm 20 22.8 

0.36 mm 19 21 

0.25 mm 18 19.7 

0.10 mm 17 17.5 

Table I. The minimum oxygen con-

centration and upward limiting oxygen 

index in percent mole (balanced with 

nitrogen)  for five thicknesses of silicone 

fuel, as studied by Hirsch et al.11 The 

chemical igniter provides approximately 

3000 J for a duration of 25 ± 5 s. 

 

 
Figure 3. Material flammability test chamber. Shows camera 

pointed at window, power box with time delay relay, sample card 

and aluminum frame through view of the door, and connected to 

room ventilation. 
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an exhaust hood to dispose of any products of combustion. 

The images were recorded using a PanasonicTM Super 

Dynamic II video camera. 

 A hot-wire igniter (29 AWG KanthalTM) was used for all 

tests, and a power source with a time delay relay set the 

igniter duration and current. The igniter had a cold resistance 

of 0.2215 ohm/cm, and the current for ignition was 3.8 amps. 

The igniter was powered for 8 s and the total energy release 

was 740 J. For comparison, the heat of combustion of the 

0.36-mm-thick silicone sample in the vicinity of the igniter 

was approximately 3 kJ. The igniter wire was 26 cm long and 

it was interweaved around the edge of the sample using a 

sinusoidal pattern as shown in Figure 4. 

 Forced air flow (if desired) was provided by five 7.5-cm-diameter fans placed beneath the sample as demonstrated 

in Figure 5. The flow was straightened by a 1.5-cm-thick honeycomb mesh. The fans provided up to 2 m/s forced 

flow.  

 For tests requiring other than room air conditions, a combustion chamber was used.12 Within this 20-cm-diameter 

chamber, an upward “trickle” flow of gas at 2 cm/s was established. This slow flow was intended to provide oxygen 

replenishment while being well below the buoyant flow speed generated by the flame. The gas for the chamber and 

trickle flow was provided by pressurized precision-mixture bottles. All tests were at atmospheric pressure. The test 

chamber had two windows enabling a side and front view. The samples were 5 cm wide but could only be up to 10 

cm in length. While this was shorter than the 30-cm length specified by NASA 6001 Test 1, the 10-cm samples were 

adequate for the purposes of this work.  

In addition to flammability tests, Energy Dispersive X-ray Spectroscopy (EDS), Thermogravimetric Analysis 

(TGA), and Scanning Electron Microscopy (SEM) were performed on selected samples after they were burned. When 

burning the silicone, a solid particulate was formed that often deposited downstream onto the unburned sample. EDS 

was used to determine the composition of the deposit, TGA provided estimates of the pyrolysis temperature of the 

fuel, and SEM measured the thickness and structure of the deposit. 

III. Results 

Five different sets of flammability tests in room air were performed on silicone of different thicknesses: upward, 

downward, angled, upward with forced flow, and downward with forced flow. In addition, a limited series of upward 

                                                           
 Mention of trade names or commercial products is for descriptive purposes only and does not constitute endorsement 

or recommendation for use by the U.S. Government. 

 
Figure 4. (a) Kanthal igniter. 0.2215 ohm/cm 

cold resistance, 3.8 amps Kanthal igniter in 

position to burn 0.61-mm-thick silicone sample. 

               
Figure 5. Forced-flow configuration. a) Front view of sample card placed on top of fans. b) Side view showing 

the fan bank at the bottom, the 1.5-cm-thick honeycomb flow straightener, and the sample card above. 
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and downward tests were performed at different 

oxygen concentrations. An attempt was made to 

ignite each sample with the hot wire, and the burn 

length was measured. The burn length was 

defined as the linear distance from the base of the 

sample where the igniter was positioned to the 

farthest point of sample consumption. For some 

cases, the average spread rate, defined as the burn 

length divided by the burn time, is reported. The 

burn time is defined as the time from ignition to 

when the flame has stopped spreading. In some 

instances, flamelets can still be visible near the 

base of the sample, but are not consuming new 

material downstream. The burn time does not 

include this interval. 

Figure 6 shows sample flames for different 

spread configurations. The top left image shows 

upward spread, top right shows downward, 

bottom left shows the angled upward 

configuration, and bottom right shows upward 

with forced flow. Note that the flame for the 

upward buoyant-flow case (a) is longer 

compared to the forced-flow upward case (d), but 

the forced-flow upward flame is brighter and 

wider. 

For the upward tests, the six 0.25-mm-thick 

samples burned an average of 27.5 cm. Half of 

the samples burned the entire 30 cm and half self-

extinguished. When self-extinguishment 

occurred, the flame tip began to shrink and the 

flame spread slowed until the flame disappeared.  

All six samples burned more than 15 cm. The 

next thicker sample, 0.36 mm, burned an average 

of 14.8 cm, but one of the six samples did burn 

longer than 15 cm. For this reason, these results 

would have failed Test 1. The 0.61-mm-thick 

sample burned an average of 7.6 cm, with all six 

samples burning less than 15 cm. None of the 

1.00-mm-thick samples ignited in ambient air. 

Figure 7 shows the differences in burn structure 

and particulate deposition for three thicknesses 

of silicone that were burned upward.  

The downward tests produced slower average 

flame spread rates compared to the upward tests. 

The average spread rate was 2.90 mm/s upward 

vs. 0.56 mm/s downward for the 0.36-mm 

thickness and 5.22 mm/s upward vs. 1.01 mm/s downward for the 0.25-mm thickness. All the downward tests that 

ignited burned the full 30 cm. The 0.61-mm- and 1.00-mm-thick silicone samples did not ignite in the downward 

configuration.  

Burn tests with sample inclinations of 60, 75 and 80 degrees were investigated. At 60 and 75 degrees, the 0.36-

mm-thick sample did not self-extinguish, but at 80 degrees it did. The 0.61-mm-thick sample self-extinguished for all 

three angles.  

Tests with upward forced flow were also conducted for upward and downward flame spread. Each thickness was 

tested at the maximum flow of 2 m/s. For the 0.25-, 0.36-, and 0.61-mm thicknesses, the entire sample burned upward 

for all three trials. The 1.00-mm-thick sample still would not ignite. A test was conducted in the upward configuration 

with the 0.36-mm thickness where the test was started with flow, and once the sample burned a length of 10 cm, the 

Figure 6. Flame spread images. a) Buoyant-flow upward 

flame spread. b) Buoyant-flow downward flame spread. c) 75-

degree angle buoyant-flow upward flame spread. d) 

Concurrent 2 m/s forced-flow upward flame spread. 
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flow was shut off. The sample burned another 7.5 cm before self-extinguishing. For the downward spreading of 0.25- 

and 0.36-mm thicknesses, the samples would not ignite with the flow on. When ignited with the flow off, the samples 

were blown out almost immediately when the flow was turned on. Test results for all tests conducted in room air are 

summarized in Table II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Post-burn images of silicone samples of various thicknesses showing burn-out pattern and particulate 

deposition:  a) 0.25 mm, b) 0.36 mm, and c) 0.61 mm. 

 

Test Name 

Sample 

thickness 

(mm) 

Burn 

Length 

(cm) 

Burn 

Time     

(s) 

Burn 

Velocity 

(mm/s) 

Upward 0.25 27.51 52.67 5.22 

Upward 0.36 14.81 51.05 2.90 

Upward 0.61 7.62 60.83 1.25 

Upward 1.00 0.00 0.00 0.00 

Downward 0.25 30.00 295.68 1.01 

Downward 0.36 30.00 539.45 0.56 

Downward 0.61 0.00 0.00 0.00 

Downward 1.00 0.00 0.00 0.00 

Horizontal 0.25 30.00 287.34 1.04 

Horizontal 0.36 30.00 530.87 0.57 

Horizontal 0.63 0.00 0.00 0.00 

60 degree upward 0.36 30.00 141.89 2.11 

60 degree upward 0.61 9.53 93.23 1.02 

75 degree upward 0.36 30.00 103.67 2.89 

75 degree upward 0.61 9.86 83.10 1.19 

80 degree upward 0.36 15.80 54.29 2.91 

80 degree upward 0.61 9.43 72.94 1.29 

Upward forced flow 0.36 30.00 88.55 3.39 

Upward forced flow 0.61 30.00 198.93 1.51 

Table II. Flammability results for 1-g tests in air. Results are an average of 6 tests 

per  case. 
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Figure 8 shows the 

average burn length of six 

tests for each thickness for the 

upward, downward, and 

upward forced-flow cases. In 

the downward configuration 

and upward with forced flow 

cases, if the sample could be 

ignited then it burned the 

entire length. The 0.61-mm-

thick sample failed to ignite 

downward, and the 1-mm-

thick sample failed to ignite 

both upward and downward.  

The average upward burn 

lengths for the 0.25-mm, 

0.36-mm, and 0.61-mm 

samples are plotted. The 

uncertainty bars on the burn 

length represent the standard 

deviation of the six tests. 

Testing with various 

oxygen concentrations with 

nitrogen balance was 

performed in a sealed combustion chamber and the results are shown in Figure 9. The test chamber can only hold a 5- 

by 10-cm sample. This was suitable for determining the limiting oxygen index for downward burns. Upward tests 

were conducted as well, and self-extinguishment was observed; however, a longer sample is needed for complete 

comparison with the previous 

testing done in room air. 

For upward spread, ignition 

was first observed at 18% O2 for 

the 0.25-mm thickness. At 19% 

O2, the 0.25-mm thickness 

consistently burned the entire 10 

cm, a full one percent below the 

oxygen required to even ignite 

this thickness in the downward 

configuration. For the 0.36-mm 

thickness, both upward and 

downward ignition is achieved 

at 20% O2, but self-

extinguishment is observed in 

the upward configuration. For 

samples of 0.36 mm and thicker 

and at a given O2 level, self-

extinguishment is observed in 

the upward configuration while 

the downward burns the fuel 

completely. Based on the tests 

in ambient air (~21% O2), it is 

expected that self-

extinguishment of the 0.25-mm-

thick samples would have 

occurred at 20% O2 for the 

Figure 8. Burn length of downward, upward, and upward forced-flow tests.  

Each sample was 30 cm in height. The 1.00-mm-thick sample failed to ignite in 

the upward and downward configuration. The downward and forced-flow cases, 

if ignited, burned the entire sample.   
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Figure 9. Burn length for upward and downward flame spread in 

atmospheres of varied oxygen concentration. Vertical dashed lines represent 

the minimum O2 level a thickness needs to ignite in the downward configuration. 

For all downward samples, once ignited, the sample burned all 10 cm. Markers 

represent the average of three tests. Solid lines are drawn for clarity. 
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upward burns if the sample were longer. Plans to extend the chamber to enable burning full 30-cm-long samples are 

underway. Tables III and IV summarize the upward and downward tests respectively in the sealed chamber.  

 EDS was performed on the solid particulate deposited onto a 0.36-mm sample. Only two elements, silicone and 

oxygen were detected. Using stoichiometery, it was inferred that the solid deposit is silica (SiO2). TGA was performed 

on one of the 0.61-mm-thick samples after it was burned. Figure 10 shows the different areas that were tested including 

two areas damaged by the flame (2.5 cm and 7.5 cm from the leading edge of the sample) which had a silica layer 

formed on the surface, an undamaged area (13 cm from the leading edge) that had a deposited silica layer, and a remote 

area (30 cm from the leading edge) that essentially consisted of the original silicone with no silica deposition.  

 Figure 11 shows the results from the four areas. Noticeable mass loss for all four samples started at around 400°C. 

Different levels of mass loss are shown, reflecting the different levels of damage from the flame. The original fuel and 

undamaged silica covered samples have identical traces, likely because the silicone was undamaged in both cases. The 

Figure 11. A small sample of originally 0.61-mm-thick silicone was 

submitted for TGA, per Figure 10.  The sample at 13 cm away from the 

leading edge which is unburnt but covered with silica has the same profile as 

the fresh silicone sample at 30 cm away. 
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Figure 10. Sample of burned, 

originally 0.61-mm-thick 

silicone.  Pieces at given 

distances away from the leading 

edge circled in red were cut out 

and analyzed using TGA. 

 

Chamber

 % O2 

Upward Burn Length (cm) 

0.25 

mm 

0.36 

mm 

0.61 

mm 

1.00 

mm 

17 0 0 0 0 

18 6.35 0 0 0 

19 10.16 0 0 0 

20 10.16 8.89 0 0 

21 10.16 10.16 7.62 0 

22 10.16 10.16 5.72 0 

23 10.16 10.16 7.62 6.35 

24 10.16 10.16 9.84 10.16 

25 10.16 10.16 10.16 10.16 

26 10.16 10.16 10.16 8.89 

Table III. Upward burn lengths for four fuel 

thicknesses. Each entry is an average of 3 tests. 

 

Chamber

 % O2 

Downward Burn Length (cm) 

0.25 

mm 

0.36 

mm 

0.61 

mm 

1.00 

mm 

17 0 0 0 0 

18 0 0 0 0 

19 0 0 0 0 

20 10.16 10.16 0 0 

21 10.16 10.16 0 0 

22 10.16 10.16 0 0 

23 10.16 10.16 10.16 0 

24 10.16 10.16 10.16 0 

25 10.16 10.16 10.16 0 

26 10.16 10.16 10.16 10.16 

Table IV. Downward burn lengths for four fuel 

thicknesses. Each entry is an average of 3 tests. 
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more the sample was pyrolyzed by the flame, the less percent mass loss resulted in the TGA because there was less 

fuel for the TGA to vaporize. 

 An area of the originally 0.36-mm-thick silicone was analyzed after an upward burn using SEM. Figure 12 shows 

50x and 300x magnifications. At the point where self-extinguishment occurred, the deposited layer of silica measured 

to be 286 µm thick on the top half of the sample. The unburned fuel measuring 0.36 mm thick is visible in the middle 

of Figure 12a showing that the original silicone buried and sandwiched between the silica layers on both sides is 

undamaged.  

IV. Discussion 

 Most of the results from the ground-based flammability testing of silicone were as expected. The one phenomenon 

that was unexpected was the self-extinguishment of the silicone in the upward configuration for the thinnest two 

samples while the corresponding cases in the downward configuration burned the entire sample. When burning in the 

upward configuration, silica formed in the gas phase deposits onto the unburnt downstream silicone sample, providing 

an insulating thermal barrier and inhibiting the silicone from pyrolyzing. The silica deposit layer may also be providing 

a diffusional barrier for the fuel vapors to reach the surface by creating a tortuous path through the deposit thickness. 

The deposit layer may be formed by a combination of vapor and particulate silica arriving on the silicone sample 

surface. In the downward configuration, the silica is carried up by buoyancy, and does not deposit on the unburnt 

silicone. Maradey et al. saw similar flammability results by burning polyurethane foam in the upward and downward 

configuration.13 They hypothesized that the char from the foam caused self-extinguishment in the upward 

configuration. The results of the angled tests as well as the uward forced flow cases support this hypothesis. When at 

a 75-degree angle or lower, the silica is carried up with the buoyant flow, away from the unburnt silicone surface on 

one side of the sample. When buoyant flow is aided by forced flow, the higher air flow rate convects vapor-phase 

silica away and hence reduces the downstream deposition rate on the fresh silicone surface. 

 Work has been published that shows the effect of silica on flammability. Buch et al. have deposited uniform layers 

on silicone samples to show how the layers slow the pyrolysis rate.14 Romenesko and Buch own a patent for using a 

siloxane polymer powder with silica filler to reduce the flammability of organic resins.15 Solid coatings have been 

developed for the purpose of creating a protective residue upon burning. Kim and Davis developed a multi-walled 

carbon nanotube layer-by-layer coating that reduced heat release rate and burn time of polyurethane foam.16 

 Figure 12 shows a silica layer of 286 µm at the point of self-extinguishment on top of the originally 0.36-mm-

thick silicone. This deposit layer is thicker than the half-thickness of the original silicone sample. While crystalline 

silica has a larger density than silicone (2600 kg/m3 vs. 960 kg/m3), the silica layer is not perfectly crystalline (as 

would be expected from the molecular vapor deposition of silica alone) but rather has a porous structure resulting 

from the co-deposition of both silica vapor and various sizes and shapes of the silica particles. The deposit layer has 

a lower density, and also a lower thermal conductivity than pure silica. Below, we show that the thermal effect alone  

(i.e., ignoring the mass transfer barrier effect) is sufficient to explain the observed self-extinguishment of upward tests. 

Equation 1, which is based on a well-established thin-fuel flame spread model17, represents the critical heat flux needed 

   
  

Figure 12. SEM images. (a) SiO2 layers formed on both sides of the originally 0.36-mm-thick silicone sample 

after an upward burn, 50 times magnification. (b) SiO2 layer 286 µm thick was formed over the silicone sample, 

300 times magnification. 
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to raise the thermal inertia of the fuel and a deposit silica layer to the ignition temperature, which in this case is the 

pyrolysis temperature.    

 Figure 13 shows the critical heat flux calculated from Eq. (1) in order to continue the upward flame spread of a 

silicone sample with a particular thickness as a function of added silica layer thickness. Symmetry of the deposit silica 

is assumed by using the half thickness of silicone in the calculation. Table V lists the physical properties used in Eq. 

(1). The burn time of 55 seconds is the average burn time of the 0.25-mm, 0.36-mm, and 0.61-mm upward samples. 

The ignition temperature of 673 K was determined from the approximate start of mass loss from the TGA results.   

 As expected, the more silica deposited, the more heat flux is needed for upward flame spread. The black line 

represents the calculated minimum heat flux for a 0.36-mm-thick silicone sample with a 286-µm-thick silica deposit, 

since this is the point where the flame is known to self-extinguish. This line is quite consistent with other known data 

points for the flame spread of 

fresh silicone samples with no 

silica deposit. For example, the 1-

mm-thick silicone sample with no 

silica deposit falls above the line 

and is known to not ignite, while 

the other three thicknesses of 

silicone samples with zero silica 

deposit fall below the line and will 

sustain flame spread. It is seen that upward flame spread is not possible above a certain total thickness of silicone 

sample and overlaying silica deposit including cases with no silica deposit.      

 
 Besides the thermal insulating effect, the deposit layer could be acting as an inhibiter by other mechanisms, as 

briefly mentioned above. For example, as a physical barrier to mass transfer, it may be hindering fuel vapors (formed 

after pyrolysis) from reaching the flame and thus facilitating extinguishment of the upward burn cases. The silica layer 

may also have an effect on the flame stabilization zone. T’ien et al. have tested upward and downward burning of 

polyurethane foam.18 In their work, a region is identified where the upward MOC is higher than the downward MOC, 

and it is suggested that the char produced affects the flame stabilization zone. 

 

V. Summary and Conclusions 

 Silicone samples were tested for 1-g flammability characteristics in preparation for Saffire flight II. Burning the 

samples of increasing thickness in an upward configuration yielded inversely proportional burn lengths, as expected.  

The 0.25-mm- and 0.36-mm-thick samples had a greater burn length in the downward configuration than their 

corresponding upward cases. The reason for the increased flammability in the downward direction compared to 

upward is attributed to the deposition of a silica layer onto the fresh fuel in the upward case.  It has been shown that 

this layer acts as a thermal barrier, which prohibits the fuel from reaching the pyrolysis temperature fast enough to 

sustain flame spread. Burning the 0.36-mm-thick sample in the horizontal configuration, and at a 60-degree and 75-

degree angle from the horizontal prevented the silicone from self-extinguishing, likely due to the silica generated by 

 
Figure 13. The critical heat flux needed to raise the thermal inertia of 

half the thickness of a particular silicone sample plus silica deposit vs. 

the overlaying silica deposit thickness. 
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the flame being entrained up and away from the fuel sample, preventing deposition. In all atmospheres tested, if the 

silicone could be ignited in the downward configuration then it would burn the entire length of the sample. 

 When a forced upward flow of air (2 m/s) was imposed, all thicknesses that were ignited burned to completion in 

the upward configuration but were extinguished in the downward configuration. Upward burning tests were done with 

fan flow at the start, and then the flow was shut off. The samples self-extinguished soon after. This is further evidence 

that the deposition of silica is inhibiting flame spread since the higher air flow rate convects vapor-phase silica away 

and hence reduces the deposition rate on downstream fresh silicone surface. The impact of the silica layer on the flame 

spread characteristics of silicone that is reported in this study will be critical in interpreting the data that will be 

obtained in the Saffire-II flight test. 
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