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ABSTRACT 

Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix 

composites where failure caused by impact damage could compromise structural performance and 

safety.  As a result, several materials and/or design approaches to improve impact damage tolerance 

have been investigated over the past several decades.  Many composite toughening methodologies 

impart a trade-off between increased fracture toughness and compromised in-plane strength and 

modulus.  In large part, mechanical tests to evaluate composite damage tolerance include static 

methods such as Mode I, Mode II, and mixed mode failures.  However, ballistic impact damage 

resistance does not always correlate with static properties.  The intent of this paper is to evaluate the 

influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of 

composite test articles.  Static coupon tests included tension, compression, double cantilever beam, 

and end notch flexure.  Measurement of the resistance to ballistic impact damage were made to 

evaluate the composites response to high speed impact.  The interlayer material showed a decrease of 

in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness.  

However, significant benefit to impact damage tolerance was observed through ballistic tests. 

 

1 INTRODUCTION 

 Damage resistance and damage tolerance in composite structures are critical concerns; driving both 

structural design and safety requirements.  Damage resistance defines the ability of a material to resist 

permanent change following impact; whereas damage tolerance defines the material’s ability to 

function after a permanent physical change has occurred[1].  The terms are commonly used to describe 

the response of a composite material as the energy of an incident projectile (either low or high 

velocity) is dissipated[2].  A clear delineation between low and high velocity impact has not been 

made, however has been classified by various groups[3].  Cantwell and Morton[2] classified low 

velocity impact as up to 10 ms-1, due to the test techniques which are typically used to characterize low 

mailto:Sandi.G.Miller@nasa.gov
mailto:Gary.D.Roberts@nasa.gov
mailto:Lee.W.Kohlman@nasa.gov
mailto:Mike.Pereira@nasa.gov
mailto:Paula.J.Heimann@nasa.gov
mailto:Richard.E.Martin-1@nasa.gov


Sandi G. Miller, Gary D. Roberts, Lee W. Kohlman, Paula J. Heimann, J. Michael Pereira, Charles R. 

Ruggeri, Richard E. Martin, Linda S. McCorkle 

 

velocity impact damage (LVID). Shivakumar and co-workers[4] define low-velocity impact as an 

event which can be treated as quasi-static; meaning a wide velocity range would qualify as it is 

dependent on the material and physical properties of the target and impactor.   As opposed to a quasi –

static response following low velocity impact, a composites response to high velocity impact is 

dominated by stress-wave propagation through the material[5]. 

 While low-velocity impact is important for aircraft structures, due to events such as tool drops, 

high velocity impacts represent in-service impact events such as hail damage and most commonly- 

bird strike.  When a bird strikes an aircraft, the relative velocities between the two objects are so high 

that the impacted material could suffer instant damage and failure. This situation can be simulated by 

high velocity impact testing; which provides damage representative of in-service events that could lead 

to the immediate failure of the material[6].  Mustapha noted several composite parameters affecting 

the impact resistance of a composite, including hardness/strength, ductility, microstructure and 

thickness; and noted several potential failure modes.  Furthermore, under impact loading, damage 

modes such as fiber breakage, matrix cracking, and delamination may appear together[7].  

 Mitigating delamination failure has been the subject of materials researchers and composite 

designers for decades.  Most successful approaches include the addition of a secondary – often more 

compliant- phase to the composite.  The toughening material is often, but not always, a thermoplastic 

polymer or a rubber.  Two primary approaches to incorporating such materials into the composite have 

been widely investigated.  The first includes blending a toughening material into the matrix and the 

other includes placing the toughener at the ply interfaces.    

 The blending approach, or matrix toughening, was first introduced in 1974 when researchers at the 

Ford Motor Company developed and incorporated preformed particulate core shell particles into and 

epoxy matrix- as well as other thermosetting polymer systems[8].  The blending approach is widely 

used in commercial prepreg materials; allowing mechanical properties, i.e. toughness/strength balance, 

to be dialed in based on the type of resin and toughening phase that are used to engineer a material 

system[9].  Over the past four decades, attention has been given to material design which leads to the 

toughening material primarily positioned at the ply interface; rather than homogenously distributed 

throughout the matrix.  In 1988 Hercules designed a material where, during cure, toughening 

particulates precipitated from the epoxy matrix into the interlaminar region.  Comparable approaches 

include spraying or placing preformed particles on the prepreg during laminate fabrication[8].  For 

example, Toray has used this approach with Nylon particle interleave to improve compression after 

impact and this material is used on the Boeing 787[10]. 

 The evolution from homogenous dispersion of a toughening material to particulate distribution at 

the interply region continued to evolve to include application of non-woven toughening veils for 

improved interlaminar toughening.  There have been numerous papers documenting the benefits to 

Mode I and/or Mode II fracture toughness of such materials.  Several researchers have evaluated low 

velocity impact tests and report a reduction in delamination following application of a thermoplastic 

veil[11]. 

 The mechanism of failure through application of a veil interleaf differs from that of a 

homogeneously dispersed toughening material.  The blended material system improves fracture 

toughness through increased fracture toughness of the matrix itself[12].  Therefore, the toughened 

matrix increases the energy required to initiate failure, but crack growth rate is unaffected.  The trade-

off of the blended system is an accompanying reduction in tension and compression strength[9]. 

Application of a secondary phase at the interface (whether it is a veil or preformed particles) changes 

the failure mechanism to crack deflection.  At the onset of a delamination event, crack propagation is 

slowed by the material present in the interface.  A reduction of in-plane strength and modulus may be 

observed, however, the veil interleaf approach is attractive in that the toughening material need only 

be applied where it is required from a design perspective.    This is particularly attractive for a 

structure such as a composite jet engine fan blade where the application demands high strength and 

modulus, however resistance to impact damage is also critical for safe operation. 
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 The purpose of this paper was to evaluate the influence a thermoplastic polyurethane veil, applied 

as an interleaf, on static material properties and ballistic impact damage resistance of a fan blade 

leading edge subcomponent structure.  A correlation could not be made between the moderate benefit 

observed through static tests and the significant reduction of impact damage observed in the impact 

tests.   

 

2  EXPERIMENTAL 

2.1  Static Test Coupon  

 Hexcel’s IM7/8552 prepreg was used for initial evaluation of the interleave concept due to material 

availability; and test panels for static testing were fabricated from this prepreg. The areal weight of the 

unidirectional prepreg tape was 160 g/m2 (gsm), with a 35% resin content.  Material technical data for 

this material may be obtained from Hexcel[13].  

 The melt spun thermoplastic polyurethane (TPU) veil used for interleave material, was 

manufactured at Hills, Inc of Melbourne, FL.  The veil was prepared in both 15 gsm and 45 gsm areal 

weights.   

 As progress was made toward the subcomponent structure, a composite fan blade leading edge, a 

prepreg material relevant to this application was procured.  IM7/8551-7 is a state-of-the-art prepreg 

material for composite structures that require high damage tolerance[14].  This material was used for 

leading edge subcomponent fabrication and ballistic impact testing. 

2.2  Panel Fabrication  
 Flat panels for static testing were fabricated and tested following vacuum bagging and cure 

procedures recommended by the Hexcel for IM7/8552.  The ply configuration of panels fabricated for 

tension and compression was [0/90/90/0]2s, and was intended to maximize interply stress concentration 

at the 0/90 interface.  The TPU veil was incorporated into the panel at the cross-plies, therefore 8 

layers of veil per each 16 ply laminate.  Mode I and Mode II laminates were fabricated with a [0]24 ply 

configuration and included a Teflon crack initiator, 6.35 cm in length, at the mid-plane.  A single layer 

of veil material was incorporated at the mid-plane for these tests.    

2.3  Leading Edge Subcomponent Fabrication 

 A simple subcomponent impact test article was designed to represent the leading edge of a fan 

blade as documented in Reference 15.  The IM7/8551-7 pre-impregnated tape was cut according to the 

ply lay-up and configuration specifications for the subcomponent.  An aluminum tool was custom 

designed to fabricate the leading edge specimen described in this paper. The mold was a mated 7075 

Aluminum die, which was fitted with a vacuum pump venting attachment and a channel to capture 

excess resin flow (Fig. 1). All blade coupons were processed in an autoclave and followed the vendor 

recommended cure cycle. Cured blades dimensions were 15.24 cm (6 in) wide by 45.7 cm (18 in) long 

and, following removal from the tool, were machined on the 45.7 cm (18 in) sides for a smooth surface 

to secure in the impact test fixture. 

 In an effort to protect the leading edge from extensive break-out damage during impact, leading 

edge protection was applied in the form of an industrial aluminum foil adhesive tape. The aluminum 

foil tape was 0.25 mm (0.01 in) thick and 5.1 cm (2 in) wide and added approximately 20 g of mass to 

the edge of the blade. The adhesive tape was placed 2.5 cm (1 in) from the leading edge on the 

concave side of the blade, rolled over onto the convex side, then smoothed and flattened. A fully 

prepared test article is shown (Fig. 2).  



Sandi G. Miller, Gary D. Roberts, Lee W. Kohlman, Paula J. Heimann, J. Michael Pereira, Charles R. 

Ruggeri, Richard E. Martin, Linda S. McCorkle 

 

 

Figure 1. 3-D model of mated die mold 

  

 

 

Figure 2: Prepared leading edge test article 

 

2.4  Static Tests 

 All static tests were performed according to standard test methods and under room temperature, dry 

conditions.  Tension and compression specimens were fabricated with a [0/90/90/0]2s ply configuration 

and tests followed, respectively; ASTM D 3039, “Standard Test Method for Tensile Properties of 

Polymer Matrix Composite Materials”, and ASTM D 3410, “Standard Test Method for Compressive 

Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear 

Loading”.  Mode I and Mode II fracture toughness tests followed, respectively; ASTM D 5528, 

“Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-

Reinforced Polymer Matrix Composites”, and JIS K 7086, “Testing Methods for Interlaminar Fracture 

Toughness of Carbon Fiber Reinforced Plastics”. 

2.5  Ballistic Impact Test 

 Impact tests were performed in the Ballistics Impact Laboratory at NASA Glenn Research Center 

to simulate the material response to bird strike at the leading edge. Impact tests utilized a single-stage 

gas gun, consisting of a 7 m barrel and a 0.35 m2 pressure vessel. The pressure vessel was loaded to a 

pressure of 1.2 MPa (175 psi), and the pressure was released using a burst disk. The projectile was 

housed in a cylindrical sabot for protection at the initial pressure release.  Both were accelerated 

through the barrel by the release of pressure. The sabot was halted at the end of the barrel by a sabot 

arrestor and the projectile continued into the test specimen. High speed cameras were used to capture 

the impact of the projectile on the test article and determine the estimated speed. These tests were 

performed at speeds of approximately 305 m/s (1000 ft/s). A gelatin bird simulant was used as the 
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projectile, containing ballistic grade gelatin and microspheres to approximate the density of a bird; ~ 

0.9484 g/cm3. The molded projectile was cylindrical, with a length of 7.6 cm (3 in) and diameter of 3.2 

cm (1.25 in) and a mass of 50g. The projectile impacted the leading edge of the subcomponent at an 

angle representative of a bird strike.  The procedure for making the bird simulant and the orientations 

of the projectile and blade are presented in Reference 15.  

3  RESULTS AND DISCUSSION 

 Two separate veil areal weights, 15gsm and 45gsm, were evaluated.  Representative SEM images 

(Figs 3, 4), show variation in fiber packing within regions of the 15 gsm (Figs 3a-3b) and the 45 gsm 

material (Figs 4a-4b).  Literature has reported an increase in fracture toughness with increasing 

interleave thickness[16], however, tension and compression strength tended to decrease with increased 

areal weight, i.e., thickness.  Thus, moving forward with fracture toughness and blade subcomponent 

work only the 15 gsm material was used. 

3a.   3b.  

Figures 3a-b illustrate the variation in fiber diameter and packing within the 15 gsm veil. 

4a.   4b.  

Figures 4a and 4b illustrate the variation in fiber diameter and packing within the 45 gsm veil. 

 The process to cure the material was not modified following incorporation of the veil within the 

laminate.  Optical microscopy of the cured panel cross-section (Figs 5a-5c) showed excessive voids at 

the interface, due to the added porous material, (Figs 5b and 5c). Voids are seen as the black areas at 

the ply interfaces.  Future cure studies are recommended to mitigate consolidation issues such as void 

formation. A distinct increase of interlaminar interface thickness was also observed, from ~ 5 m in 

the baseline composite, to 10-70 m in the 15 gsm veil coupon, and 30-70 m in the 45 gsm veil 

coupon.   
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5a.  5b.  

5c.  

Figures 5a-5c: Optical Microscopy of the cross-section of a- baseline composite, b- 15 gsm interleave, 

and c- 45 gsm interleave coupon. 

 Static tests were performed to evaluate the influence of the interleaved TPU on fracture toughness 

and the associated reduction of in-plane properties.  A portion of the commonly reported drop in 

tensile strength is attributed to a reduction in fiber volume fraction that results from the added 

interleave material.  The tension/compression coupons fabricated for this study incorporated an 

interleave material at eight of the sixteen ply interfaces.  The fiber volume for each laminate, as 

measured by acid digestion, is listed in Table 1.  The average 10% increase in thickness resulted in 

calculated 6% reduction of fiber volume in the interleaved coupons. 

Table 1: Average coupon thickness and fiber volume of baseline and interleaved laminates. 

Material Thickness (mm) Fiber Vol (%) 

Baseline 2.25 58% 

15 gsm TPU Veil 2.45 54% 

45 gsm TPU Veil 2.53 52% 

 

 The results of the static tests are summarized in Table 2 and show a reduction of in-plane strength 

and modulus that can only partly be accounted for through normalization by fiber volume. Data 

presented is as measured and not normalized to fiber volume. 
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Table 2: Mechanical test data for baseline and interleaved coupons. 

In-Plane Test 

Results 

Strength 

[std dev] 

(ksi) 

Modulus 

[std dev] 

(Msi) 

 Fracture 

Toughness 

       GIC      

        (J/m2) 

     GIIC  

      (kJ/m2) 

Tension  DCB 

Baseline 179 [6] 12.2 [0.5] Baseline 182 [6]  

TPU interleave (15 

gsm) 

154 [3] 10.9 [0.3] TPU interleave 

(15 gsm) 

320 [43]  

TPU interleave (45 

gsm) 

108 [6] 10.6 [2]    

Compression ENF 

Baseline 102.4 [7.3] 10.7 [0.1] Baseline  3.15 [0.04] 

TPU interleave (15 

gsm) 

56.7 [5.1] 9.1 [0.4] TPU interleave 

(15 gsm) 

 3.32 [0.06] 

TPU interleave (45 

gsm) 

45.1 [3.0] 9.5 [0.9]    

 

 The tensile strength of the 15 gsm interleaved material was reduced by only 13%, with 

thermoplastic present at 50% of the interfaces.  This is an anticipated consequence of the reduction of 

fiber volume and the void content at the interface.  The much larger (40%) reduction of tensile 

strength following interleave with 45 gsm material is due in part to the greater content of low strength 

thermoplastic, and in part to increased wet-out issues at composite interfaces where the material was 

present.  The compression strength was decreased due to the reduced stiffness of the polymeric 

material surrounding the fiber.  The dominant failure mechanism in compression is fiber buckling, 

which occurs at a reduced compressive stress as matrix modulus decreases.   

 Mode I fracture toughness tests showed a 40% increase in GIC following addition of the TPU veil.  

The mechanism of improvement has been attributed to crack deflection, where the veil increases the 

path length of crack propagation.  This is illustrated in the images of the fracture surfaces Figs (6a and 

6b).  Figure 6a show matrix failure in the baseline material, and a clean fracture surface.  The failure 

of the toughened panels, Figure 6b, is obscured from the debris left from the interleave, but an 

increased amount of fiber pull out is observed.  The benefit to Mode II fracture toughness was 

negligible; 5%. 

6a.   6b.  

Figures 6a-b:  Mode I fracture surface of 6a- baseline panel, 6b- 15 gsm interleave. 
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3.1  Composite Fan Blade Leading Edge Subcomponent 

 Baseline and thermoplastic polyurethane (TPU) veil toughened blades were prepared to evaluate 

the effects of increased interlaminar strain-release capability of the structure on impact resistance. The 

toughening veil was 22.9 cm (9 in) long and placed in the midsection of the blade length (Fig 7).  

Three layers of TPU were added to the blade in the locations labeled in Fig. 8. Two of the layers were 

7.6 cm (3 in) wide and the other was 5.1 cm (2 in) wide. The veil placement was chosen to cover a 

significant portion of ply terminations; reducing free edge stresses.  

 

 

Figure 7. Location of 7.6 cm (3in) polyurethane veil layer. 

 

 

Figure 8. Polyurethane veil toughened specimen. 

 The results of the impact test are shown (Fig. 9).  Impact of the baseline blade (C006) led to 

considerable damage at the leading edge, with complete break-out at the impact location.  There was 

no break-out of material for the veil toughened blades (C008) and no delamination at the leading edge 

was noted; in the interleave region.  In both tests, a small delamination was observed near one end of 

the leading edge in an unmodified region due to flexural wave reflection.  This failure mode was 

observed in other leading edge tests and is considered an artifact of boundary conditions, occurring 
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after the initial impact. Permanent deformation at the leading edge of the blade tip in actual fan blades 

is common in bird strike events.   

                               

 

          Figure 9. Photos of baseline (left) and toughened (right) panels after impact 

3.2  Damage Inspection 

 Thermography images were used to characterize the impact-induced damage to the blade, (Figs 10a 

– 10b). The thermal image in Figure 10a indicates that damage to the baseline blade was limited to 

break-out at the impact site.  The dark area along the leading edge is an artifact of the test, due to the 

thinness of the blade at the leading edge.  In the toughened blade the leading edge maintained its 

integrity, allowing a greater amount of energy to be transferred into the blade, resulting in increased 

overall deformation in the form of large oscillatory flexing.  The increased bending of the blade 

appeared to result in some delamination just beyond the placement of the toughening veil, as 

evidenced by the thermal image of the toughened blade (Fig. 10b).  Increased flexing and bending was 

observed in the toughened blade, relative to the baseline, in high speed videos of the experiments.  As 

a result, the mid-blade delamination appeared to only occur in the ‘toughened’ blade.   
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Figure 10a. Thermography images of the baseline composite blade.  Upper image corresponds to the 

back surface and the lower image corresponds to the front surface. 

 

Figure 10b.  Thermography images of the thermoplastic veil incorporated blade.  Upper image 

corresponds to the back surface and the lower image corresponds to the front surface. 
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4 CONCLUSIONS 

 A thermoplastic polyurethane veil was incorporated into flat panels and a fan blade leading edge 

subcomponent to evaluate the influence on static response and impact damage resistance of the 

material.  Incorporation of the veil material resulted in voids within the veil material between plies.  

Static testing demonstrated a reduction of in-plane material strength and modulus, possibly caused by 

the void formation.  However Mode I fracture toughness was improved by ~40% as a result of a 

change from a smooth to rough fracture path. 

 A simplified composite blade subcomponent was designed, fabricated, and impact tested to 

simulate a bird strike event.  The interleave approach lead to a significant reduction in damage on 

impact.   
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