

Configurable Aperture Space Telescope

Readiness level: ☑ TRL 1-3: Concept □ TRL 4-6: Prototype □ TRL 7-9: Demonstrated

Ames Research Center

NASA Ames Instrumentation Workshop

CAST Telescope

• An spherical telescope that can grow on space offering "unlimited FoV" •The telescope can grow on space utilizing identical interchangeable segments: Spherical aberration corrector on each segment Configuration evaluated

Apertures range	: 0.6m based on a 2.4m
F/#	: 22.3
FoV	: 2'
R primary	: 14,000mm
R sec	: 8,750mm
D Primary	: 600mm
D sec.	: 216mm
Primary to secondary distance	: 4,250mm

This could be a scalable way to replace Hubble in the visible regime.

- Longer wavelengths NIR would relax alignment tolerances
- Challenges: Design correctors for 2x2' FOV that are Diffraction Limited
- Achieve structure stiffness enough to maintain the mirrors in place.

Relevance for Ames

- Co-phasing segments algorithms has been developed
- Creating lager apertures based on small segments in space is key to enable astrophysics with cube-sats.
- · Possible extension to adaptive spherical segments that can morph into aspheric segments.

Technology / Application

- Sept 2014. CIF for CAST awarded
- April 2015, Theoretical design work mostly completed
- August 2015, co-phasing lab demo completed
- September 2015, corrector implemented
- Possible application to APRA funding for next year •

POC

PI: Kimberly Ennico

- POC: Eduardo Bendek
- Email: eduardo.a.bendek@nasa.gov
- Phone: 650-604-5850

September 16, 2015

