

The NASA Electronic Parts and Packaging (NEPP) Program: **Roadmap for FY15 and Beyond** and Recent Radiation Highlights

Kenneth A. LaBel ken.label@nasa.gov

Michael J. Sampson michael.j.sampson@nasa.gov

1

301-286-9936

301-614-6233 Co- Managers, NEPP Program

NASA/GSFC

http://nepp.nasa.gov

Acknowledgment:

This work was sponsored by: NASA Office of Safety & Mission Assurance

Outline

- NEPP Task and Technology Selection
 - Background
 - Task Roadmaps
 - Other Cool Tasks
- Radiation Highlights
 - Proton Facility Status
 - INTEL 14nm Processors
- Summary

Sundown at SCRIPPS Proton Therapy Center, Ken LaBel

Acronyms

Acronym	Definition				
3D	Three Dimensional				
ADC	analog-to-digital converter				
AES	Advanced Encryption Standard				
AF SMC	Air Force Space & Missile Systems Center				
AFRL	Air Force Research Laboratory				
AMOLED	Active Matrix Organic Light Emitting Diode				
AMS	Agile Mixed Signal				
ARM	ARM Holdings Public Limited Company				
CAN	Controller Area Network				
CAN-FD	Controller Area Network Flexible Data-Rate				
CBRAM	Conductive Bridging Random Access Memory				
CCI	Correct Coding Initiative				
CGA	Column Grid Array				
CIGS	Copper Indium Gallium Selenide				
CMOS	Complementary Metal Oxide Semiconductor				
COTS	Commercial Off The Shelf				
CPU	Computer Processing Unit				
CRC	Cyclic Redundancy Check				
CREME	Cosmic Ray Effects on Micro-Electronics				
CSE	Computer Science and Engineering				
CU	Cu alloy				
D-Cache	Data Cache				
DCU	Display Controller Unit				
DDR	Double Data Rate				
DDR2	Double Data Rate Two				
DDR3	Double Data Rate Three				
DDR4	Double Data Rate Four				
DMA	Direct Memory Access				
DNA	Deoxyribonucleic Acid				
DoD	Department of Defense				
DRAM	Dynamic Random Access Memory				
DSP	Digital Signal Processing				
dSPI	Dynamic Signal Processing Instrument				
DTRA	Defense Threat Reduction Agency				
Dual Ch	Dual Channel				
ECC	Error-Correcting Code				
EEE	Electrical, Electronic, and Electromechanical				
EMAC	Equipment Monitor And Control				
EPC	Efficient Power Conversion				
ESL	Electronic System Level				
eTimers	Event Timers				
FCCU	Fluidized Catalytic Cracking Unit				
FeRAM	Ferroelectric RAM				
FinEET	Fin Field Effect Transistor (the conducting				
	channel is wrapped by a thin silicon "fin")				

Acronym	Definition
FlexRay	FlexRay communications bus
FPGA	Field Programmable Gate Array
FY	Fiscal Year
GaN	Gallium Nitride
Gb/s	gigabyte per second
Gen	Generation
GIC	Global Industry Classification
GPU	Graphics Processing Unit
GSFC	Goddard Space Flight Center
HALT	Highly Accelerated Life Test
HAST	Highly Accelerated Stress Testing
HDIO	High Density Digital Input/Output
HDR	High-Dynamic-Range
HEMTs	High-electron-mobility transistors
HP Labs	Hewlett-Packard Laboratories
HPIO	High Performance Input/Output
HUPTI	Hampton University Proton Therapy Institute
HW	Hardware
12C	Inter-Integrated Circuit
IBM	International Business Machines
IBM/GF	International Business Machines/GlobalFoundaries
IC	Integrated Circuit
I-Cache	Instruction Cache
loT	Internet of Things
IP	Intellectual Property
IR	Infrared
IR/Infineon	International Rectifier/Infineon Technologies
	Indiana University Cyclotron Facility
JPEG	Joint Photographic Experts Group
KB	Kilobyte
L2 Cache	independent caches organized as a hierarchy (L1, L2, etc.)
	Liquid-Crystal-on-Silicon
	linear energy transfer
LINFIEX	Local Interconnect Network Flexible
LLUMC	Slater Proton Treatment and Research Center at Loma Linda
mom	
	Low Power
	Memory/Logic Built-In Self-Test
MRSE	Model-Based Systems Engineering
MEMS	Micro Electrical-Mechanical System
MGH	Mass General Francis H. Burr Proton Therapy
MIPI	Mobile Industry Processor Interface
MOSEETS	Metal Oxide Semiconductor Field Effect Transistors
MPSoC	Multi-Processor System on a Chin
MRAM	Magnetoresistive Random Access Memory
Msa	Message

Acronym	Definition					
NASA	National Aeronautics and Space Administration					
NAVY Crane	Naval Surface Warfare Center, Crane. Indiana					
NEPP	NASA Electronic Parts and Packaging					
NGSP	Next Generation Space Processor					
NOR	Not OR logic gate					
NSRL	NASA Space Radiation Lab					
Occam	Open Conditional Content Access Management					
OKC	Oklahoma City					
OLED	Organic Light Emitting Diode					
PBGA	Plastic Ball Grid Array					
PCIe	Peripheral Component Interconnect Express					
	Peripheral Component Interconnect Express					
PCIe Gen2	Generation 2					
	Peripheral Component Interconnect Express					
PCIe Gen4	Generation 4					
PS-GTR	Global Regulation on Pedestrian Safety					
R&D	Research and Development					
RAM	Random Access Memory					
ReRAM	Resistive Random Access Memory					
RF	Radio Frequency					
RGB Red. Green, and Blue						
RH	RAD-Hard					
SAR	Successive-Approximation-Register					
SATA	Serial Advanced Technology Attachment					
SCU	Secondary Control Unit					
SD/eMMC	Secure Digital embedded MultiMediaCard					
SD-HC	Secure Digital High Capacity					
SDRAM	Synchronous Dynamic Random Access Memory					
SEE	Single Event Effect					
SERDES	Serializer/Deserializer					
SiC	Silicon Carbide					
SMMU	System Memory Management Unit					
SOC	System on a chip					
SPI	Serial Peripheral Interface					
SPU	Synergistic Processor Unit					
TCM	Tightly Coupled Memory					
П	Texas Instruments					
TRIUME	Tri-University Meson Facility					
TRI	Technology Readiness Level					
T-Sensor	Temperature-Sensor					
TSMC	Taiwan Semiconductor Manufacturing Company					
UART	Universal Asynchronous Receiver/Transmitter					
0,	University of Florida Health Proton Therapy					
UFHPTI	Institute					
USB	Universal Serial Bus					
VNAND	Vertical NAND					
WBG	Wide Band Gap					
WDT	Watchdog Timer					
	in alona og minor					

To be presented by Kenneth LaBel at the 2015 Radiation Hardened Electronics Technology (RHET), Conference, Albuquerque, NM, November 16-18, 2015.

Technology Selection Criteria for NEPP Investigation

- The technologies should satisfy all or most of the following criteria:
 - Wide applicability,
 - Product level or in productization, and,
 - No distinction: COTS to hi-reliability aerospace.
- In general, we avoid:
 - Laboratory technologies, e.g., <TRL3,
 - Limited application devices with certain exceptions (critical application or NASA center specialization).
- Note: Partnering arrangements with other organizations preferred.
 - Industry examples: Microsemi, Xilinx, Altera, TI
 - Other U.S. Government: AF SMC, AFRL, DTRA, Navy Crane

Technology Investigation Roadmap Discussion

- Technology assurance efforts are not explicitly included except on "Small Missions" chart.
 - Guidelines are a product of many technology evaluation tasks.
- Only major product categories shown.
- Technology areas not on Roadmap but under consideration include:
 - Electro-optics (fiber optics),
 - Advanced analog and mixed-signal devices,
 - Imaging sensors,
 - Modeling and simulation,
 - High-speed communication (SERDES, fast data switches), and,
 - Adjunct processors (eg., graphics, signal processing)
- Note 1: Advanced CMOS technologies not explicitly included:
 - NEPP leverages samples from ongoing DoD and/or commercial sources.
 - 14nm is current target (IBM/GF, INTEL).
- Note 2: "Reliability testing" may include product and/or package testing.

Gartner Hype Cycle Concept

6

Gartner Hype Cycle for Emerging Technologies 2015

7

Gartner Hype Cycle for Electronics 2013

expectations

To be presented by Kenneth LaBel at the 2015 Radiation Hardened Electronics Technology (RHET), Conference, Albuquerque, NM, November 16-18, 2015.

8

NEPP and Gartner Electronics Hype Cycle 2013

Field Programmable Gate Arrays (FPGAs)

Trusted FPGA

DoD Development

Xilinx Zynq UltraScale+ Multi-Processor System on a Chip (MPSoC) family

Processing System DDR High **Application Processing Unit Graphic Processing Unit** Controller Speed **NEON™ Display Port** DDR4/3/3L. Quad ARM Cortex[™]-A53 ARM Mali[™]- 400 MP LPDDR4/3. **Floating Point Unit** ECC Support **USB 3.0** 32KB 2 Pixel 32KB Memory Geometry SATA 3.0 Processor Processors I-Cache D-Cache Management with Parity with ECC Unit PCIe Gen2 Memory Management Unit 256KB 0CM with ECC GIC CCVSMMU 1MB L2 Cache/ECC SCU 64KB L2 Cache PS-GTR System General **Real-Time Processing Unit** Platform Security Control Connectivity Management Vector Floating Unit Configuration **Gigabit Ethernet** Point Unit **AES Decryption**, CAN Dual ARM Cortex[™]-R5 Authentification Memory Protection 12C Power DMA, Timers, and Secure Boot Unit UART WDT, Resets. **USB 2.0** Clocking **128KB TCM** 32KB I-Cache 32KB D-Cache TrustZone SPI and Debug with ECC with ECC with ECC System Quad SPI NOR Management NAND Voltage/Temp GIC Monitor SD/eMMC Programmable Logic Storage and Signal Processing **High Speed Connectivity** Video Codec Block RAM **General Purpose IO** 100G EMAC GTH H.265/H.264 **High-Performance HPIO** UltraRAM GTY PCIe Gen4 High Density HDIO DSP Interlaken AMS

From Xilinx.com

Advanced Processors

- Joint NASA-AFRL Program for RH multi-core processor
- TBD architecture/process

RH Processor

- BAE Systems RAD5510/5545
- Replacement for RAD750

Intel Processors (w/Navy Crane)

- 14nm FinFET commercial (5th and 6th generation)
- 5th generation is 1st highperformance sans heatsink (lower power for performance)

Freescale P5020/5040

- Commercial 45nm network processor
- Preparation for RH processor

Note: Future considerations under discussion include automotive "self-driving" processor options.

Microcontrollers and Mobile Processors (Small Missions)

Small Missions

Automotive Processors and Systems for Self-Driving Cars?

S32V234 Block Diagram

From Freescale.com

Wide Band Gap (WBG) Technology

Silicon Power Devices

Packaging Technologies (1 of 2)

High Density, Non-hermetic Column Grid Array (CGA) **Reliability Testing** Xilinx CN/Kyocera Daisy Chain -**Microsemi Daisy Chain** -Reliability Testing Materials analysis, long term stress, root cause failure HALT Reliability Testing Methodology/Qualification Reliability Testing HALT/HAST comparison **Plastic BGA matrix** Area Array Column Guideline development **Selection guide Thermal Interface Materials** Selection guide Guideline development **PBGA** Thermal Cycle Reliability Testing **Evaluation FY15 FY16 FY14 FY17**

Packaging Technologies (2 of 2)

Bump Reliability

- Technology review
- Test vehicle options

3D Packaging Technologies

- Technology review
- Test vehicle options

QFN package reliability

Reliability/Qualification metrics

Guideline research

Reliability Testing

FY14 FY15 FY16 FY17

And Just When You Think Your Roadmap is Set, New Parts are Released

Examples

- More complex processors
 - TI Multicore DSP+ARM KeyStone II System-on-Chip (SoC)
- Integrated "instruments"
 - TI DLP2010NIR near IR sensing and controller

Courtesy, TI

A Few Other Cool Tasks...

- CubeSat mission success/failure root cause analysis
 - Grant to Saint Louis University
- Using a model-based systems engineering (MBSE) approach to radiation assurance
 - Grant to Vanderbilt
 - Co-sponsored by NASA Reliability and Maintainability Program
 - Uses a tool called "Goal Structured Notation"
- Keeping the CRÈME website alive
 - Support to Vanderbilt
 - Just standard maintenance and operation, no upgrades
- Proton fluence test levels
 - See next chart

Relative Coverage of Proton and Heavy-Ion SEE Tests

Infrared micrograph of a portion of a 512 Mb SDRAM ~60×70 μ m²

Shows both memory cells and control logic (10 yr. old tech.)

- Red spots are ion hits

1E10 200 MeV protons/cm²

20% of areas this size get 0 hits for 10¹⁰ cm⁻²

Courtesy Ray Ladbury, NASA/GSFC

Coverage from 1E7 heavy ions/cm²

Proton Therapy Site Access – Team Plan

- Contact facilities (focus on cyclotrons)
- Site visit to determine interest
 - Technical
 - Access
 - Business case
- Beta/shakeout tests at interested sites to determine usability
 - Underway
- Work logistics of access
 - Underway
- Determine guidelines for usage of these sites
 - Underway
- Recommendations for modifications and longer term access.
 - Initial planning

Assumption: Therapy sites will have available 300-500 hours/year each (weekends). Multiple facilities required to replace IUCF in the near term.

Proton Facility Status (200 MeV – North America)

	Facility	Location	Hourly Rate	Туре	Access/ Annual Hours	Expected Avail.	Shakeout Test
Future Facilities	Northwestern Medicine Chicago Proton Center	Warrenville, IL	TBD	Cyclotron	2 hrs – weeknights 8-16 hrs Saturdays	Now	Yes
	Scripps Proton Therapy Center	La Jolla, CA	<\$1000/hr	Cyclotron	Up to 500 hrs	Now	Yes
	Seattle Proton Center	Seattle, WA	TBD	Cyclotron	TBD	On hold until CY16	Yes
	Hampton University Proton Therapy Institute (HUPTI)	Hampton, VA	TBD	Cyclotron	TBD weekends (up to 30 hrs?)	CY15	Yes
	OKC ProCure Proton Therapy Center	ОКС, ОК	\$1000 + one-time \$3000 setup fee	Cyclotron	Weekdays 6 hrs + possible shared time Saturdays 5-8 hrs	On hold	Change of management – no current interest
	University of Florida Health Proton Therapy Institute (UFHPTI)	Jacksonville, FL	TBD	Cyclotron	Weekend days (possibly shared with quality assurance)	CY16	Spring CY16
	Provision Center for Proton Therapy	Knoxville, TN	TBD	Cyclotron	TBD	Unknown	Unknown
	Dallas Proton Treatment Center	Dallas, TX	TBD	Cyclotron	TBD	On "pause"	TBD
	University of Maryland Proton Treatment Center	Baltimore, MD	TBD	Cyclotron	500	CY16	Spring CY16?
Existing Facilities	Tri-University Meson Facility (TRIUMF)	Vancouver, CAN	\$750	Cyclotron	4x/year	Yes	Oct-Nov 2015
	Slater Proton Treatment and Research Center at Loma Linda University Medical Center (LLUMC)	Loma Linda, CA	\$1,000	Synchrotron	~1000	Yes	N/A
	Mass General Francis H. Burr Proton Therapy (MGH)	Boston, MA	\$650	Cyclotron	~800 hours 12hr weekend days, 3 of 4 weekends – 6 month+ lead time	Yes	Dec 2015
	NASA Space Radiation Lab (NSRL)	Brookhaven, NY	\$4,700	Synchrotron	~1000 hours	Yes	N/A
	Indiana University Cyclotron Facility	Bloomington, IN	\$820	Cyclotron	2000 hours	No	N/A

INTEL 14nm Processors

- Two generations now available:
 - 5th (laptop focused with LOW power)
 - 6th (high performing)
- Initial proton and heavy ion tests performed on 5th generation
 - SEUs as expected on commercial devices
 - Anomaly observed during heavy ion tests
 - 1 sample, 45 deg incident angle, <10 linear energy transfer (LET)
 - Device crashed and failed to come back to life after power removal, change of disk drive, power source, etc...
 - "Annealed" (i.e., working) upon equipment being shipped back to home site
 - Verified by a second group (saw similar response)
- More testing planned on both generations

Testing laptop with heavy ions, Ken LaBel

Summary and Comments

- NEPP Roadmaps are constantly evolving as technology and products become available.
 - Like all technology roadmaps, NEPP's is limited to funding and resource availability.
 - Not shown are TBD passives and connector roadmaps under development.
 - Partnering is the key:
 - Government,
 - Industry, and,
 - University.
- We look forward to further opportunities to partner.

https://nepp.nasa.gov