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Tool for the Integrated Dynamic Numerical Propulsion System 
Simulation (NPSS)/Turbine Engine Closed-Loop  

Transient Analysis (TTECTrA) 
User’s Guide 

Jeffrey C. Chin and Jeffrey T. Csank 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design 

tool that enables preliminary estimation of transient performance for models without requiring a full 
nonlinear controller to be designed. The program is compatible with subsonic engine models implemented 
in the MATLAB/Simulink (The Mathworks, Inc.) environment and Numerical Propulsion System 
Simulation (NPSS) framework. At a specified flight condition, TTECTrA will design a closed-loop 
controller meeting user-defined requirements in a semi or fully automated fashion. Multiple specifications 
may be provided, in which case TTECTrA will design one controller for each, producing a collection of 
controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpoint 
controller gains, and limiters; all contributing to transient characteristics. The goal of the program is to 
provide steady-state engine designers with more immediate feedback on the transient engine performance 
earlier in the design cycle. 

Nomenclature 
accel  Acceleration  
alt  Altitude* 
decel  Deceleration 
dTamb Free-stream static temperature minus standard atmosphere temperature* 
DWS Dynamic systems analysis workspace (WS) variable 
Fdbk Feedback signal 
Fnet (Uncorrected) thrust* 
i Index for input or output vectors of linear models (u and y) 
inputs Variable containing inputs for configuring simulation of engine model with TTECTrA 
Kp Controller proportional gains 
Ki Controller integral gains 
MN  Mach number 
Nc (Uncorrected) core speed* 
Ncdot  Core speed acceleration* 
NcR25   Core speed corrected at station 25* 
Nf (Uncorrected) fan speed* 
outputs  Variable containing outputs from simulation of engine model with TTECTrA 
P2 Pressure at station 2* 
Ps3  High-pressure compressor static pressure* 



NASA/TM—2016-218923 2 

u Input vector for linear models 
Wf/Ps3 Ratio of fuel flow to static high-pressure compressor static pressure 
y Output vector for linear models 

* Units of these variables are model-specific 

Acronyms 
EPR Engine Pressure Ratio 
GUI Graphical User Interface 
HPC High-Pressure Compressor 
IWP Integral Wind-up Protection 
LM Linear Model 
LPC Low-Pressure Compressor 
NPSS Numerical Propulsion System Simulation 
PI Proportional Integral controller 
TTECTrA Tool for Turbine Engine Closed-loop Transient Analysis 

Introduction 
Conceptual cycle design often begins with steady-state thermodynamic analyses, which incrementally 

graduate into higher and higher fidelity models. Historically, there have been completely separate code-
bases for each level of fidelity. “Low Fidelity” (Lo-Fi) models can be recognized by their flexibility; 
capable of exploring large design spaces relatively quickly. As the engine design starts to become more 
concrete, higher fidelity models are developed. These higher detail models are intrinsically more sensitive 
to design tweaks, and in general take longer to setup. They inherently require more stringently defined 
configurations and boundary conditions. A large variation in the baseline design could potentially render 
entire higher fidelity analyses obsolete. Due to this weakness in adaptability, higher fidelity models are 
generally not created until the low-fidelity design has fully matured. This friction can partly be attributed 
to the differences in toolsets when transitioning to higher fidelity models.  

Naturally, a trade-off exists on the amount of time spent in each analysis phase. Spending more time in 
the low fidelity phase could have large payoffs in the long run; however, without higher fidelity models it is 
hard to identify possible shortcomings such as those arising from operability and control issues. To optimize 
an engine across multiple disciplines, it becomes necessary to balance each trade-off in the design process as 
early as possible. This effort is intended to introduce transient and control considerations into the design 
cycle, while maintaining the rapid iteration and flexibility of a low-fidelity code. 

Creating a single unified program to satisfy every design consideration runs a high risk of becoming 
overly complex or cumbersome. As models grow in capability, flexibility and program modularity is 
often lost. A natural reaction is for various disciplines to diverge and create unique tools satisfying their 
particular needs using frameworks and programming languages that are already of familiarity. This is 
acceptable as long as the codes preserve flexibility and rapid adaptability. An intermediate fidelity code 
can only be introduced earlier into the low fidelity analysis phase if it can keep pace with the rapid 
redesigns. TTECTrA is an attempt to provide intermediate fidelity insights, while maintaining the 
development speed of steady-state design tools. 

The Numerical Propulsion System Simulation (NPSS) has become the industry standard for 
steady-state air breathing engine design. Written in C++, the object-oriented framework is generalized to 
solve any thermodynamic cycle, but has been primarily used to design gas turbine engines. The 
framework has been well integrated with noise, weight, and mission analysis codes for multi-point design, 
but has seen limited use in transient and control analyses. Despite having basic support for transient 
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operation, this barrier can be attributed to a historic difference in programming paradigms and 
environments between each discipline. Furthermore the controls design process has traditionally had a 
human-in-the-loop iteration cycle, making it challenging to integrate it into an automated multi-design 
point optimization. TTECTrA also aims to narrow this design gap. 

At a specific flight condition TTECTrA produces a basic controller designed to meet user-defined 
goals, consisting of only the fundamental limiters that affect the transient performance of the engine. The 
controller provides a preliminary estimate of the transient performance by modifying user-defined engine 
control variables based on feedback received from simulation outputs. The tool is developed in the 
MATLAB/Simulink environment, which allows users to access a standard library of functions and to add 
on toolboxes such as the Control System Toolbox, which can be used to simplify the control design 
process. This user’s guide is written assuming the user is familiar with NPSS, MATLAB and Simulink.  
TTECTrA consists of MATLAB functions and scripts written to perform control design calculations, 
based on interactions with a Simulink engine model. Inside the NPSS_TTECTrA.mdl file the TTECTrA 
Simulink Block implements a scheduled proportional integral (PI) controller with the designed set points, 
gains, and limiters and supplies the fuel flow input to the NPSS S-function block. More information 
regarding the integration of TTECTrA with NPSS is contained in the following section. 

Version two of this program marks the integration of NPSS and TTECTrA, providing NPSS engine 
designers the ability to run native NPSS engine models wrapped directly within Simulink. This process 
enables designers to obtain an estimate of the closed-loop performance without redefining the engine in a 
separate language or codebase. This version of TTECTrA has been tested and verified using the 32-bit 
MATLAB version 7.10.0 (R2010a) with Simulink version 7.5 (R2010a). The 32-bit version of MATLAB 
must be used since the NPSSv1.6.x S-function is compiled with a 32-bit compiler. Later versions of 
MATLAB cannot be used since they do not support .dll files. Note that throughout this paper, MATLAB 
commands or MATLAB variable names will be in Courier, while generic variables, function names and 
file names will be italicized. 

The Benefits of TTECTrA 
Transient engine simulation provides another degree of merit for evaluating overall performance. 

Multiple turbomachinery limits and operational margins are usually baked into rule-of-thumb empirical 
constraints. Even with a roughly tuned controller, transient allowances and stall margin stack-ups can be 
more accurately bookkept. This gives the engine designer more latitude and confidence in designing 
closer to engine limits. Performance during large accelerations and decelerations can be better quantified, 
and designs can be checked against various constraints such as FAA mandated takeoff response time. 
This level of analysis is necessary when analyzing the feasibility of engine technologies where engines 
must be designed very close to their operability limits, or investigating slow moving actuators, such as 
shape memory alloys. 

TTECTrA’s ability to design first-cut controllers also provides a more familiar starting point for 
control engineers to further develop transient engine models. Compatible for both NPSS and 
MATLAB/Simulink based engine models, TTECTrA serves a common thread across development tools. 
By introducing NPSS into the MATLAB/Simulink environment, many additional toolboxes and 
development tools become available to the developer. 
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Controller Architecture 
The general architecture of the controller designed and implemented by the TTECTrA tool is shown 

in Figure 1, where the details of each block are omitted for simplicity. A switch is used to select the fuel 
flow calculated using one of five possible control methods (identified by the “loop selection” flag). 
Closed-loop controllers modify fuel flow (the control variable) based on target outputs as well as 
measured outputs, while open-loop controllers determine plant inputs solely based on target outputs. 

 
1. Closed-loop control with the controller designed using TTECTrA. 
2. Open-loop control with a minimum fuel flow limit defined; this method is used to tune the 

deceleration limiter and can also get the open loop results while protecting the minimum limits, 
such as minimum fuel to air ratio and LPC surge margin. 

3. Open-loop control where a fuel flow profile is defined; this method may be used for obtaining 
data for the acceleration limiter or deceleration limiter, or to obtain unlimited open loop 
responses.  

4. Open-loop control with an acceleration schedule/limiter defined; this method is used to test the 
acceleration schedule and acceleration controller. 

5. Closed-loop control using only the linear Proportional Integral controller and set point map 
function. 

 
The NPSS model must promote at least one control variable feedback signal along with numerous 

output signals. Example outputs include corrected core speed and Ps3, which are used by the 
“acceleration” and “deceleration” logic blocks respectively. The fuel flow command is provided to the 
engine to close the loop with the TTECTrA controller, but it is important to note that this is not a closed-
loop simulation if the loop selection is not set to either 1 or 5 (top and bottom paths shown in Figure 1). 
 
 
 

 
Figure 1.—Schematic of the controller implemented by the TTECTrA; parameters in the highlighted 

blocks are designed by TTECTrA. 
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The set point controller drives the control variable to a reference value which is determined from the 
relationship to the thrust calculated for the specific engine model; consequently, if the control variable 
tracks the demand, it is expected that the thrust produced by the engine also tracks the demanded thrust. 
The tracking response is dependent on the tuning of the proportional and integral gains of the controller 
and how tight the defined limiters for acceleration and deceleration are. 

The acceleration limiter is designed to prevent high-pressure compressor surge during engine 
acceleration. The corrected core acceleration is compared to an acceleration limit that is dependent on the 
core speed and if the speed is too high, fuel flow to the engine is restricted. The core acceleration limit as 
a function of the corrected core speed is often referred to as an acceleration schedule. The acceleration 
schedule can be found by applying fuel flow profiles, transitioning from an idle fuel flow to a takeoff fuel 
flow, at varying rates until the minimum high-pressure compressor surge margin requirement is met 
(within some defined accuracy). The acceleration limiter uses a PI controller with integral wind-up 
protection to produce a fuel flow command designed to drive the engine acceleration to the limit value 
from the acceleration schedule based on the current (corrected) core speed. 

A two-step process is used to determine deceleration limits. An initial Wf/Ps3 limit value is defined 
based on the desired minimum fuel to air ratio. This value is found by analyzing the relationship between 
fuel to air ratio and Wf/Ps3 in steady-state. The user can also determine this value based on the low-
pressure compressor surge margin, however many NPSS models already include an operational variable 
bleed valve in its map and will not operate at such a low surge margin value. The second step is to fine 
tune this value by applying fuel flow transitions from a takeoff fuel flow to an idle fuel flow and finding 
the Wf/Ps3 value which would preserve the acceptable fuel to air ratio (or low-pressure compressor surge 
margin). The fuel flow command produced by this limiter is calculated by multiplying the combustor 
pressure (Ps3) by the Wf/Ps3 limit and does not contain any type of feedback controller. 

The fuel flow command provided to the “actuator dynamics” block in Figure 1 and ultimately to the 
engine, is determined by first selecting the minimum of the fuel flow from the set point controller and that 
from the acceleration limiter. This fuel flow is then compared to the command from the deceleration 
limiter and the largest of these commands is selected. In this way, the fuel flow provided to the engine 
represents the controller that is operating closest to its respective set point. For more information 
regarding the design of an aircraft engine controller, the reader is referred to References 1 to 4. 

Running TTECTrA allows the user to design parameters for implementation of the three highlighted 
blocks in the figure: the set point map (relationship between thrust and control variable), the set point 
controller’s gain schedules for the PI controller, and the limit logic that depends on the acceleration 
schedule and the deceleration limiter. 

The Integrated NPSS-TTECTrA Model 
The TTECTrA tool leverages built-in MATLAB and Simulink functionality to design and implement 

a scheduled PI controller, with acceleration and deceleration limiters, for an NPSS engine model called 
from an S-Function block in Simulink. The following sections describe how the NPSS model must be 
integrated with TTECTrA prior to proceeding with control design. 
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Installation and Model Setup 

Software Requirements for Using the Integrated NPSS/TTECTrA 

The integrated NPSS/TTECTrA tool provides an interface for designing and implementing a gain 
scheduled PI controller with acceleration and deceleration transient limiters for a given NPSS model. The 
following requirements must be met in order to use this tool: 
 

1. MATLAB/Simulink R2010a has been tested. Later versions of MATLAB will not work due to 
MATLAB no longer supporting the .dll extension. 

2. 32-bit NPSS (version 1.6.4 has been tested) 
3. Windows Operating System 

 
As of June 2015, support for the newest releases of 32/64-bit MATLAB, Simulink, and NPSS are 

currently in progress. 

TTECTrA Installation  

The TTECTrA code consists of a Simulink block and a folder of custom MATLAB scripts and 
functions that are called during the execution of TTECTrA. To install TTECTrA for use with an engine 
model: 

 
1. Right click on the zip package and choose Extract All. This will start the extraction wizard. 
2. Select “Next” to bring up the Select a Destination screen. 
3. Select “Browse” to open the file browser window and navigate to the folder that contains the 

engine model that will interact with TTECTrA. Select OK to return to the extraction wizard. 
4. Select “Next” to extract all files to the desired location. 
5. Select “Finish” to close the extraction wizard. 

NPSS Installation 

NPSS can be obtained from its commercial vendor Southwest Research Institute. Interested parties 
can download a trial version or purchase either a university or commercial license. NPSS is export 
controlled, and limited to countries not listed on the U.S. Department of Commerce Anti-Terrorism watch 
list (http://www.swri.org/npss/). 

Installation is required to set proper environmental variable paths; but can also be run by manually 
calling the executable with the proper paths defined. Batch files are commonly created to properly setup 
custom path variables and run NPSS scripts more conveniently.  

MATLAB Configuration 

TTECTrA creates such a batch file, but requires the user to provide paths to the required files in 
set_paths.m. (Basic error handling messages are provided in TTECTrA to confirm paths are properly set.) 

 
1. npss_location – Path to the parent directory of the NPSS executable 
2. npss_engine_name – Name of the engine to be loaded and run  
3. ttectra_engine_name – Name for saving simulation output 
4. model_flag – NPSS preprocessor flags to be called by TTECTrA for engine information 
5. ss_flag – NPSS preprocessor flags to be called by TTECTrA for steady-state information 
6. ttectra_model_name – Name of the Simulink model to be run 
7. model_location – Path to the NPSS engine model 

http://www.swri.org/npss/
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TTECTrA also requires an NPSS engine that has been appropriately configured for transient 
operation. Details on this process are beyond the scope of this guide, and can be found in other materials 
(Refs. 5 and 8). After creating a transient engine within NPSS, the user must create a run file for an 
engine that can be configured from the command line with a limited number of flags to do the following. 

 
1. Remove all active constraints from the solver that would conflict with TTECTrA, such as fuel, 

speed or temperature limiters. 
2. Switch the solver solutionMode to “TRANSIENT” 
3. Switch the burner mode to “Wfuel” 
4. Add an independent/dependent pairs for transient conditions to be controlled by TTECTrA. 
5. Specify the engine name, run file name, and any necessary flags in set_paths.m 

Simulink Configuration 

The Simulink model must be configured using the steps outlined in the S-function user’s guide 
provided with official distributions of NPSS (Ref. 6). The config file supplied in the S-function dialog 
box defines the promoted input and output engine variables, along with NPSS run configuration variables. 

TTECTrA Operation 
This section focuses on setting up and operating TTECTrA and is an extension of Reference 7. The 

control design process using TTECTrA involves three main steps (1) calculating the set points, (2) 
finding the controller gains, 
(3) calculating the acceleration and deceleration limiters. Once the integrated NPSS/TTECTrA tool has 
been initiated, TTECTrA will begin defining the steady-state relationships based on steady-state data 
obtained directly from NPSS. Next, the tool calculates the controller gains based on linear models, 
developed at defined operating points using NPSS. The final set of calculations addresses the need for 
implementing transient limiters to protect the engine. These protect against high- or low-pressure 
compressor surge, exceeding the maximum turbine inlet temperature, and exceeding a minimum fuel to 
air ratio. The current TTECTrA software only considers these two limiters, but it is possible to expand the 
limit logic to include additional constraints, such as core speed or Ps3. 

After the controller has been designed a simulation will be executed to test the functionality of the 
controller, which includes small and large changes in thrust demand. The results for the control design 
and verification for the example model will be presented here along with discussion of each step of the 
design process using TTECTrA. 

Before operating TTECTrA, the user has the option to specify default values and preferences for the 
parameters listed in Table 1 in the file TTECTrA_Inputs.m. The values in this file are loaded by 
TTECTrA and called when the Graphical User Interface (GUI) is started, but may be changed during the 
design process if necessary. Once the NPSS and TTECTrA installations have been completed and the 
default TTECTrA parameters have been modified (previous section), the TTECTrA software can be 
executed. There exists several ways to operate TTECTrA; through a custom GUI, from the MATLAB 
command prompt, or using an automated function, all of which will be discussed in one of the following 
sections. 
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TABLE 1.—USER DEFAULT INPUTS FROM TTECTrA_INPUTS.M FILE, WHICH ARE LOADED INTO THE GUI 
SubField Field name Description 
in alt Altitude (scalar) 

MN Mach number (scalar) 
dTamb Ambient temperature deviation from standard day (scalar) 
simTime Length of the simulation (scalar) 
simFileName File name (and extension) of the user’s Simulink engine model with the 

TTECTrA Simulink Block controller 
filename Optional name and extension to save the TTECTrA controller 
Ts Sample time, in seconds 
setpoint_vector Vector containing minimum and maximum thrust and other thrust points of 

interest for linear models 
linearModelfilename Default name of the piecewise linear model developed by NPSS 

(DO NOT CHANGE) 
controller FdbkFilterBW Feedback filter bandwidth if > 0, otherwise no filter is used 

PreFilterBW Prefilter bandwidth 
CVoutput Element of the linear model output vector (yi) corresponding to the controlled 

variable 
bandwidth Default bandwidth for tuning the controller 
phasemargin Default phase margin for tuning the controller 
IWP_gain Integral Windup Protection gain 
accel_k Acceleration controller gain 
accel_bw Acceleration controller bandwidth 
Accel_IWP Acceleration controller Integral Windup Protection gain 

actuator wf_bw Fuel flow actuator bandwidth 
SMlimit Accel Minimum allowed surge margin during acceleration (for limiter design) 

T40 Maximum allowed high pressure turbine inlet temperatures (for limiter design) 
Decel Minimum allowed surge margin during deceleration (for limiter design) 
FARmin Minimum allowed high pressure turbine fuel to air ratio allowed during an 

acceleration (for limiter design) 
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TTECTrA Auto (Non-GUI Operation) 

Once the user has entered the default inputs it the TTECTrA_Inputs.m file, the user can design a 
controller by running the TTECTrA_Auto.m file. This file is intended to design the control system for the 
given engine without any additional feedback or interaction from the user. To design the controller, the 
following functions are executed using the default values provided from TTECTrA_Inputs.m: set point 
controller design, acceleration limiter design, deceleration limiter design, integral windup protection 
tuning, and finally testing and verification. 

Set Point Control 

The TTECTrA setpoint controller contains a PI controller with integral wind-up protection, where the 
controller gains are scheduled as a function of the control variable. The controller gains are found using a 
custom automated PI tuning function contained in the file custom_PIDtune2.m. The algorithms designs a 
controller based on the linear model at each of the thrust points defined in the setpoint_vector variable of 
the TTECTrA_Inputs.m file from NPSS. The user can specify the controller bandwidth, phase margin, 
feedback filter (optional), desired control variable, and prefilter bandwidth which are listed in Table 1. 
The set point function will produce the controller gains (Kp and Ki) and the control variable feedback 
values at each linear model (Fdkb) and are stored in the ttectra_in.gains subfield. The actual controller 
gains are interpolated based on the current feedback. The next step is to design the acceleration limiter. 

Acceleration Limiter 

The acceleration limiter is designed to protect against a high-pressure compressor engine surge and 
exceeding the high-pressure turbine inlet temperature (T4) during a rapid acceleration. The acceleration 
schedule is designed using the default parameters in TTECTrA_Inputs.m. An example acceleration 
schedule produced by TTECTrA is shown in Figure 2, which shows the maximum acceleration allowed 
(y-axis) at a particular corrected core speed (x-axis). The acceleration schedule is saved in the 
NcR25_sched and Ncdot_sched fields of ttectra_in.Limiter. 

 

 

Figure 2.—Example acceleration schedule. 
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Deceleration Limiter 

The deceleration limiter is designed to protect against a low pressure compressor engine surge and 
exceeding the minimum fuel to air ratio during a rapid deceleration. In this application the ratio unit 
limiter, defined as the fuel flow divided by the high pressure compressor static pressure (Wf/Ps3) is found 
which preserves both the minimum LPC surge margin and minimum fuel to air ratio. The deceleration 
limiter is saved in the ttectra_in.Limiter.WfPs3lim variable. 

Integral Windup Protection 

Integral windup is a common problem in control systems that contain integral action, especially those 
that have more than one controller. For any inactive controller (not producing an input to the plant at the 
current time), the integrator will continue to increase in magnitude due to a non-zero error (difference 
between set point and current feedback). To reduce the effect of the integral term in the non-active 
controllers, integral wind-up protection (IWP) is utilized. The approach implemented here1 was adapted 
from CMAPSS40k (Ref. 2). The main idea with this approach is to decrease the error seen by the 
integrator of the inactive controller rather than zero the error out. This allows the integrator to increase to 
an appropriate value and decrease the size of the instantaneous change in magnitude when the inactive 
controller becomes active. 

Verification/Simulation 

To test the final design, a test profile has been designed which consists of a burst and chop profile, 
followed by small throttle transients from idle to full power to idle, followed by a very fast chop and burst 
profile. Figure 3 shows a comparison of the command and feedback for both thrust and the control 
variables (top and bottom plots, respectively). These plots show that the control variable drives the thrust 
to the commanded values, even though the controller does not have knowledge of the thrust produced by 
the engine. 

  
Figure 3.—Thrust and control variable commands and outputs. 

 
 

                                                      
1 Martucci, A., and Volponi, A.J., “Fuzzy Fuel Flow Selection Logic for a Real Time Embedded Full Authority 

Digital Engine Control,” Journal of Engineering for Gas Turbine and Power, 2003. 
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Even though the controller is able to drive the engine to the desired thrust, via the control variable, the 
presence of limiters slows this response, as can be seen in Figure 3. When the engine begins to accelerate 
from a low power (such as at 10 and 60 sec), it is operating near the acceleration schedule limit and the 
controller restricts the fuel flow to the engine to protect against HPC surge. This is reinforced by Figure 4, 
which shows that the engine does not reach the HPC surge margin limit or the T40 limit. Similarly, the 
controller ensures the engine does not exceed the fuel to air ratio limit on the decelerations (from high 
power to low power) as seen in Figure 5. 
 

 

Figure 4.—The HPC surge margin and acceleration schedule for the large thrust transient. 

 

 
Figure 5.—The LPC surge margin and Wf/Ps3 limit for the large thrust transient. 
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Performance Map Plotting 

Turbomachinery performance maps are defined across five dimensions, often making it challenging 
to evaluate operating points based purely on numeric value alone. TTECTrA provides plotting scripts that 
automatically convert NPSS maps to MATLAB compatible matrices, and provides additional plotting 
utilities for visualizing operating points over transient runs as shown in Figure 6, Figure 7 and Figure 8. 

Located within TTECTrA_Auto/plot is a GUI that automatically loads all NPSS map files with prefix 
“mapData<name>.m”. The GUI also allows the user to dynamically slide and re-interpolate the maps for 
various variable geometry settings. Example standalone scripts are also provided for the provided sample 
engine. The user is required to save operating point variables to the workspace during transient runs, and 
provides map scalars (derived from the NPSS model). 
 
 

 
Figure 6.—Low pressure compressor performance map with operating point overlay. 

 
 
 

 
Figure 7.—High pressure compressor performance map with operating point overlay.  
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Figure 8.—Turbine performance maps with operating point overlay. 

 
GUI Instructions: 
 

1. Run plotGUI3d.m, OR one of the individual <name>_plot.m files and skip steps 2–7. 
2. Select a map from the dropdown 
3. Click “Load Maps” 
4. Select Wireframe to see a wireframe for all variable geometry (IGV alpha) settings 
5. Select a slider position to re-interpolate the map for an intermediate alpha setting 
6. Optionally toggle operating points, using the checkbox provided 
7. Click X-Y view for top down view (alpha in the Z-plane) 

Saving Controller Data 

TTECTrA will automatically save the controller data to the file specified in 
ttectra_engine_name, which is specified in the set_paths.m file. If the user does not want to save 
the file, then replace the name with empty brackets ‘[]’.  

GUI Operation 

To operate TTECTrA using the GUI, run the file TTECTrA_gui.m located in the MATLAB directory. 
Once this file is executed, the NPSS environment will be setup and called to obtain the necessary steady-
state values and linear models. Once the design is complete, the verification and simulation will be the 
same as presented in the TTECTrA Operation section as well as saving the controller data. 
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Set Point Controller 

TTECTrA begins the set point controller design by using the default parameters defined in 
TTECTrA_Inputs.m and plots the results for small thrust transients as shown in Figure 9. The top plot 
compares the thrust command and actual thrust (feedback). The bottom plot compares the control variable 
command and feedback, which in this example is the fan speed (Nf). 
In order to modify the control variable setpoints using the GUI: 
 

1. Enter the new bandwidth (Hz), phase margin (degrees), and feedback filter bandwidth (Hz) from 
the set point controller tuning GUI shown in Figure 10. 

2. To recalculate the controller gains, press the execute button which will produce a new plot. 
3. To accept the current design, press finish. Otherwise repeat the process with step 1. 

 

 

Figure 9.—Set point controller output plot. 
 
 
 

 
Figure 10.—Set point controller tuning GUI. 
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Acceleration Schedule and Limiter 

The acceleration schedule can be tested at multiple conditions by applying a step change in Wf and 
selecting the minimum of two fuel flow results. The fuel flow that will drive the core acceleration to its 
limit defined by the acceleration controller versus the fuel input. This response is shown in Figure 11, 
where the top left plot shows the thrust response to the fuel flow transient (fractional units), top right plot 
shows the actual acceleration compared to the acceleration schedule, bottom left plot shows the surge 
margin compared to the minimum surge margin limit, and bottom right plot shows the T40 temperature 
compared to the max T40 temperature. If the results are unacceptable, the user can modify both the limits 
(minimum surge margin and T40) the schedule is defined for and the controller gains. If the feedback 
does not meet one or more of its limit, as shown by the top right, bottom left, and bottom right plots, then 
the controller most likely needs to be modified. However, if one or more of the plots show that a limit is 
being met, then the limiter most likely needs to be modified. 
 

 
Figure 11.—Response of the acceleration controller to an applied fuel flow transient. 
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Modify the Acceleration Schedule 
1. Enter the desired minimum high-pressure compressor surge margin in the Acceleration Schedule 

section of the Acceleration Limiter GUI, shown in Figure 12. 
2. Enter the desired maximum T40 temperature in the Acceleration Schedule section of the 

Acceleration Limiter GUI (Figure 12). 
3. Press the “ReCompute Accel Schedule” button (Figure 12). 

Modify the Acceleration Controller Gains 
1. Enter the desired controller gain in the Acceleration Limiter GUI shown in Figure 12. 
2. Enter the desired time constant. 
3. To produce the results with the new (currently shown) controller gains, press the Execute button 

shown in Figure 12. 
4. To accept the acceleration schedule and controller gain and proceed, press Finish, otherwise 

repeat step 1 of either the “Modify the Acceleration Schedule” or this section. 

Deceleration Limiter 

The deceleration schedule can be tested by applying a fuel flow step change (from max fuel flow to 
minimum fuel flow) and taking the maximum of fuel flow input and the fuel flow derived by multiplying 
the current Ps3 pressure by the Wf/Ps3 limit. This response is shown in Figure 13, where the top left plot 
shows the fuel flow input, the top right plot shows the fuel to air ratio feedback and limit, the bottom left 
plot shows the LPC surge margin feedback and limit, and the bottom right plot shows the actual Wf/Ps3 
as compared to the limit. 
 

  
Figure 12.—Acceleration limiter GUI. Figure 13.—The deceleration limiter output. 
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Modify the Deceleration Limiter 
1. Enter the desired minimum low pressure compressor surge margin in the GUI shown in 

Figure 14. 
2. Enter the desired minimum fuel to air ratio into the deceleration limiter of Figure 14. 
3. To compute the deceleration limiter based on the new (and currently shown) specifications, press 

Execute. 
4. To accept the new deceleration limiter and continue on with the control design process, press 

Finish. 

Integral Windup Protection 

The integral windup protection gain is empirically tuned to meet performance requirements using a 
custom function and algorithm (TTECTrA_IWP_s.m). During operation of the GUI, once the algorithm 
finishes a design by either meeting performance requirements or an iteration limit (watchdog), the final 
performance is shown in Figure 15. 

Modify Integral Windup Protection Gain 
1. Enter a new IWP gain and press Execute as shown in Figure 16. 
2. To accept the new gain and continue, press the Finish button, otherwise repeat step 1. 

 

  
Figure 14.—Deceleration limiter GUI. Figure 15.—The integral windup protection output plot. 

 
 
 

 
Figure 16.—The integral windup protection gain GUI. 

 
  

10 12 14 16 18 20
1

2

3
x 10

4

Time, s

F ne
tR

, l
bf

 

 

10 12 14 16 18 20
2000

4000

6000

Time, s

C
on

tro
l v

ar
ia

bl
e

feedback
command



NASA/TM—2016-218923 18 

Manual Design and Debugging 

The TTECTrA software can be executed directly from the MATLAB command prompt. Even after 
designing a controller from the GUI or using the automated function, the user can attempt to debug the 
closed loop controller from the MATLAB command prompt. 

Setting up TTECTrA 
1. From the MATLAB directory of TTECTrA, add the TTECTrA_Auto folder and 

TTECTrA_ManualTune folders by either: 
a. From the current folder view of the MATLAB window, right click on the folder and 

select “Add to Path” 
b. From the command window, type addpath(‘FOLDER NAME’) 

2. Once the required folders are added to the MATLAB path, the user can setup the NPSS paths, get 
the required steady-state data and linear models from NPSS, and design the set point function by 
running the ManualTune_BasicSetup from the command prompt. 

Set Point Controller Design 
From the command line: 
 

1. Modify any of the controller specifications at the MATLAB command prompt. The variables that 
can be modified are:  

a. ttectra_in.controller.bandwidth 
b. ttectra_in.controller.phasemargin 
c. ttectra_in.controller.FdbkFilterBW - Note that the filter feedback can be removed from 

the control system by using empty brackets ‘[]’. 
2. Run the ManualTune_spc.m script. Once complete, a plot showing the current performance of the 

closed-loop controller for small throttle transients will appear as shown in Figure 9. 
 
or by using the set point controller GUI by running gui_spc.m 

Design of the Acceleration Schedule 
From the command line: 
 

1. Modify any of the acceleration schedule parameters at the MATLAB command prompt: 
a. ttectra_in.SMLimit.Accel (HPC surge margin) 
b. ttectra_in.SMLimit.T40 

2. Run the ManualTune_accelschedule.m script. A plot showing the impact of the acceleration 
controller and schedule will appear as shown in Figure 11. 

 
or the acceleration schedule can be recalculated from the acceleration controller by running the 
gui_accel.m. 

Design of the Acceleration Controller 
From the command line: 
 

1. Modify any of the acceleration controller parameters at the MATLAB command prompt: 
a. ttectra_in.controller.accel_k 
b. ttectra_in.controller.accel_bw 

2. Run the ManualTune_accelcontroller.m script. A plot showing the impact of the acceleration 
controller and schedule will appear as shown in Figure 11. 

 
or the acceleration controller can be redesigned by running the gui_accel.m. 
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Design of the Deceleration Controller 
From the command line: 
 

1. Modify any of the deceleration schedule parameters at the MATLAB command prompt: 
a. ttectra_in.SMLimit.Decel (LPC surge margin) 
b. ttectra_in.SMLimit.FARmin 

2. Run the ManualTune_decelschedule.m script. A plot showing the impact of the deceleration 
controller will appear as shown in Figure 13. 

 
or from the deceleration GUI by running decel_gui.m. 

Manual Tuning of the Integral Windup Protection Gain 
From the command line: 
 

1. Modify the integral windup protection gain at the command prompt, 
ttectra_in.controller.IWP_gain. 

2. Run the ManualTune_iwp.m script. A plot showing the closed loop response will appear as 
shown in Figure 12. 
 

or by running gui_iwp.m to use the integral windup protection gain GUI. 

Verification/Simulation From the Command Line 
The verification and simulation of the closed-loop control system can be obtained by running 
ManualTune_testfinaldesign.m script. 

Saving the Controller Design 
Similar to the GUI-less version of TTECTrA, calculated controller parameters can be saved to a specified 
folder and loaded in subsequent runs to avoid repeated calculations. 

Final Remarks 
Defining the boundaries between responsibilities of the TTECTrA controller and NPSS solver are still 

under development. Although passing engine parameters is fairly straightforward, the developer must take 
care when invoking multiple data passing techniques, especially when multiple data round-trips are 
required. Developers are advised to avoid setting up NPSS run files with side effects that may influence 
subsequent functions depending on the execution order. Furthermore, many existing NPSS models 
contain solver constraints that can directly conflict with limits and inputs dictated by TTECTrA. The 
NPSS developer is also responsible for creating engine models where the solver is robust enough to 
handle the wide range of transients applied by controller algorithm. Future development of the tool would 
be focused on reducing setup time and improving debugging tools to assist in developing robust NPSS 
models. To better assist the integration process, TTECTrA provides multiple NPSS engine configurations 
as examples. The tool is not intended to replace discipline experts, but rather, improve the communication 
and collaboration between disciplines with historically incompatible toolsets. 
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Appendix—Controller Elements to be Verified Against Another Model 
The TTECTrA Simulink Block has been designed and tested on an in-house engine model and includes 

the following control elements in addition to those designed by TTECTrA: 
 
• A gain correction on the setpoint controller based on P2, primarily to decrease the gain of the 

controller at higher altitudes. 
• IWP gain in the setpoint controller, calculated by running simulations of the closed-loop model to 

find the gain that reduces overshoot during acceleration and deceleration below a specified 
threshold 

• PI gains in the thrust setpoint controller, designed using linear models of the in-house model, and 
further adjusted to improve the model response 

• PI and IWP gains in the acceleration schedule, designed (using the in-house model) to depend on 
the ambient pressure (altitude) at which the model is being simulated 

 
Although necessary to obtain acceptable results from simulations of the in-house model, these 

modifications may not be required when the controller is implemented with other engine models. A 
piecewise-linear version of this in-house model has been developed and tested successfully with the tool, 
but it is necessary to test the controller block with other engine models (independent from the in-house 
model) to verify the necessity of these additional elements. 
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