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A space system’s Life Cycle Cost (LCC) includes design and development, launch and 
emplacement, and operations and maintenance. Each of these cost factors is usually 
estimated separately. NASA uses three different parametric models for the design and 
development cost of crewed space systems; the commercial PRICE-H space hardware cost 
model, the NASA-Air Force Cost Model (NAFCOM), and the Advanced Missions Cost 
Model (AMCM). System mass is an important parameter in all three models. System mass 
also determines the launch and emplacement cost, which directly depends on the cost per 
kilogram to launch mass to Low Earth Orbit (LEO). The launch and emplacement cost is 
the cost to launch to LEO the system itself and also the rockets, propellant, and lander 
needed to emplace it. The ratio of the total launch mass to payload mass depends on the 
mission scenario and destination. The operations and maintenance costs include any 
material and spares provided, the ground control crew, and sustaining engineering. The 
Mission Operations Cost Model (MOCM) estimates these costs as a percentage of the system 
development cost per year. 

Nomenclature 
ALS = Advanced Life Support 
AMCM = Advanced Missions Cost Model 
ASTP = Advanced Space Transportation Program  
BVAD = Baseline Values and Assumptions Document 
CEH = Cost Estimating Handbook 
CER = Cost Estimating Relationship 
DDT&E = Design, Development, Test, and Evaluation  
ECLS = Environmental Control and Life Support  
IOC = Initial Operation Capability 
ISS = International Space Station 
JSC = Johnson Space Center  
L&E = Launch and Emplacement 
LCC = Life Cycle Cost 
LEO = Low Earth Orbit 
LSS = Life Support Systems 
MOCM = Mission Operations Cost Model 
MSFC = Marshall Space Flight Center 
NAFCOM = NASA-Air Force Cost Model 
PCEC = Project Cost Estimating Capability 
PRICE = Parametric Review of Information for Costing and Evaluation  
SLS = Space Launch System 
SOCM  = Space Operations Cost Model  
SVLCM = Spacecraft/Vehicle Level Cost Model 
TRL = Technology Readiness Level 
WBS = Work Breakdown Structure  
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I. Introduction 
HIS report considers how to estimate the Life Cycle Cost (LCC) of space systems. The LCC contains all the 
costs of a project, program, or mission. LCC has three components, Design, Development, Test, and Evaluation 

(DDT&E), Launch and Emplacement (L&E), and Operations. These are usually estimated separately.  
LCC is a basic metric in systems engineering and is fundamental in NASA planning. An understanding of 

expected costs is needed to help select technology and compare design architectures and mission scenarios. LCC 
should be considered in trade studies and design change proposals. (NASA Systems Engineering Handbook 2007, p. 
119)  

A. Cost estimation and control 
The LCC can be used to define the project cost profile or set an overall cost cap. It follows that estimating the 

LCC correctly in detail and over time is highly desirable. (NASA Systems Engineering Handbook, 2007, pp. 125-
129) The cost estimating methods described in this paper are logical, well established, and generally accepted. They 
are usually thought to be correct and useful. Nevertheless, frequent substantial cost overruns show that accurately 
estimating and controlling project cost is not a solved problem. Estimating and controlling cost is technically 
difficult, but the major problem is that human political and personal interests prevent us from making good cost 
estimates and keeping costs within planned limits.  

B. Human behavioral problems that affect cost estimation and control 
Some of the human behavioral problems with costs include the use of best-case minimum cost estimates, 

political sensitivity to high cost estimates, short term rather than long term or life cycle thinking, and failure to 
ignore sunk costs.  
1. Best case cost estimates 

The cost estimates that are presented to secure project approval tend to be the best-case minimum cost, to be 
optimistic, and to have no contingency reserve. Predicting cost is one of the many forms of predicting the future. 
Most future predictions are not really intended to be accurate. They are often disguised advocacy of some project or 
action. Cost estimates can be improved using actual cost data, tracking prediction performance, and identifying and 
minimizing the sources of error. Cost estimates should be made by independent analysts and not influenced by 
project advocates or opponents.  
2. Political sensitivity to costs 

The key activity in NASA or any project organization is selecting and funding projects. Cost estimates enter into 
the trade-offs and directly affect project approval. Budget estimates are usually challenged and revised during 
bureaucratic funding struggles.  

It is politically astute to avoid premature discussion or estimation of costs. For example,  
 “NASA has not released comprehensive, long-term cost estimates for SLS and Orion. The reason is to avoid giving 
Congress sticker shock, said William Gerstenmaier, NASA’s associate administrator for human exploration and operations. 
“If we laid out a path directly to Mars and we laid out all the vehicles and all the testing and all the work to get there, then 
you end up with a fairly long period of time with a lot of funding that goes into that activity that says this program is 
something maybe we don’t want to go do,” Gerstenmaier said in November during a panel discussion with SLS and Orion 
prime contractors at the Newseum in Washington.” (Leone 2014)  

3. Short term rather than long term or life cycle thinking  
Short term thinking can be described as overly discounting the future. In financial planning, future costs and 

benefits should be discounted back to their current present value. Since money earns interest, a dollar today is worth 
more than a dollar in ten years. It will amount to the original dollar plus the accumulated compound interest. The 
selection of any particular interest or discount rate is somewhat arbitrary but it strongly affects the expected financial 
return of investments. The Office of Management and Budget long ago mandated a very high discount rate of 10% 
for federal projects. (de Neufville 1990) (OMB 1992) The present value of one dollar received in ten years is only 
39 cents today at a 10% discount rate. If 39 cents is placed at 10% compound interest, it will amount to one dollar in 
ten years. For an investment to be profitable at a high 10% discount rate, 39 cents we spend today must pay back 
more than a dollar in ten years. If interest rates are high, only high return investments can make a profit.  

Current interest rates for government bonds are nominally about 2%. Since inflation is also about 2%, the real 
interest rate, defined as the nominal interest rate minus inflation, is roughly zero. This means that a future dollar to 
be received ten years from now is worth about as much as a dollar on hand now. We can spend much more than 39 
cents, we can spend nearly a full dollar, to get back a dollar ten years in the future. The current near zero interest rate 
is quite unusual and is the intended effect of the government providing money to stimulate the economy. The US 
should take advantage of the current low interest rate by investing more heavily in infrastructure – roads, bridges, 
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airports - and in research and development - biotech, automation, energy, space. Low interest rates discourage 
saving and stimulate investment, at least for rational long term optimizers.  

Most individuals do not plan their personal finance based on the available interest rate. People have compelling 
current needs and limited current income, so they often borrow at high rates. Individuals subjectively perceive a high 
interest rate. To most of us, a dollar now seems much more valuable than a dollar in the far future. Most save little 
for retirement.  

Project managers also seem to intuitively use the same high interest rate as most private individuals. They tend to 
spend all available dollars to solve current problems with no goal beyond delivering a working product on schedule. 
Project managers under budget and schedule pressure tend not to invest in the better reliability, operability, and 
maintainability that would reduce overall Life Cycle Cost.  

An organization such as NASA can mandate the goal of reducing LCC, but directives have limited ability to 
affect the detailed investment decisions made in a project. Ed Smiley, of Apollo 13 rescue fame, told me “We never 
considered operations costs” in response to a presentation advocating LCC. (Smiley 2003)  
4. Not ignoring sunk costs 

A sunk cost is a past cost that has already been incurred and cannot be recovered. In economic theory, only 
future costs and benefits should be relevant to current investment decisions. Letting past sunk costs influence future 
spending is irrational. However, humans usually have professional, personal, and project commitments that make 
them very reluctant to admit failure and terminate an unsuccessful project.  

Past investments were made to produce our current knowledge and technology options. Past expenses can never 
be unspent. The current technical possibilities, not past hopes or sunk costs, should determine future funding 
decisions. In practice, sunk costs are often not ignored.  Saving face, maintaining commitment, and establishing 
credibility can block the economically rational choice.  

Regardless of these human problems, it is necessary to better understand, correctly estimate, and effectively 
control costs. Improvement is possible and urgently needed.  

The LCC has three components, DDT&E, L&E, and Operations. DDT&E cost estimation is considered first.  

II. Design, Development, Test, and Evaluation (DDT&E) cost estimation 
The costs for a new system design, development, test, and evaluation are often estimated top-down, using 

parametric cost estimating relationships derived from similar hardware. The major cost driver for space systems is 
weight. A first approximation of flight hardware cost is some factor times the component weight to some power, 
such as factor * (weight)x. The exponent of weight, x, is typically about 0.5, and ranges from 0.25 to 0.75, so cost 
increases more slowly than weight. Large adjustments to the estimated costs are usually made on the basis of 
estimated system complexity.  

An alternate approach is to estimate the costs bottom-up, by summing the estimated costs of hardware design, 
development, and test. A bottom-up estimate seems more convincing than a top-down estimate because it can be 
justified in detail, but it is usually more subjective and less accurate. Detailed engineering cost summations can be 
useful for existing systems but can be far off for new systems. Cost estimators strongly prefer top-down cost 
estimates. 

Parametric cost models provide the most effective way to estimate the DDT&E cost of space hardware early in 
the mission cycle. NASA uses three different parametric models for crewed space systems; the Advanced Missions 
Cost Model (AMCM), the commercial PRICE-H space hardware cost model, and the NASA-Air Force Cost Model 
(NAFCOM). The Spacecraft/Vehicle Level Cost Model (SVLCM) estimates spacecraft costs only. The Project Cost 
Estimating Capability (PCEC) has been developed to replace NAFCOM.  

A. The Advanced Missions Cost Model (AMCM).  
The AMCM was developed by the Exploration Programs Office at Johnson Space Center. It was intended to be a 

long-range cost forecasting tool that could predict cost as far out as 25 to 50 years, that would include substantially 
different types of systems, would be simple to use, would require few inputs, and would allow cost studies to be 
performed quickly and efficiently during the early conceptual stages of a mission.  

The model parameters include all the major cost drivers. The user defined inputs include the system dry mass, 
the total quantity of development and production units, the type of mission, the first year of system operations, the 
hardware block or generation, and the estimated difficulty. Design cost economies of scale occur with mass for most 
development hardware. The learning curve gives production economies of scale for an increasing number of units. 
The type of mission is related to organizational cultural differences that affect cost. Spacecraft, missiles, aircraft, 
ships, and ground mobile equipment have decreasing costs. The cost of programs has increased with time, even after 
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the effects of inflation are accounted for. The future mission time allows long range planning. Using existing designs 
provides substantial reductions in cost. The estimated difficulty accounts for differences in performance, capacity, 
readiness of technology, and complexity of design.  

The AMCM data base includes eight manned spacecraft developed by NASA; Mercury, Gemini, Apollo 
command module, Apollo lunar module, skylab, shuttle orbiter, spacelab, and station. The overall database has more 
than 260 development programs. Historical cost data is normalized by systematically accounting for the effects of 
different initial operating dates, quantities, and weights. (Cyr 1988) (Guerra and Shishko 2000, pp. 946-7)  

The AMCM is a single Cost Estimating Relationship (CER) using mass, quantity, mission type, number of 
design generations, and technical difficulty to estimate the total system cost for DDT&E and production.  

 
The AMCM formula for the cost of DDT&E and production in millions of 1999 dollars is: 
 
Development and production cost = α Q β M Ξ ™ S ∑ 1/(IOC – 1900) B φ © D 
 
The Greek letter constants are: 
α = 5.65 x 10-4 
® = 0.5941 
∈ = 0.6604 
™ = 80.599 
∑ = 3.8085 x 10-55 
⎞ = -0.3553 
© = 1.5691 
 
Substituting approximately for the constants, the AMCM becomes   
 
Development and production cost = 5.65 * 10- 4 Q0.59 M 0.66 80.6 S (3.81 * 10-55)(1/(IOC – 1900) B -0.36 1.57 D 
 
Q is the total quantity of development and production units, M is the system dry mass in pounds, S specifies the 

type of mission (2.13 for human habitat, 2.46 for crewed planetary lander), IOC (Initial Operation Capability) is the 
first year of system operations, B is the hardware block or generation (1 for new design, 2 for second generation), 
and D is the estimated difficulty (0 for average, 2.5 for extremely difficult, and -2.5 for extremely easy). (Guerra and 
Shishko 2000, pp. 946-7)  

The AMCM is available online (Federation of American Scientists 2014). It has been applied to life support 
systems in (Jones 2013-3407) and (Jones 2012-3618).  
1. AMCM parameters and their effects 

The AMCM model uses well established cost drivers. Cost per unit decreases with the quantity of units, Q, due 
to the effect of experience reflected in the learning curve. Q includes development units, credit for partial units and 
mock-ups, test units, and flight units. The dry mass, M, is the most frequently used cost estimation parameter. M is 
here in pounds. For kilograms, α = 9.51 x 10-4. Different types of missions have had very different costs per unit 
weight. The type of mission, S, allows the AMCM formula to be used for the major different missions. The year of 
Initial Operation Capability, IOC, accounts for the fact that the cost of programs increases with time. The hardware 
block or number of past generations, B, reflects that cost decreases with the level of design inheritance. The most 
subjective parameter in AMCM is the difficulty, D. Adjustments for difficulty or complexity are also used in the 
PRICE and NAFCOM models. The difficulty parameter can reflect differences in technology, materials, 
manufacturing processes, parts count, design inheritance, schedule, the number of different organizations involved, 
and even the developing organization’s experience and culture. (Guerra and Shishko 2000, pp. 946-947) The 
FY1999 dollars are usually adjusted to current dollars using inflation tables.   

Table 1 shows the AMCM cost estimate for a reference system with Q = 1, M = 100, S = 2.13 for a human 
habitat, IOC = 2015, B = 1, and D = 0, and for variations of each parameter.  
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Table 1. AMCM cost estimates for a reference system and variations of each parameter.  
Parameter Values 

Q Quantity 1 2 1 1 1 1 1 1 
M Mass 100 100 200 100 100 100 100 100 
S Specification 2.13 2.13 2.13 2.46 2.13 2.13 2.13 2.13 

IOC Initial date 2015 2015 2015 2015 2025 2015 2015 2015 
B Block 1 1 1 1 1 2 1 1 
D Difficulty 0 0 0 0 0 0 -2.5 +2.5 

Total 
cost, M$ 

  46 69 72 195 50 36 15 141 

Unit cost 
ratio 

  1.00 0.75 1.58 4.26 1.09 0.78 0.32 3.08 

 
The estimated cost is 46 million 1999 dollars for a 100 pound unit. Variations of each parameter are shown in 

bold. For two units, Q = 2, the total cost increases only by 50% and the cost per unit decreases by 25%. Doubling 
the mass, M, increases unit cost by 58% but the cost per kilogram is 21% less. If the mission specification, S, is 2.46 
for crewed planetary lander, the total cost is 4.26 times higher, 195 million 1999 dollars. If the IOC date is 2025 
instead of 2015, cost increases only 9%. For a second generation block B =2 instead of 1, the cost is 22% less. For 
an extremely easy development with a difficulty, D = -2.5, cost decreases by a factor of 3. For an extremely difficult 
development, D = -2.5, cost is 3.08 times higher.  
2. AMCM cost estimates 

The development and production cost for human space missions typically has been $50 to 150 k/kg. (Wertz and 
Larson 1996, p. 254) (National Academy Press, App. C 1997) (Guerra and Shishko 2000, p. 953)  

Consider a development similar to the International Space Station (ISS) life support system. Suppose Q = 1, M = 
1,500 pounds (682 kg), S = 2.13 for a human habitat, IOC = 2000, B = 8 for the many previous prototypes and test 
units, and low difficulty, D = -2.0. The total cost is estimated at $45 million. The cost per delivered kilogram is 
$45,000k/682 kg = $66 k/kg.  

For a Mars surface mission, suppose Q =1, M = 1,500 pounds (682 kg), S = 2.46 for crewed planetary lander, 
IOC = 2025, B = 10 for past and future prototypes and units, and the difficulty is average, D = 0, considering the 
higher reliability needed for Mars. The total cost is estimated to be $1,241 million. The cost per delivered kilogram 
is $1,241 million/682 kg = $1.82 million/kg. This is a much higher cost per kilogram than for the Shuttle or ISS, 
which are less difficult than planetary missions. A very high cost is expected. “The cost of a human-crewed mission 
to the Moon or Mars is typically millions of dollars per delivered kg.” (Wertz and Larson 1996, p. 254) 
3. Inflation adjustments 

The AMCM formula estimates costs in millions of 1999 dollars. Past inflation tables can be used to adjust cost to 
current dollars. Sometimes projected future inflation is used to estimate future costs. (NASA Systems Engineering 
Handbook 2007, p. 127) The NASA New Start Inflation Index shows an inflation factor of 1.570 from 1999 to 2015 
and 2.009 from 1999 to 2025. (NASA New Start Index Inflation Index) Inflation adjustments are necessary in 
accurately estimating actual costs but might be omitted in trade-off studies if only relative costs are important.  

B. The commercial PRICE-H hardware cost model 
The PRICE parametric cost models dominate the commercial market and are frequently used in aerospace. 

PRICE models exist for hardware development, hardware maintenance, software development, life-cycle costs, and 
scheduling. They are distributed by Parametric Review of Information for Costing and Evaluation (PRICE) Systems 
Solutions.  

The PRICE H Hardware cost model uses industry-specific parametric modeling to estimate costs, resources, and 
schedules for structural, electro-mechanical and electronic components and complex assemblies. A subscription is 
required and NASA holds an agency wide license. NASA has annually recalibrated PRICE-H for space missions.  

PRICE-H contains hundreds of Cost Estimating Relationships (CERs) based on confidential data from thousands 
of projects including space hardware. PRICE-H estimates the hardware development and production cost of most 
manufactured hardware, but it requires extensive detailed inputs. The most fundamental input is mission 
classification, such as human rated space, since there are different models for different mission types. The most 
basic input parameters are two masses, the active electronics mass and the less costly mechanical/structural mass. 
The most important elements of the model are the costs per unit mass for electronics and mechanical/structure. 
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These are obtained from tables or by calibrating the model using relevant past costs. The cost estimates thus depend 
directly on the hardware mass.  

Users identify hardware items at each level of the work breakdown structure. Price H then aggregates the cost of 
assemblies into a full system cost. The number of development and production units and the schedule milestones are 
also required. A production learning curve may be defined.  

PRICE H uses three qualitative complexity variables to distinguish hardware having higher or lower cost per unit 
mass. These parameters are the mechanical, electronic, and engineering complexity. Engineering complexity reflects 
the scope of the development task, the skills of the development organization, and the amount of design repetition. 
The complexities may be taken from built-in reference tables or the cost estimator may calibrate the model based on 
experience, judgment, and even the acceptability of the final cost result. The quantitative masses and the qualitative 
complexities together largely determine the cost estimates. (Greenberg 1992, pp. 85-86) (Guerra and Shishko 2000, 
p. 945) (PRICE 2014) (Trivailo et al. 2012) 

The PRICE H cost model is usually applied by an experienced cost estimator working closely with engineering, 
management, and the customer for the estimate. PRICE acknowledges that “You can manipulate the inputs to get 
any answer you want out of that model.” This is explained as a desirable ability to tailor the model to match the 
known historical data and thus produce sound cost results. It is further acknowledged that, “The pressure to produce 
a popular estimate is great. Some estimators bow to that pressure.” (Fad 2013) The knowledge, ability, and 
professional integrity of the cost estimator will affect the quality of the cost estimate. The cost estimator should not 
be a member of the project being estimated, and the best arrangement would be an independent and impartial cost 
estimating organization.  

PRICE H seems too large, complicated, indeterminate, and labor intensive to be used to quickly compare the 
costs of multiple alternate projects. It is much more suitable to provide a deep contextual and evolving 
understanding of the cost of a large project. PRICE H thus strongly contrasts with the AMCM model, which is quite 
easy to set up in a spreadsheet and use without specialized cost estimating knowledge. AMCM uses fewer, more 
objective, and totally quantitative inputs to produce a less adjustable result.  

C. The NASA-Air Force Cost Model (NAFCOM) 
The NASA-Air Force Cost Model (NAFCOM) parametric cost estimating tool was developed by the Marshall 

Space Flight Center's (MSFC) and is used for crewed spacecraft, uncrewed spacecraft, and launch vehicles in the 
early phases of development. It uses multivariable cost estimating relationships (CERs) which are based on 
historical NASA and Air Force space projects. New missions are added with each release of NAFCOM. There have 
been twelve releases since 1989 and it now includes over 155 NASA and Air Force space flight hardware projects.  

Early in a project, NAFCOM can produce weight based estimates using only a Work Breakdown Structure 
(WBS) and mass estimates. NAFCOM’s multivariable cost estimating allows the estimator to select appropriate 
historical data-points from the database. Quantitative inputs include weight, materials, power requirements and 
design life. Technical and programmatic complexity factors are applied to the CERs. They consider contractor 
experience, management layers, technology readiness, and requirements changes.  

The model produces costs for DDT&E and for recurring production costs at the subsystem or component levels. 
There are cost models for structure, thermal, attitude control, power, environmental control and life support, crew 
accommodations, propulsion, command and data handling. NAFCOM includes elements in the Environmental 
Control and Life Support (ECLS) subsystem. The costs for system integration, test, ground support, systems 
engineering, and program management are estimated separately and added. The Space Operations Cost Model 
(SOCM) is integrated into NAFCOM. (Guerra and Shishko 2000, pp. 945, 7) (NAFCOM 2014) (NAFCOM FAQ) 
(Trivailo et al. 2012)  

The NAFCOM software is available on request. NAFCOM is a Windows desktop application. Microsoft Excel is 
also required. The government version is restricted and a contractor releasable version has the historical weights and 
costs hidden. All CERs and model inputs are the same between versions. (NAFCOM 2014) (NAFCOM FAQ) 

NAFCOM is being replaced by a new model called Project Cost Estimating Capability (PCEC) with similar 
capabilities. Limited technical support is being provided to current NAFCOM12 users. (Prince et al. 2014) 
NAFCOM, like PRICE H, should be used by an experienced cost estimator.  

D. Spacecraft/Vehicle Level Cost Model (SVLCM)  
The Spacecraft/Vehicle Level Cost Model (SVLCM) is a top level model which provides instant rough-order-of-

magnitude estimates for spacecraft development and production costs. SVLCM is a highly simplified version of 
NAFCOM and is available on-line. The user inputs are the project name, project type, the system dry weight in 
pounds or kilograms, the quantity of units, and a learning curve for multiple units. The project types modeled are 
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liquid rocket engines, manned spacecraft, unmanned planetary spacecraft, launch vehicles, unmanned Earth orbiting 
spacecraft, and scientific instruments. The manned spacecraft costs are based on eight data points. Life support cost 
models are not specifically included. Like NAFCOM, SVLCM produces the costs for development and production 
in millions of FY1999 dollars. (Global Security 2014) (Trivalo et al. 2012)  

 
1. SVLCM cost estimates 

Table 2 shows the SVLCM cost estimates for two different manned spacecraft systems with masses of 100 and 
1,500 pounds. The equivalent AMCM cost estimates are shown for comparison.  

 
Table 2. SVLCM cost estimates for manned spacecraft systems with masses of 100 and 1,500 pounds.  

Parameter Values 
Project type Manned spacecraft Manned spacecraft 

System dry weight in pounds 100 1,500 
Quantity of units 1 1 
Learning curve 85% 85% 

Development cost, M$ 147 653 
Production cost, M$ 7 43 

SVLCM  total cost, M$ 154 696 
Comparable AMCM total cost, M$ 15 - 195 45 - 1,241 

 
The SVLCM estimated costs are 154 million for a 100 pound unit and 696 million dollars for a 1,500 pound unit. 

Both AMCM and SVLCM costs are in 1999 dollars. (Global Security 2014) The comparable AMCM total cost is 
the range of total cost estimates for a system having the same weight. The SVLCM estimated costs are in the upper 
middle range of the AMCM estimated costs, at 79 percent and 56 percent of the AMCM maximums. The AMCM 
model is more adaptable and useful than the SVLCM model.  

E. Project Cost Estimating Capability (PCEC) 
The Project Cost Estimating Capability (PCEC) has been developed as the replacement for NAFCOM. 

NAFCOM was failure prone, suffered from performance issues, and required excessive support. The NAFCOM 
software architecture reflected a WBS that differed from the NASA Standard WBS. It provided insufficient insight 
into the functioning of the model and the development of the CERs. (Prince et al. 2014) 

NASA has developed PCEC to solve these problems and also to address diverse cost estimating requirements 
and to emphasize problem driven analysis over tool driven analysis. PCEC is an Excel based system with a user 
interface and WBS and CER libraries. The core methods and capabilities of NAFCOM, such as first pound cost and 
multivariable CER equations, are implemented in PCEC. COTS tools now provide some functions previously 
contained in NAFCOM. The objective is capability and flexibility rather than ease of use. PCEC was initially 
distributed only to NASA but will be made freely available as was NAFCOM. (PCEC 2014) (Prince et al. 2014)  

F. DDT&E cost estimation summary 
The AMCM is simple and quick to use. It does not require specialized software or a trained operator. It seems 

the best cost estimator for use during system trade-offs and initial technology assessment. Repeatable, defensible 
relative costs comparisons would be more important that a refined but subjective best guess cost estimate. The Price-
H cost model and the PCEC that is replacing NAFCOM are suitable for the careful estimation of the cost of a large 
development project. We next consider launch and emplacement cost.  

III. Launch and Emplacement (L&E) cost estimation 
Some missions such as ISS operate in Low Earth Orbit (LEO). Missions beyond LEO will typically reach LEO 

first and later depart to the moon, an asteroid, or Mars. The cost to launch and emplace space systems thus has two 
components, the cost of launch to LEO and the additional cost for emplacement at the mission location beyond 
LEO.  

A. Cost of launch to Low Earth Orbit (LEO) 
The Space Shuttle cost to launch to Low Earth Orbit (LEO) was typically quoted as $20 k/kg. The usual cost for 

launch to LEO has been about $10 k/kg for many decades, but this high cost has been considered a major 
impediment to space exploration and development. (Wertz and Larson 1996, p. 125)  
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A yearly Space Shuttle budget of 4 billion dollars for 10 planned launches of 16,000 kg to LEO corresponds to a 
cost of $25 k/kg. Since there were 135 shuttle flights over 30 years, the flight rate was only 4.5 launches per year, 
which corresponds to a higher cost of $55 k/kg. This launch and operations cost does not include development cost, 
which could add another half a billion dollars per launch. (Strickland 2013) Adding development cost, the cost of 
launch to LEO could have been as high as $87 k/kg.  

NASA is developing the Space Launch System (SLS). Its initial capability will be 70,000 kg to LEO and one 
quoted cost is 500 million dollars per launch. (Wikipedia, Space Launch System 2014) This corresponds to a 
reasonable cost of $7.140 k/kg. However the 500 million dollar cost per launch is an unofficial NASA target that 
seems to reflect only the incremental cost per launch, without the initial development and continuing operations 
costs. (Strickland 2013) About 8 billion dollars will be required for SLS development through the first flight in 2017 
or 2018. (Aitoro 2014) SLS has been criticized because its mission is undefined and few launches are definitely 
planned, but NASA hopes for once-a-year launches after the first crewed Orion flight in 2021. (Davis 2014) If there 
were a total of 16 launches, allocating the 8 billion dollar development cost would add a second 500 million dollar 
cost to each launch and the cost per kilogram would double to $14,280 k/kg.  

Future NASA and commercial launch vehicle development could greatly reduce the cost per kilogram to reach 
LEO. “Today, it costs $10,000 to put a pound of payload in Earth orbit. NASA’s goal is to reduce the cost of getting 
to space  …  developing technologies that target a 100-fold reduction in the cost of getting to space by 2025, 
lowering the price tag to $100 per pound.” (NASA ASTP 2000) Space X’s long planned Falcon Heavy has its first 
launch projected for 2016. It is expected to launch 53,000 kg to LEO at a cost of 85 million dollars, a cost of only 
$1.6 k/kg. (Space X, Falcon Heavy) Falcon Heavy cost estimates per launch have been higher, up to 135 million 
dollars, giving a higher cost of $2.5 k/kg to LEO. (Wikipedia, Falcon Heavy)  

A reasonable historically based cost for launch to LEO is $10 k/kg. An optimistic estimate for the future would 
be $2.5 k/kg, a 75% reduction. The likely worst case might be $25 k/kg, ten times the best case.  

B. Computing mass ratios for emplacement beyond LEO 
A moon or Mars mission requires launching to LEO both the payload and the propulsion system - the rocket and 

propellant - needed to get the payload to its final destination. The surface payload must be placed on the moon or 
Mars. The transit vehicle must be placed in moon or Mars orbit and later returned to LEO. The emplacement cost 
depends on the ratio of the total initial LEO mass to the final payload mass. The initial mass includes the propellant 
but the final mass does not. These initial/final mass ratios depend on the required Δ-v and the specific impulse of the 
propellant. Typical initial/final mass ratios from LEO to the moon or Mars and landing or return are shown in Table 
3 below. (Condon et al. 2000, pp. 276-279)  

 
Table 3. Initial/final mass ratios beyond LEO.  

Moon  
LEO to moon orbit and 
landing 6.7 

LEO to moon orbit and 
return to Earth 5.0 

Mars  
LEO to Mars orbit and 
landing 4.8 

LEO to Mars orbit and 
return to Earth 13.2 

 
The Moon landing requires rocket powered lunar orbit insertion and descent. The Mars landing saves propellant 

mass by using aerobraking for Mars orbit insertion followed by combined parachute and powered descent. The 
initial/final mass ratios indicate the need to launch to LEO propellant that is 4.8 to 13.2 times as massive as the 
payload plus the transit and landing rockets. The rocket mass is typically 15% of the propellant mass. (Petro 2000, p. 
405) (Wertz and Larson 1996, p. 142) Table 3 gives the ratio of payload plus rocket plus propellant mass to the 
payload plus rocket mass, so the ratio of payload plus rocket plus propellant mass to the payload mass alone will be 
substantially higher. The exact stack-to-payload mass ratios can be calculated for any particular mission plan. 
Missions that use only chemical propulsion will have significantly higher mass ratios, but these can be reduced by 
using aerobraking and gravity assist. (Jones 2003-01-2635) (Jones 2012-3618)  
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C. Location factors or gear ratios for locations beyond LEO 
The stack-to-payload mass ratios are often called location factors or gear ratios. The location factor is the ratio of the 
total payload, rocket, and propulsion mass necessary in LEO to emplace the payload mass at its mission destination. 
The total mass required in LEO is simply the payload mass multiplied by the location factor or gear ratio. (Fisher et 
al. 2003) (BVAD 2004)  

 
Table 4. Location factors or gear ratios for locations beyond LEO.  

 (BVAD 2004) (BVAD 2008) Average 
Moon  

LEO to moon orbit and landing 6.98 7.2 7.1 
LEO to moon orbit and return to Earth 7.36 9.1 8.2 

Mars  
LEO to Mars orbit and landing 3.77 2.77 3.3 
LEO to Mars orbit and return to Earth 6.77 5.77 6.3 

 
The nominal location factors from the Life Support Baseline Values and Assumptions Document (BVAD) are 

given in Table 4. The (BVAD 2004) and (BVAD 2008) values differ somewhat. The (BVAD 2008) (BVAD 2010) 
and (BVAD 2014) location factors values are identical. The BVAD location factors for Mars are based on the Mars 
Dual Lander architecture which uses aerobraking. The BVAD 2004 estimates for the moon are based on a similar 
architecture, while BVAD 2008 and later estimates for the moon are based on the L1 Gateway architecture. 

Connolly’s Mars design example in Human Spaceflight uses solar electric propulsion to ferry cargo slowly from 
LEO to High Earth Orbit where the Mars habitat/lander is assembled. Nuclear propulsion in LEO was ruled out. A 
chemical rocket is used for a fast 180 day crew transit to Mars. The stack-to-payload mass ratio is 3.1 for the 
habitat/lander, and is similar to the BVAD values (Connolly 2000, pp. 986-987, 998-999) (Jones 2012-3618)  

IV. Operations cost estimation 
The operations phase of a human space mission begins after launch and continues until the crew returns to Earth. 

The operations cost includes crew training, ground support, mission control and planning, and data analysis. Ground 
support provides constant coverage with on-call expertise for maintenance and trouble-shooting. Sustaining 
engineering is needed to support maintenance and trouble-shooting. The system complexity and the mission duration 
are the two major drivers of operations cost. (Wertz and Larson 1999, pp. 214-218) (Jones 2003-01-2635) 

Space operations costs can be approximately predicted as an additional percentage of the system development 
cost every year. Mission constraints and systems design choices tend to drive DDT&E and operations costs in the 
same direction. Complex human missions, severe environments, and higher risk aversion increase both DDT&E and 
operations cost. New technology, large amounts of software, complex monitoring and control, tight margins, and 
multiple operational modes do also. (Wertz and Larson 1996, pp. 214-218) (Jones 2003-01-2635)  

Human space programs before the space shuttle were relatively short term and had small operations costs. The 
space shuttle’s estimated total cost for the first ten years had 58% for operations and 37% for DDT&E, so the 
operations cost for ten years is 157% of the DDT&E cost. Shuttle operations therefore cost roughly 15.7% of 
DDT&E per year, but this includes launch, which is usually estimated separately. The early estimated total cost of 
the ISS including ten years of operations had 51% for operations and 45% for DDT&E. The ten year operations cost 
is 113% of the DDT&E cost. ISS operations cost is roughly 11% of DDT&E per year, not including launch. (Guerra 
and Shishko 2000, p. 938) (Jones 2003-01-2635)  

The Johnson Space Center (JSC) developed the Mission Operations Cost Model (MOCM). It is a high-level 
estimating tool that provides a quick rough order of magnitude cost estimate for spacecraft mission operations. The 
MOCM estimates the average annual operations costs for manned, unmanned, or planetary missions based on the 
total development and production cost of the spacecraft. The JSC MOCOM was maintained as an online calculator 
but is no longer available. (NASA CEH) The MOCM estimated manned spacecraft operations cost as equal to 
10.9% of the total development and production cost per year. (Jones 2003-01-2635)  

V. Life Cycle Cost (LCC) 
The Life Cycle Cost (LCC) of a space mission is the sum of the costs for Design, Development, Test, and 

Evaluation (DDT&E), Launch and Emplacement (L&E), and Operations. The LCC of a hardware system is 
estimated for four different missions, a future space station, a moon base, a Mars transit vehicle, and a Mars base. 
The mission parameters and costs are shown in Table 5 
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Table 5. Mission Life Cycle Cost (LCC).  

 Mission 
AMCM Parameters Space station Mars transit Moon base Mars base 

Q Quantity 1 
M Mass, lb 1,500 
M Mass, kg 682 
S Specification 2.13 2.13 2.46 2.46 

IOC Initial date 2030 
B Block 2 
D Difficulty -2 0 -2 0 

DDT&E cost  
 DDT&E cost, $M 98 242 419 1,032 
 DDT&E cost per kg, $k 144 355 614 1,513 
 DDT&E cost % of total 46% 78% 45% 84% 

L&E cost  
 Cost to LEO, $k/kg 10 
 Gear ratio 1 6.3 7.1 3.3 
 L&E cost, $M 7 43 48 23 
 L&E cost per kg, $k 10 63 71 33 
 L&E cost % of total 3% 14% 5% 2% 

Operations cost  
 Mission duration, years 10 1 10 1.5 
 Operations cost per year/DDT&E 0.11 
 Operations cost, $M 108 27 461 170 
 Operations cost per kg, $k 159 39 676 250 
 Operations cost % of total 51% 9% 50% 14% 

Total cost  
 Total cost, $M 214 312 928 1,224 
 Total cost per kg, $k 313 457 1,361 1,795 

 
The system costs are high, 100’s of millions of dollars, and they increase as the missions go outward from a 

space station to a moon base, a Mars transit vehicle, and a Mars base. The LCC per kilogram increases from about 
$300k to $2M per kilogram. The costs are in 1999 dollars and are more that fifty percent higher now and would be 
more than double in current dollars by the end of the next decade.  

Most of the parameters are the same for all missions. The identical parameters are the quantity, mass, initial 
operating date, block, cost to launch to LEO, and operations cost per year as a fraction of DDT&E cost. The AMCM 
specification, S, is 2.13 for a manned habitat and 2.46 for a planetary lander. The difficulty was set to -2, easy, for a 
future space station and moon base since quick resupply or crew return are possible. The difficulty was set to 0, 
average, for the Mars transit vehicle and Mars base because of their much more difficult reliability requirement. The 
relative costs of DDT&E, L&E, and operations are shown in Figure 1.  
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Figure 1. Costs of DDT&E, L&E, and operations in $k/kg.  
 
The DDT&E cost is always a major portion of the mission cost, about 45% for a space station or Moon base and 

about 80% for Mars transit and a Mars base. The DDT&E cost is a smaller part of the total for a space station or 
Moon base because these are ten year long missions with high operations costs,  

The L&E cost is relatively small, averaging about 6%. The anticipated reduction of LEO launch cost by a factor 
of four, to $2.5 k/kg, would reduce total LCC by only 4 or 5%. An increase by a factor of four would increase 
average mission cost only by 18%.  

The operations costs are very high for the two ten year missions, about 50% of the total for space station and 
moon base. The high operations costs reflect high DDT&E cost and long mission duration.  

The facts that the L&E cost is negligible and that the operations cost is directly proportional to the DDT&E cost 
makes it clear that the DDT&E cost is the major driver in LCC. The AMCM formula suggests that DDT&E cost 
might be reduced by reducing the system mass and functionality, by using designs with a long multigenerational 
heritage, and by reducing the programmatic and technical difficulty. It is thought that the culture of human space 
development must change to reduce cost. Some suggestions are concurrent engineering, integrated design 
environments, simulation based design, and use of commercial parts, practices, and organizations. (Guerra and 
Shishko 2000, pp. 954-7)  

The general approach cost estimating shown in Table 5 seems reasonable and useful. The LCC computation 
presented can easily be revised for different assumptions and missions. It is too simple to capture second order 
effects. For instance, spending more on DDT&E to achieve lower mass would tend to incorrectly reduce the 
estimate of DDT&E cost. Similarly, spending more on DDT&E to decrease operational problems would wrongly 
tend to increase the estimate of operations cost. The AMCM estimate of DDT&E cost produces only a rough 
historically based estimate that can be useful but is necessarily inexact.  

VI. Conclusion 
A quick rough order of magnitude estimate of space systems’ Life Cycle Cost (LCC) can be provided by adding 

estimates of the costs for Design, Development, Test, and Evaluation (DDT&E), Launch and Emplacement (L&E), 
and operations. The DDT&E cost estimate is developed using the Advanced Missions Cost Model (AMCM). The 
L&E cost estimate is based on the historic cost of launch to Low Earth Orbit (LEO) and the mission-specific stack-
to-payload mass ratio. The operations cost estimate is a historically based additional percentage of the DDT&E cost 
per year.  

A rough LCC estimate can be used in preliminary technology selection and architecture trade-offs and to 
compare alternate mission scenarios. The model presented here could be updated or tailored for specific technology 
areas. More detailed and flexible models should be used in project planning and management.  
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