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Introduction

Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and
fragments from explosions and collisions. As of 2009, more than 21 000 orbital debris larger than
10 cm are known to exist [1], and while it is hard to track anything smaller than that, the estimated
population of particles between 1 and 10 cm in diameter is approximately 500 000, whereas small
as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies – speeds usually
exceed 7 km/s. The shape of their orbit varies from almost circular to highly elliptical and covers all
LEO, a region in space between 160 and 2 000 km above sea level. Unfortunately, LEO is also the
place where most of our active satellites are situated1, as well as, International Space Station (ISS)
and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.
This poses a real threat as debris can collide with satellites and deal substantial damage or even
destroy them.

Collisions between two or more debris create clouds of smaller debris, which are harder to track
and increase overall object density and collision probability. At some point, the debris density could
then reach a critical value, which would start a chain reaction and the number of space debris would
grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded
that it would lead to creation of debris belt, which would vastly complicate satellite operations in
LEO. [2].

The debris density is already relatively high, as seen from several necessary debris avoidance
maneuvers done by Shuttle, before it was discontinued, and ISS [1, 3, 4]. But not all satellites have
a propulsion system to avoid collision, hence different methods need to be applied. One of the pro-
posed collision avoidance concepts is called LightForce and it suggests using photon pressure to
induce small orbital corrections to deflect debris from colliding [5,6]. This method is very efficient
– as seen from theoretical simulations, even few continuous mode 10 kW ground-based lasers, fo-
cused by 1.5 m telescopes with adaptive optics, were enough to prevent significant amount of the
debris collisions. Simulations were done by propagating all space objects in LEO by 1 year into the
future and checking whether the probability of collision was high. For those space objects different
ground-based lasers were used to divert them, afterwards collision probabilities were reevaluated.
However, the actual accuracy of the LightForce software, which has been developed at NASA Ames
Research Center, depends on the veracity of the input parameters, one of which is the object’s bal-
listic coefficient. It is a measure of body’s ability to overcome air resistance, which has a significant
impact on the debris in LEO, and thus it is responsible for the shape of the trajectory of the de-
bris. Having the exact values of the ballistic coefficient would make significantly better collision
predictions, unfortunately, we do not know what are the values for most of the objects.

In this research, we were working with part of LightForce code, which estimates the ballis-

1Source: https://www.space-track.org.
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tic coefficient from ephemerides2. Previously used method gave highly inaccurate values, when
compared to known objects, and it needed to be changed. The goal of this work was to try out a
different method of estimating the ballistic coefficient and to check whether or not it gives noticeable
improvements in accuracy. Here we present our new approach and the ideas behind it.

2 Ephemeris (plural ephemerides) gives the position of astronomical objects as well as space debris in the sky at a
given time.
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1 Atmospheric Drag

Everything above Karman line, 100 km above sea level, is assumed to be outer space, however,
atmosphere extends far beyond that point. It extends for at least 10 000 km more [7], although
after 600 - 700 km it is not very significant (see Figure 1.1). Nevertheless, besides gravity, the
atmospheric drag effect has the most impact on the object’s trajectory in LEO and it has to be taken
into account when modeling orbits of space objects in LEO. From here everything will eventually
fall down to Earth, but the magnitude of the effect depends on many different parameters and we
present them in this section.

1.1 Drag Force and Drag Coefficient

An object moving through medium always experiences drag – a resistance force acting in the op-
posite direction of object’s movement. It is a result of three main effects: surface friction, flow
interference and form drag. At relatively high velocities and low densities, like in our case, the
lateral effect overshadows the first two, so they can be neglected [9]. In this case, the drag force is
largely proportional to characteristic area of the object and to the square of its velocity.

Figure 1.1 Variations of air density with height from 150 to 1000 km for high and low solar activity
and diurnal variations (see chapter 1.2) based on COSPAR International Reference Atmosphere
(CIRA 1972). Courtesy: King-Hele [8]
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Using dimensional analysis from fluid dynamics, we can define drag as follows:

Fd =−1

2
ρ

∣∣vrel
2∣∣Cd A, (1.1)

where Fd is the drag force; ρ is a density of medium, in our case, the density of air; vrel is a relative
velocity of an object going through medium; and A is a characteristic area of that object. Cd is a drag
coefficient; it has no units and depends on the object’s surface roughness and shape, as seen from
Figure 1.2 – it also depends on the medium’s density and the molecular velocity [9]. Nevertheless,
the dependence of different parameters for specific conditions are usually too small to take into
account, thus it is mostly used as a constant.

When modeling a space object, we usually do not know its shape, because this information is not
saved in ephemerides, as seen from chapter 2.1, hence we cannot know what is the exact value of the
drag coefficient. Even if we could capture an image of the object’s profile and measure the surface
area, Cd and A values wouldn’t be right, as most of the objects are non-spherical and spinning with
respect to their direction of motion, hence one would need multiple pictures of different sides, as
well as, to know its angular velocity. A good way to deal with this is to approximate them as spheres
and then use drag coefficient of a sphere. The value we use is Cd = 2.2, which was popularized by
the use of Jacchia models for estimating atmospheric density and other parameters of upper layers

Figure 1.2 Drag coefficient for different shape objects calculated at low velocities [10]
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of Earth’s atmosphere [11, 12]. Note that this value is different from the one showed in Figure 1.2
as a result of the following assumptions [9]:

• The mean free path of the air molecules is much greater than the size of the satellite.

• The satellite velocity v0 is much greater than the mean random velocity v̄ of the air molecules.

• The mechanisms that deflect the impinging molecules range from elastic to inelastic impact
and diffuse evaporation at an effective surface temperature T .

1.2 Atmospheric Density Model

As one can see, the drag force depends on the atmospheric density in different ways, but the density
is not constant. Even though we assume that its changes do little effect to the drag coefficient, for
the drag force we have to use accurate values, as objects closer to the ground will interact with it a
lot more and deorbit quicker than those who are further away; it is easy to see this from the ISS and
Vanguard 13 orbits. While the ISS is the biggest man-made satellite, it has one of the lowest orbits
of all artificial satellites and thus it loses 2 or more kilometers of altitude per month, as seen from
Figure 1.3. Without frequent orbital corrections it would deorbit within a year. Vanguard 1 is in a
higher orbit, with a perigee4 of 656 km and apogee5 of 3842 km (as of December 2015), and it is
expected to stay in orbit for 240 years 6.

Figure 1.3 Orbital height of the ISS throughout last year. Image source: www.heavens-
above.com/ISSHeight.aspx

3Vanguard 1 is the oldest man made satellite still in orbit, launched in 1958; it was used to obtain geodetic mea-
surements.

4A point where celestial body is closest to the Earth.
5A point where celestial body is furthest from the Earth.
6Retrieved from http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1958-002B.
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The Earth’s atmosphere is expanding and contracting in a complex manner all the time, not to
mention it is not the same throughout different latitudes and longitudes. Many effects contribute to
that and a good atmospheric model should include at least most significant ones, if not all. Below,
we list effects that are considered to be most important [13]:

• Latitudinal variations: The effect comes from satellite passing over the Earth’s equatorial
bulge, effectively this changes the actual altitude and, therefore, the density.

• Diurnal variations: These variations come from the Earth’s rotation and the Sun’s irradia-
tion. The day side of the Earth is warmer than the night side, hence the atmosphere expands
and bulges over ecliptic plane in the direction of the Sun. Because of the diurnal variations,
it’s necessary to know latitude, local time, and time of the year.

• 27-day solar-rotation cycle: This effect arises from Sun’s rotation around its axis, which
causes fluctuations in the amount of radiation that reaches the Earth.

• 11-year cycle of sunspots: Solar cycle strongly varies the amount of incoming radiation
reaching the Earth. As a result, the Earth’s atmosphere heats up different amounts and it
expands different amounts throughout the cycle. At the solar maximum the temperature of
upper layers of the atmosphere is about two times higher than at solar minimum [14], meaning
that the atmosphere has expanded a lot more and debris will be affected more by the drag.
In fact, nine times more debris fall to the surface of the Earth during solar maximum than
minimum [15]. Furthermore, depending on the altitude, this effect can even cause larger
disturbance through solar-radiation pressure than drag [13].

• Seasonal variations: These variations come from solar flux fluctuations due to Earth’s ro-
tation around the Sun. The Earth’s rotational axis is tilted and its orbit is elliptical, thus the
Sun’s declination and the distance between the Earth and the Sun varies throughout the year.

• Rotating atmosphere: The atmosphere is rotating together with the Earth, however, the
velocity of lower layer is usually higher because of the friction with the Earth’s surface.

• Winds: Atmospheric winds and weather create local variations of the temperature and, there-
fore, the density. Unfortunately, this is difficult to account for, as the weather itself is almost
unpredictable because of its sensitivity to changes.

• Magnetic-storm variations: Effect comes from fluctuations in the Earth’s magnetic field,
which affects the amount of charged particles reaching the Earth’s atmosphere from the Sun.

• Irregular short-periodic variations: Mostly solar flares: sudden increase in solar wind
intensity, which also disturbs the Earth’s magnetic field.

8



• Tides: Ocean tides and even atmospheric tides as a result of gravitational pull of the Moon
can cause small variations in the atmospheric density.

The first model of the Earth’s atmosphere above 120 km was created by Nicolet in 1961 [16]. It
was an empirical model and used a set of boundary conditions of temperature and partial densities
of gases altogether with diffusion theory to get values for higher altitudes. Later it was improved
upon several times by Jacchia with empirical data from the new satellites [11,17,18]. It was a good
model and even today it is still widely used for spacecraft dynamics. However, for more accurate
calculations like satellite and space debris orbital simulations, it is better to use a newer model,
developed by Mike Picone, Alan Hedin, and Doug Drobof, which is called NRLMSISE-00 [19]. It
is an abbreviation of US Naval Research Laboratory and Mass Spectrometer and Incoherent Scatter
Radar (00 stands for the year of release), the two primary data sources for development of earlier
versions of the model.

NRLMSISE-00 is an empirical model of the Earth’s atmosphere from the ground through ex-
osphere. Its outputs are atmospheric density, which we need, as well as temperature and other
parameters, while all the necessary input parameters are: year and day time of day; local apparent
solar time; geodetic altitude, latitude and longitude; daily and 81 day average of F10.7 solar flux7;
daily geomagnetic index. This model includes most of the effects listed above [19], it is imple-
mented in LightForce code and thus it is the perfect model for our simulations.

710.7 cm solar radio flux, F10.7, is a great indicator of solar activity, as it correlates with sunspots and UV radiation
[14], as well as it is easy to measure it on the ground using radio antenna.
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2 Numerical Approach

From the previous chapter we learned how the atmospheric drag affects the debris and why it varies
in time, but the problem we face that it is very impractical to experimentally measure it without
knowing the shape and the size of the debris. However, we can find ratios between mass, drag
coefficient and characteristic surface area of debris – the ballistic coefficient, and it can be done
numerically from the orbital tracking data. It is explained in this section.

2.1 Input Data

Satellite tracking began in 1957 with the launch of the first man-made satellite into space – Sputnik.
The first methods for tracking used radio communication and weren’t very reliable as they couldn’t
detect or track objects in space that weren’t transmitting internationally agreed frequencies, as some
did. At that time, the main reason for satellite tracking was to defend against missile attacks, as a
result better methods were conceived. Telescopes with cameras were used instead, as well as radars,
although they had their own limitations. Optical tracking systems depended on the weather and
only worked during night time, while radar was free from those problems, but it was costly [20].
Nowadays the methods are the same, only the accuracy has increased a bit, albeit still relatively low,
and objects as small as 1 cm could now be detected and tracked with ladars [21], which is great for
estimating various parameters of the atmosphere, as well as predicting trajectories.

The most popular way for a celestial body’s detection and tracking is using a radar system. The
detection is done by sending a powerful, yet short, impulse of radio signal into particular part of
space and waiting for echoes. Computer analyzes the returned signal and from its strength, shape
and time in took to come back it calculates average ephemeris for that object [22]. Tracking, on the
other hand, uses a priori knowledge where the object is going to be at specific time, so the radar
is prepared by pointing to that part of the sky. After detection, it then tracks that object to get new
orbital data, which is then saved as one data set. But there is only a finite number of radar sensor
sites around the world, and they have a narrow view of the sky, and limited capabilities, meaning
that some space object aren’t in view all the time. Furthermore, they might not be in a good view or
tracked for couple days, thus measurements are rare – from public database8 we see that it is about
one per two days or less.

The format for storing ephemerides is the same as it was 50 years ago. Back then, a set of orbital
elements were written in two lines on a punch card9; from here came the name Two-Line Element
(TLE) set, meaning this data encoding format. Given a reference frame and an epoch (a reference
time when ephemeris were taken), actually only six orbital elements are needed to unambiguously

8www.celestrak.com/NORAD/elements/
9Punch card is a piece of stiff paper that contained either commands for controlling automated machinery or data

for data processing applications. Both commands and data were represented by the presence or absence of holes in
predefined positions.
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define celestial body’s position and motion as a result of body having six degrees of freedom. These
elements are as follows:

• Mean motion, n: Satellite’s average rate of motion over one orbit.

• Eccentricity, e: The shape of the orbit. 0 means circles; between 0 and 1 – ellipses; 1 –
parabola; over 1 – hyperbola.

• Inclination, i : Tilt of the orbit plane relative to equatorial plane.

• Right ascension of the ascending node, Ω: The angle in the equatorial plane at which satel-
lite crosses the equator from south to north, measured from Greenwich longitude.

• Mean anomaly, M : The angular distance from the perigee which a fictional body would have
if it moved in a circular orbit, with constant speed, in the same orbital period (true anomaly)
as the actual body in its elliptical orbit.

• Argument of perigee, ω: The angle along the orbit between ascending node and perigee
measured in the direction of motion.

These angles are showed in Figure 2.1. Here we showed only the most important elements of TLE
set, albeit there are few more that help identify the object and its trajectory.

Figure 2.1 Orbital elements that define the position of celestial body. Note that instead of mean
anomaly a true anomaly is showed. Image source: www.wikipedia.com
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These elements are our input data; from them we can calculate the ballistic coefficient, which
is used to predict the trajectory of the object. Formula for the ballistic coefficient is derived in the
next chapter.

2.2 Ballistic Coefficient

When debris or any other object moves through atmosphere it loses kinetic energy. This means
a decrease in total energy and it leads to orbital decay. Orbital decay can easily be seen from
decreasing eccentricity and semi-major axis10, but we cannot know how much energy was lost,
because we do not know object’s mass. Another way to calculate energy loss is from the work done
by drag force ((1.1) eq.)– by integrating drag force over the path that debris travels. As mentioned in
the previous chapter, for those calculations we need characteristic area and drag coefficient, however,
we do not know them either. Fortunately, these two energies are almost the same and, by neglecting
the energy fluctuations induced by gravitational field perturbations, we can have an equality:

rˆ
r0

1

2
ρCd A |vrel|

(
vrel ·dr′

)' µm

r
− µm

r0
+ mv2

0

2
− mv2

2
. (2.1)

Here µ is the gravitational constant times the Earth’s mass; r is the distance from the center of
mass and v is the object’s velocity relative to the Earth’s surface. The left-hand side was already
introduced in previous section. Note that when we are calculating relative velocity to Earth’s at-
mosphere, vrel, we are assuming atmosphere rotating with Earth with angular velocity ω⊕without
winds as that would be impossible to predict. It is expressed with the following equation:

vrel = v−ω⊕× r. (2.2)

In (2.1) eq., everything but the mass, characteristic area and drag coefficient, can be calculated
or is known from the tracking data. However, the unknowns actually give us the ballistic coefficient

B = m

Cd A
, (2.3)

whose estimation is the main goal of this work. Thus from (2.1) formula we can derive an equation
for estimating the ballistic coefficient, and it is as follows:

B = m

Cd A
'
´ t

t0
ρ |vrel| (vrel ·v)d t ′

2µ
(

1
a(t ) − 1

a(t0)

) ≈
∑N

i=1ρ |vrel| (vrel ·v)∆t

2µ
(

1
a(t ) − 1

a(t0)

) (2.4)

In the numerator we changed integration over the distance to integration over the time, hence the
10Semi-major axis is a popular unit in the field of astrodynamics. It is defined as half the distance of the longest

principal axis of an elliptical orbit. For circular orbits it coincides with radius.
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object’s velocity relative to the atmosphere is now multiplied by velocity. For numerical approach
we also changed integration with summation, thus we introduced ∆t , which is an arbitrary size
of time step, and N = t−t0

∆t . While in the denominator we expressed total energy per mass unit as

a function of semi-major axis using this equation: a =
(

2
r − v2

µ

)−1
. This was done as it is more

convenient to calculate ballistic coefficient from TLE set data. Hence now we have a formula for
the ballistic coefficient estimation and we can solve it numerically.

2.3 Integration Using SGP4

Orbital elements define space object’s orbit and motion, but for our calculations they are not easy
to use. It is useful to transform them to a different state vector – a position vector and a velocity
vector, which we can use in the (2.4) equation. The best way to get the state vector is to use SGP4
propagator – a simplified general perturbation model, which was purposely designed to work with
the TLE set data [23]. As the name implies, this model uses simplified perturbations to model
orbit of the space object. Simplifications were done by assuming static atmosphere and including
only the biggest perturbations of gravitational field as well as guessing the value of the ballistic
coefficient. Also, SGP4 propagator can estimate the object’s state vector for any arbitrary point in
time, although its predictions are limited by its accuracy, as even small state vector errors start to
grow exponentially over time. This is mostly due to it using its own estimate of ballistic coefficient
calculated from one TLE set, which, as mentioned previously, is not perfectly accurate.

In the 2.1 chapter, we mentioned that TLE sets are rare – about one TLE per two days, then
on average we have around two hundred TLE data sets per one year. It is clearly not enough for an
accurate summation in (2.4) eq. as we are describing changes of the velocity and the atmospheric
density that are happening in minute scale and not day scale, as showed in Figure 2.2. Nevertheless,
in the old method it is done with even less. Even though the approach is different, the idea behind
it is very similar to the new method. It calculates semi-major axis decay per orbit from average
values of only few TLE sets and using the same averaged values it integrates to find the drag effect
for one orbit. From here, similarly like in (2.4) eq., it is possible to estimate the ballistic coefficient.
However, using averaged values, especially from small pool of TLE sets, it gives biggest errors of
this method.

On the other hand, in the new method we are trying to capture all of those details, thus we need
more data points and for this reason we are using SGP4 propagator to generate it. Even though the
accuracy of the model degrades exponentially by every day since the epoch [24], we are only using
it for short propagations. From Levit et al article [25], it is clear that propagating about 2 days is
still accurate as errors are less than 1 km for most debris, after that it is best to take have new TLE
set from the next epoch. Fortunately, SGP4 can propagate forwards and backwards in time, thus we
can have a total difference of 4 days between any two TLE sets without sacrificing accuracy of our
calculations.
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For a better accuracy of estimating the ballistic coefficient we would need a very small time step
∆t , in the orders of seconds, however, these calculations would take extremely long time and that is
inconvenient. By experimenting with different values we noticed that it is best to use time step of 1
minute. It means that we have about 100 data points per orbit (LEO satellite’s period is around 100
minutes) which is enough to capture the atmospheric density changes throughout different parts of
the orbit.

2.4 Fast-Fourier Transformation

The numerical data generated by SGP4 propagator includes a lot of physical phenomena that make
the energy and thus the semi-major axis oscillate throughout the orbit and time. This effect can
be easily seen in the Figure 2.2 where we plotted debris’s semi-major axis over time using SGP4
generated data. Interestingly enough, from the original TLE set data (generated state vector at
TLE epoch) it would appear that debris’s orbital height is increasing. With more data, even if it is
generated by SGP4 propagator, we can capture intrinsic behavior of the semi-major axis and see that
original TLE set data is only a snap-shots of that, thus first assumption would have been most likely
false. By our guess, the illusion of growing orbit can be created by orbital precession – rotation of
the orbit itself, which is not included in the original TLE set data. By plotting yet another object’s
semi-major axis values over time in top Figure 2.3 we can actually see oscillations of semi-major
axis over time scale that is not explained by any other phenomena, thus supporting this idea. As
shown in bottom Figure 2.3, if the celestial body is observed from the same spot on the Earth, like
using the same radar or telescope site, it will detect the body at different sections of its the orbit.
This can be supported by the fact that from the semi-major axis plot it is visible that TLE sets are
almost equally spaced, meaning that measurements are periodical and it is most likely to be true if
the same observatory is taking ephemerides of that debris.

Looking into the lower Figure 2.2, we can also see that oscillations are so big that they actually
hide any changes that happen to the semi-major axis due to the drag effect. Up until now these
oscillations were necessary for the accurate orbit determination but now they are overshadowing
the evaluation of the semi-major axis decay. Using this data would lead to the negative ballistic
coefficient and our estimation would be most likely wrong. Although sometimes negative values
are meaningful, as some satellites have propulsion systems and can do orbital maneuvers, like the
ISS, but most of them are debris or passive satellites and should naturally decay. Actually, we expect
to find more than 95 % of celestial bodies to have a positive decay values [1] as only few percent
are working satellites and out of them only few have propulsion, but first we need additional step –
filter the data.

From all the phenomena that are affecting semi-major axis we can only include those who
cause drag fluctuations – the rest we must remove. This is a necessary step because otherwise
(2.4) eq. becomes invalid. By writing that equation, we neglected gravitational perturbations, so
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Figure 2.2 Semi-major axis over time. Black squares are semi-major axis at TLE epoch, green line
are generated by propagating from epoch. All data generated using SGP4 propagator. Satellite’s
catalog number: NORAD 299

that semi-major axis decay could be written as equal to energy lost due to drag. Thus we have the
same thing here, we must remove gravitational perturbations, which are caused by a non-spherical
gravity (the Earth has a non-uniform mass distribution) and a three-body gravity (Moon, Earth and
Sun) [13, 23]. Lateral effect will cause long-periodic and short-periodic variations of the semi-
major axis, while the non-spherical gravity will only cause the short-periodic variations. By short-
periodic, we mean oscillations on the same scale as celestial body’s orbital period; while the long-
periodic variations are above tens of days. Knowing this, we can remove these effects by applying
Fourier transformation to SGP4 propagator generated data [26]. However, to accurately do it, we
first need to remove non-periodic energy decay, which is caused by all of the phenomena. This can
be easily done by applying simple linear regression to find line fit of the data: slope k and intercept
b:

k = x̄ y − x̄ ȳ

x̄2 − x̄2
;

b = ȳ −kx̄, (2.5)

and subtracting the fitted line from the data. In this case, we are left with pure oscillations with no
decay and algorithm for fast Fourier transformation (FFT) can be used, although here we will not
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Figure 2.3 Top: The semi-major axis over time of the object NORAD 7646. Bottom: Satellite’s
orbital precession around The Earth. For an observer standing still on one point of the Earth it
appears that satellite’s orbit declines
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Figure 2.4 Semi-major axis over time before and after fast Fourier transformation. Black squares
are from TLE set data, while green line was found after FFT applied to SGP4 generated data

go into further details.
FFT transforms data from time domain to frequency domain. By choosing which frequencies

we want to include, we can control what effects we exclude. As most of the unwanted effects are in
the high frequency range (short-periodic) we chose to use low pass filter11. In our calculations the
cut-off frequency is one oscillation per 45 days – amplitude is set to zero for anything faster than
that. This is an arbitrary value, however, it was chosen to be big enough to exclude gravitational
perturbations of the Moon’s rotation around the Earth, but low enough to include seasonal effects
of solar radiation. Hence, by having TLE set data of about 200 days, we are left with only few
lowest frequencies and almost linear relation of the semi-major axis over time. Unfortunately, for
some objects with too few TLE sets we do have perfectly linear relation, as seen in Figure 2.4.
Nevertheless it is still better than leaving it unchanged, as now we can clearly see that object’s orbit
is decaying, which would have been probably missed by previous method.

In the next section we present results of the new approach and compare them with previous
method, as well as with some known values of the ballistic coefficient.

11A low-pass filter passes signals with a frequency lower than a certain cutoff frequency and attenuates signals with
frequencies higher than the cutoff frequency.
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3 Results

For our calculations, we only used TLE set data12 from the year 2015. Part of the data, from January
1st till August 15th, was used for the ballistic coefficient calculation, while the rest, from August
16th to September 15th, was used to analyze the accuracy of the estimated values. In general, we
would want to extend the first period as we want to have as many TLE sets as possible for a more
accurate estimation, however, this work was done by focusing on implementing the new approach
and checking whether or not it works better than previously used method, and for this reason we
used the same data as was used in previous calculations.

Furthermore, at this stage software is incapable of allocating memory for more than 200 TLE
sets, albeit from Figure 3.1 we see that most objects have fewer number of TLE sets. Actually, most
objects have as few as 14 TLE sets, while average value is 75. Note that these results came after
doing initial data filtration, which removed outliers (data points that are more than 2σ away from
the mean) and TLE sets that are too much separated in time to have a good estimation by SGP4
propagator, as explained in chapter 2.3. These steps reduced the total number of available TLE sets
substantially, leading to distribution we see in Figure 3.1.

Whenever we estimate the ballistic coefficient for the whole catalog of tracked objects (>13 000)
it takes two whole days, plus an additional day if we want a least squares fitting13 on top of that.
The least squares fitting algorithm was already implemented in the code and it usually improves the
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Figure 3.1 Number of objects with different number of TLE sets. Data collected from the period
January 1st to August 15th of 2015

12All data was downloaded from www.space-track.org.
13Least squares fit is a statistical method that minimizes the sum of squares of the errors made in the results of every

single equation.
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accuracy of the ballistic coefficient. It uses a high precision propagator to propagate the trajectory,
while TLE snapshots are used as virtual observations for the fit. Nevertheless, the least squares
fit uses our estimated values of the ballistic coefficient as its initial guesses, even though it is very
sensitive to local minimum, meaning that after this step values are still quite similar. As this step
specifically is unrelated to this work, we only did it to compare the new results with the old ones
and they were calculated by the previous approach plus the least squares fitting. Unfortunately, data
analysis is difficult, as we don’t know anything about the true values of the ballistic coefficient of
the debris and most satellites. We can only compare our results with some (not all) that we know
and whose shape is simple, like sphere, cylinder or cube, as well their mass and size is known. In
this case, we can manually calculate the ballistic coefficient using the same formula as in (2.3) eq.,
where Cd = 2.2 is the drag coefficient of the sphere. This data is showed in Table 3.1.

By looking at the Table 3.1, we can see that in many cases the new approach is significantly
better than the old one. Albeit it is still underestimating the ballistic coefficient by about one order
of magnitude. Most likely this could happen, if the atmospheric drag is weaker than it should have
been, which could have been caused by partly underrated atmospheric density. By plotting accu-
racy of the ballistic coefficient (a ratio between the estimated value and real value) against object’s
inclination, as it is done in Figure 3.2, we can actually see a correlation between the two. One
can see that for all space objects, whose orbits are equatorial (orbital plane is parallel to equator),
the accuracy of the ballistic coefficient is significantly worse than for the objects, whose orbits are
inclined or even perpendicular to equatorial plane. This relationship between accuracy and inclina-
tion can be explained by underestimating bulging of the Earth’s atmosphere. Albeit NRLMSISE-00
includes effects like that, SGP4 doesn’t – it uses simple model of static atmosphere, as mentioned in
chapter 2.3. In the previous approach SGP4 propagator isn’t used in the same manner as in the new
method, thus there is no reason for it to exhibit similar behavior throughout different inclinations
and should show no correlation – that is what we see in Figure 3.2.
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Figure 3.2 Accuracy of the ballistic coefficient of the old (red) and the new (navy blue) methods
plotted against inclination. Accuracy is measured as a ratio between estimated value and “true”
value
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Table 3.1 Comparison of the true ballistic coefficient versus estimated value for satellites with simple shapes
Name NORAD ID Mass (kg) Dimensions (m)/Shape Inclination Apogee/Perigee (km) Eccentricity Btr ue B new

est. B ol d
est .

STARLLETE 7646 47.3 ;0.24/sphere 49.8 1107/805 0.15679 475 64.7 0.60
AJISAI 16908 685 ;2.15/sphere 50.0 1503/1485 0.00602 85.8 3.41 0.90

STELLA 22824 48.0 ;0.24/sphere 98.6 805/797 0.00499 482 165 0.76
LARES 38077 387 ;0.36/sphere 69.5 1456/1445 0.00379 1728 151 16.4
DANDE 39267 38.0 ;0.46/sphere 81.0 1390/328 0.61816 104 74.6 59.9

KIKU 1 (ETS 1) 8197 85.0 ;0.9/spherical 47.0 1109/981 0.06124 60.7 14.9 1.79
NADEZHDA 2 20508 870 ;2×3.5/cylindrical 83.0 1023/960 0.03177 126 18.4 -

SCD 1 22490 115 ;1×1/cylindrical 25.0 782/720 0.01664 66.6 0.45 6.85
FORTE 24920 41.0 ;0.8×2/cylindrical 70.0 825/798 0.01664 37.1 7.05 0.41

ORSTED 25635 50.0 0.34×0.45×8.72/rectangular 96.5 833/632 0.13720 148 24.4 1.91
PCSAT 26931 10.0 0.253/cube 67.0 795/787 0.00506 37.3 7.60 0.80

FEDSAT 27598 50 0.583/cube 98.4 811/797 0.00871 69.3 29.9 0.86
LATINSAT B 27606 12 0.253/cube 64.6 727/598 0.09736 89.6 11.3 4.48

SAUDISAT 1C 27607 10 0.233/cube 64.6 709/596 0.08659 88.2 9.29 3.84
AAU CUBESAT 27846 1 0.13/cube 98.7 833/818 0.00909 46.7 11.7 1.29

SEEDS 32791 1 0.13/cube 96.7 617/597 0.01647 46.7 25.9 33.1
VESSELSAT 1 37840 29.0 0.33/cube 20.0 874/854 0.01157 150 0.081 34.4

SRMSAT 37841 10.4 0.283/cube 20.0 875/856 0.01098 61.9 0.036 3.66
TUGSAT-1 39091 7.00 0.23/cube 98.6 790/776 0.00894 40.8 46.4 0.69
CASSIOPE 39265 500 ;1.8×1.25/cylindrical 81.0 1358/329 0.60996 89.3 56.4 38.6

DRAGONSAT 39383 1.00 0.13/cube 40.5 402/402 0 46.7 2.30 46.8
COOPER 39395 1.00 0.13/cube 40.5 336/319 0.02595 46.7 2.16 36.3
AIST 1 39492 39.0 0.47×0.56×0.48/rectangular 82.4 628/599 0.02363 72.8 51.8 30.2
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Another way of checking the accuracy of our method is by launching body propagator, imple-
mented in Lightforce software. By putting calculated values of the ballistic coefficient as a new
input, we can see how much object’s position deviates from the TLE set data that was not used for
the estimation of the ballistic coefficient. Furthermore, we can do the same with values from the
old approach, hence we can compare the accuracy of both methods against each other and against
experimental measurements. Here, we chose to propagate only 4 geodetic satellites14, as they are
spherical in shape and in theory should show best results. Results are plotted in Figure 3.3.

It is easy to see that in all examples the new method performs better than the old one. Positional
errors of the new method are significantly smaller, sometimes by two orders of magnitude smaller,
like in graphs of AJISAI and STELLA. Here we can see that even after two months the positional
errors are relatively small and not growing exponentially. By looking at the graph of AJISAI satel-
lite, we can even see that the expected position of the satellite was on the other side of the Earth
than it really was after 25 days of propagation with the old approach. Oscillations visible in the
same graph are actually caused by our imaginary satellite going around the Earth and catching up
with real one. Only in the graph of satellite DANDE we see similarly bad performance, albeit the
estimated values of the ballistic coefficient for DANDE are closest to the real value out of all four
satellites. This could be caused by highly elliptical orbit, as out of all four it has the highest eccen-
tricity. STARLETTE has the second biggest value of eccentricity and the positional errors in time
exhibit similar behavior. Thus highly elliptical orbits might pose another problem for the accuracy
of calculations.

Lastly, when we looked throughout the list of all tracked space objects and their estimated
values of the ballistic coefficient, we calculated the percentage of the objects with negative values.
We found that there is only 4.57 of the objects with such values. In chapter 2.4, we emphasized
that less than 5% of tracked objects are active satellites, although few of them do have propulsion
system, we can see that the new method gives absolutely wrong values for only couple of percents
of tracked objects. On the other hand, the old approach gives almost one fourth of the time (26.04%)
negative values, which is at least 5 times worse, when compared to the new approach.

14The geodetic group of satellites are inactive targets for satellite laser ranging that are used for positioning, gravi-
tational field modeling and atmospheric modeling.
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23



Conclusion

• The new approach implemented in the Lightforce code gives significantly better results when
compared to the old version of the code. The new estimated values are mostly within one
order of magnitude away from the real values, usually being underestimated, while the older
ones were mostly two or more orders of magnitude away.

• We showed that the accuracy of the new approach is inclination dependent while this is not
visible in the previous method. We suspect that errors arise from SGP4 model underestimat-
ing the Earth’s atmospheric density at equatorial plane, which is consistent with the results
from the geodetic satellites.

• When propagating object’s trajectory with new values, we see a lot smaller positional errors
from previously used method. Positional errors are two orders of magnitude smaller than
they were before, thus Lightforce simulations can now be used to predict real collision threats
within moderate accuracy.
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Jonas Narkeliūnas

SKAITMENINIŲ METODŲ TAIKYMAS KOSMINIŲ ŠIUKŠLIŲ BALISTINIO
KOEFICIENTO APSKAIČIAVIMUI, PASITELKIANT TLE ORBITINIUS DUOMENIS

Santrauka

Kosminės šiukšlės yra auganti bėda, su kuria tenka susidurti bet kuriam bandančiam sėkmingai
vystyti tyrimus žemutinėje Žemės orbitoje. Kosminės šiukšlės yra sudarytos iš panaudotų raketinių
variklių, nebeveikiančių palydovų ir skeveldrų, pažertų po sprogimų ir susidūrimų tarp tų pačių
nuolaužų, ir jos skrieja aplink Žemę su milžiniškomis kinetinėmis energijomis. Net mažiausia
šiukšlė/skeveldra lekianti 7 km/s greičiu gali perskrosti saulės elementus, o vos 1 cm dydžio gali
net pažeisti korpusą raketos gabenančios žmones ar krovinius. Didžiausią grėsmę šiuo metu jos
kelią Tarptautinei Kosminiai Stočiai (TKS), kurioje nuolat yra grupė žmonių – būtent dėl šiukšlių
TKS tenka atlikinėti įvairius manevrus, kad išvengtų susidūrimo rizikos. Tačiau nevisi dirbtiniai
palydovai turi raketinius variklius, tad jie neturi galimybės išvengti susidūrimo. Jam įvykus, paly-
dovas gali būti sunaikintas ir tapti nauju kosminių šiukšlių debesiu, kuris atsitiktinai gali pataikyti
į dar kitus palydovus ar tas pačias kosmines šiukšles. Pasiekus tam tikrą kritinį tankį šis proce-
sas pradės dažnėti eksponentiškai ir kosminių šiukšlių skaičius sparčiai išaugs. Tuomet žemutinė
Žemės orbita bus tankiai užpildyta kosminėmis šiukšlėmis ir nebus galima vykdyti jokios veiklos,
tad akivaizdu, kad kosminės šiukšlės kelią didelį pavojų tiek dabartiniams palydovams, tiek ateityje
planuojamoms kosminėms misijoms.

Jau šiuo metu kosminių šiukšlių koncentraciją yra didelė ir, jei nieko nebus imtasi, o paly-
dovų bus keliamą į orbitą vis daugiau, tai šis scenarijus greitai išsipildys. Dėl šios priežasties yra
vystomos įvairios koncepcijos kosminių šiukšlių susidūrimų mažinimui ir jų pašalinimui. Viena
tokia koncepcija vadinasi LightForce – tai yra simuliacijų paketas, skirtas sumodeliuoti ir įvertinti
ar galima išvengti kosminių šiukšlių susidūrimų naudojant antžeminius lazerius [5]. LightForce
prognozuoja, kuriuos kosminės šiukšlės susidurs, ir prieš tam įvykstant, truputį pakeičia jų greičius
pasitelkiant lazerio šviesos pluoštus taip, kad jos saugiai prasilenktų. Teoriškai jau yra įrodyta, kad
šitas metodas yra veiksmingas, tačiau prieš pritaikant programą praktiniams bandymams reikia
pagerinti jos prognozių tikslumą. Pastarosios labai priklauso nuo balistinio koeficiento vertės, kuri
nusako, kaip smarkiai ar silpnai objekto trajektoriją paveiks oro pasipriešinimas. Tačiau balistinis
koeficientas kosminėms šiukšlėms yra nežinomas, kadangi jis priklauso nuo masės ir charakteringo
ploto, taip pat ir nuo pasipriešinimo koeficiento, priklausančio nuo objekto formos, o šių duomenų
tiesiogiai išmatuoti mes negalime. Tokiu atveju balistinis koeficientas yra ieškomas netiesiogiai
iš orbtinių duomenų, pasitelkiant skaitmeninius metodus. Vis dėlto ankstesnėje programos versi-
joje naudoti skaitmeniniai metodai davė pakankamai netikslias balistinio koeficiento vertes, o tai
reiškia, kad objektai galėjo būti toli nuo prognozuotų pozicijų, tad netiksliai buvo prognozuojami



ir susidūrimai. Šio darbo tikslas buvo pagerinti balistinio koeficiento apskaičiavimo metodą.
Šiame darbe išvedėme naują formulę balistinio koeficiento apskaičiavimui, kurią galima skait-

meniškai išspręsti iš turimų orbitinių duomenų. Siekiant geresnio tikslumo taip pat pritaikėme įvair-
ius duomenų tvarkymo ir papildomų duomenų generavimo metodus. Gauti rezultatai parodė, kad
kiekybiškai naujasis metodas duoda net pora eilių tikslesnes vertes lyginant su ankstesniu metodu
ir tikromis balistinio koeficiento vertėmis (tikros vertės gali būti apskaičiuojamos žinomos formos,
dydžio ir masės palydovams). Taip pat naudojant naujas vertes gaunamos žymiai geresnės prog-
nozės palydovo trajektorijai, tad ir susidūrimai gali būti geriau įvertinti negu anksčiau. Taigi aki-
vaizdžiai sugebėjome pagerinti programos veikimą – simuliacijų tikslumą.
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