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Abstract

This document is intended as an introduction to a set of common
signal processing and machine learning methods that may be used
in the software portion of a functional crew state monitoring system.
This includes overviews of both the theory of the methods involved,
as well as examples of implementation. Practical considerations are
discussed for implementing modular, flexible, and scalable processing
and classification software for a multi-modal, multi-channel monitor-
ing system. Example source code is also given for all of the discussed
processing and classification methods.
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1 Introduction

The Crew State Monitoring (CSM) Element is a task within the Vehicle
Systems Safety Technologies (VSST) Project, which is part of the NASA
Aviation Safety Program. The objective of the CSM Element is to develop
technologies to assist in crew maintenance of appropriate readiness for and
engagement in mission tasks by avoiding and detecting hazardous functional
operator state. These measures include determination of attention (or lack
thereof), task engagement, and workload. Such a system is being developed
from a suite of neural, physiological and behavioral sensing modalities to an
integrated multi-modal, multi-state system for in-task detection of hazardous
operator state.
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The integration of these technologies into a multi-modal state classifica-
tion system necessitates careful planning of signal processing and selection of
robust machine learning techniques for accurate and precise determination
of cognitive states; ultimately under a real-time processing constraint. The
purpose of this work is to document the practical considerations for working
with data sources of these types, present the background theory of the ma-
chine learning systems of interest to perform the classification portion of for
this system, and to illustrate strategies for the implementation of process-
ing software in support of future simulator studies and the development of a
functional crew state monitoring system.

This document is organized as follows. Section 1.1 describes how to setup
the Python programming language, with the needed technical computing
libraries. Section 2 discusses how raw data is acquired from selected hardware
devices from software written in Python. These devices include the ISS
Imagent fNIRS imaging system, Emotiv Epoc EEG headset, and Neulog
brand sensor modules. Section 3 discusses various common signal processing
functions which may be applied to raw fNIRS and EEG data (as examples).
Section 4 describes several popular machine learning methods which may
be used for cluster analysis or classification. Finally, Section 5 describes
the top-level organization of software meant to implement acquisition, signal
processing, and classifications functions involving multiple modalities with
multiple channels.

1.1 Setting Up Python

Python is a high level interpreted programming language that has become
very popular for scientific computing[26]. All example code within this doc-
ument is written in Python, making use of the Numpy1 package for array
processing, the Scipy2 package for scientific computing functions, the Mat-
plotlib3 package for plotting, and the scikit-learn4 package for classification
algorithms.

1http://www.numpy.org/
2http://www.scipy.org/
3http://matplotlib.org/
4http://scikit-learn.org/
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1.1.1 Windows

The most straightforward method for setting up Python on Windows for
scientific computing is to use a precompiled distribution, such as Python(x,
y)5, Anaconda distribution6, or Enthought Canopy7.

Each of these provide free single-point executable installers that include
the standard interpreter for the Python programming language, a large vari-
ety of third-party scientific computing libraries (including each package listed
above), as well as a suite of free compilers for C, C++, and Fortran.

1.1.2 Mac OSX

Mac OSX comes with a version of the Python programming language inter-
preter, however it is typically an outdated version that is difficult to install
up-to-date third party libraries into. The best way to install an up-to-date
version of Python is to use the Homebrew8 package manager. First, install
Homebrew according to the documentation provided on their home page.
Then, open a terminal, and type the code shown in Listing 1.

Listing 1: Installing Python on Mac

brew i n s t a l l python

Next, Numpy, Scipy, Matplotlib, and Scikit-Learn can be installed by
typing each line shown in Listing 2.

Listing 2: Installing Python libraries on Mac

pip i n s t a l l numpy
brew i n s t a l l g f o r t r a n
pip i n s t a l l s c ipy
pip i n s t a l l matp lo t l i b
pip i n s t a l l s c i k i t−l e a r n

5https://code.google.com/p/pythonxy/
6https://store.continuum.io/cshop/anaconda/
7https://www.enthought.com/products/canopy/
8http://brew.sh/
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1.1.3 Linux

Most popular desktop Linux distributions include an up-to-date version of
the Python programming language interpreter, and the needed libraries are
often available in the system’s package manager. For example, if the Linux
distribution uses the apt-get package management system, then the needed
packages can be obtained by typing in each line shown in Listing 3 in a
terminal window:

Listing 3: Installing Python libraries on Linux

sudo apt−get update
sudo apt−get upgrade
sudo apt−get i n s t a l l python−numpy
sudo apt−get i n s t a l l python−s c ipy
sudo apt−get i n s t a l l python−matp lo t l i b
sudo apt−get i n s t a l l python−s k l e a r n

Any necessary dependencies (such as the gfortran compiler) will be down-
loaded and installed automatically from the distribution’s remote reposito-
ries.

1.1.4 Alternatives To Python

While Python provides a very convenient development environment for tech-
nical computing, it is certainly not alone in this regard. MATLAB, for ex-
ample, is based on a similairly easy-to-read scripting language, and has a
large variety of array processing, scientific computing, and plotting function-
ality within its standard library. However, the many of the machine learning
and general purpose model fitting methods discussed in this work exist within
commercial add-on toolboxes, in particular the Machine Learning and Statis-
tics Toolboxes. If desired, these methods may also be implementing by a user
themselves at a low level.

GNU Octave, the R programming language, and the Julia programming
are language other suitable choices for implementation of the described al-
gorithms. These are each open source, and available free of charge.
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2 Data Acquisition Software

The data collection for each modality is performed by a hardware device,
which is interfaced to a computer system by some form of communication
bus. Before any form of processing or classification may take place, the
data must be collected from this interface and organized appropriately. This
section discusses the collection of data from three separate instruments into
a form that may be used in the Python programming language, in real time.

This is far from an exhaustive set of the types of devices one may be
interested in using in an operator state classification system. However, these
three examples are diverse enough to demonstrate how data may be collected
from instruments which use similar protocols and computer interfaces in a
laboratory environment.

2.1 ISS Imagent

The Imagent is a 16-channel frequency-domain fNIRS instrument made by
ISS, Inc9. fNIRS is an emerging low-cost technique for measuring temporal
changes in blood oxygen concentration at specific locations the brain[9]. Like
fMRI, this type of measurement can be associated with brain function due
to neurovascular coupling. fNIRS measurements have been shown to be
consistent with measurements taken simultaneously from fMRI, with the
benefit of being significantly more portable[12].

The Imagent connects to a computer using a specialty hardware interface.
Data can be monitored in real time using the BOXY software system included
with the device, which can be configured to transmit the data to a software
serial port. By transmitting to a port that is being read by a different
program, one can read and operate on the data within that program, in real
time.

The data that is transmitted by BOXY may not necessarily include the
calculated relative concentration changes of hemoglobin species, but rather
they may be the raw optical density measurements of the device alone. This
may be done so that the concentration change calculation may be imple-
mented by the user directly, if this is preferred. Details of this calculation
are shown in Section 3.2.

9http://www.iss.com/
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Listing 4: BOXY Serial Output
A-C1 =3.929E+0 A-C2 =3.307E+0 A-C3 =4.974E+2 A-C4 =1.272E+3 A-C5 =4.483E-1 A-C6

=2.137E+0 A-C7 =2.722E+1 A-C8 =2.256E+2 D-C1 =2.534E+2 D-C2 =2.530E+2 D-C3

=1.808E+3 D-C4 =5.432E+3 D-C5 =2.517E+2 D-C6 =2.528E+2 D-C7 =3.348E+2 D-C8

=9.828E+2 P-C1 =1.79859E+0 P-C2 =5.15935E+1

...

BOXY writes data to serial ports in the format shown in Listing 4, as a
sequence of channel names and corresponding channel values (with 4 digits
of precision), with each name/value pair being separated with a single space.
When the last channel value is written, a line break character is then written.
A serial port parser can be written in Python to decode this pattern.

Listing 5: Reading ISS Imagent Data In Python
import serial

class Imagent(object ):

def __init__(self , port , baud):

self.ser = serial.Serial(port=port ,

baudrate=baud)

self.buffer = ’’

def read(self):

raw_data = ser.read(ser.inWaiting ())

self.buffer += raw_data

blocks = self.buffer.split("\n")

values = []

for block in blocks [:-1]:

block_vals = []

pairs = block.split()

for pair in pairs:

value = float(pair.split("=")[1])

block_vals.append(value)

self.buffer = blocks [-1]

values.append(block_vals)

Listing 6: Usage Of The Imagent Class
from ISS import Imagent

device = Imagent(’COM5’, 115200)

while True:

# acquires all fNIRS data available

data = device.read()

print data
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Listing 5 shows a basic implementation of a program object in Python
which can read data from an ISS Imagent that is streaming to a serial port.
In this code, a software buffer is used to hold blocks of channel data which
have only partially been written, to ensure that data is not needlessly lost.
Data values for all channels are then collected by time blocks and returned.
It is also fairly simple to modify this code to return the data as name/value
pairs, if this is more desirable.

2.2 Emotiv Epoc

The Epoc is a 14 channel electroencephalography (EEG) headset made by
Emotiv, Inc10. EEG is a recording of electrical activity measured on a head,
activity which includes voltage fluctuations from neuron activations within
the brain. For the study of brain function, it is often the magnitudes of
repetitive sequences (frequency domain information) of neural activity that
are of most interest[30].

The Epoc gathers data at a rate of 128 Hz, and transmits this data to
a computer wirelessly via a provided USB Bluetooth adapter. The data can
be monitored using the TestBench software included with the headset, which
includes diagnostic utilities to detect bad channel connections. A software
developer kit (SDK) is available to users who purchase a research use license.
This SDK allows for direct programmatic access to the raw EEG data as it
is acquired.

The SDK includes a dynamic linked library. This library will be the
file “edk.dll” on Windows, “libedk.dylib” on Mac OSX, and “libedk.so” on
Linux. This library may be called directly in order to communicate with the
Epoc headset. Though the library was written and compiled using the C
programming language, the library can be loaded and interacted with from
Python if the functions contained within the library that a user wishes to
interact with are known. The Emotiv SDK requires that you first initialize
the device via the SDK’s “EngineConnect()” function, and parse through a
series of event states until the headset is ready to begin transmitting data.
After the initialization is finished, data can be acquired. The basic usage of
the Emotiv SDK from Python is shown in Listing 7.

10http://emotiv.com/
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Listing 7: Emotiv SDK For Reading From An Epoc
from ctypes import c_char_p , c_uint , c_int ,c_bool , CDLL

# Load DLL (Windows example)

edk = CDLL("edk.dll")

# initialize

connect_param = c_char_p(b’Emotiv Systems -5’)

edk.EE_EngineConnect(connect_param)

data_handler = edk.EE_DataCreate ()

# Set device buffer

edk.EE_DataSetBufferSizeInSec (5)

# Wait for data acquisition state

eEvent = self.edk.EE_EmoEngineEventCreate ()

state = self.edk.EE_EngineGetNextEvent(eEvent)

while not state:

state = self.edk.EE_EngineGetNextEvent(eEvent)

self.edk.EE_DataAcquisitionEnable(c_uint (0), c_bool (1))

# Now , read data samples from the headset ’s channels

nSamples = c_int()

while True:

# determine number of samples available

edk.EE_DataUpdateHandle(c_uint (0),

data_handler)

edk.EE_DataGetNumberOfSample(

data_handler ,byref(nSamples ))

n = nSamples.value

# prep empty data structure

container = np.empty ((14 , n))

for i in range (14):

data = np.empty ((1,n))

data_ctype = np.ctypeslib.as_ctypes(

data)

edk.EE_DataGet(data_handler ,

i,byref(data_ctype),c_uint(n))

data_read = np.ctypeslib.as_array(

data_ctype)

container[i,:] = data_read [0]

print container

Listing 8: Emotiv Epoc Class
from ctypes import c_char_p , c_uint , c_int ,c_bool

from ctypes import byref , CDLL

import numpy as np

import time , sys

class Epoc(object ):

"""
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Class that connects to Emotiv Epoc by wrapping the

research SDK dynamic link libraries

"""

def __init__(self):

#setup access to binaries

if sys.platform ==’darwin ’:

edk_file=’libedk .1.0.0. dylib ’

elif sys.platform ==’win32 ’:

sys.path.append(’lib’)

edk_file=’edk.dll’

self.edk=CDLL(edk_file)

self.connected = False

def connect(self , timeout = 10):

"""

Establishes connection to Emotiv Epoc

"""

connect_param = c_char_p(b’Emotiv Systems -5’)

self.edk.EE_EngineConnect(connect_param)

self.data_handler = self.edk.EE_DataCreate ()

self.edk.EE_DataSetBufferSizeInSec (5)

eEvent = self.edk.EE_EmoEngineEventCreate ()

state = self.edk.EE_EngineGetNextEvent(eEvent)

t0 = time.time()

while not self.connected:

state = self.edk.EE_EngineGetNextEvent(eEvent)

if not state:

self.connected = True

self.edk.EE_DataAcquisitionEnable(c_uint (0),

c_bool (1))

break

def read(self):

"""

Get block of raw data from the device buffer

"""

nSamples = c_int()

while True:

self.edk.EE_DataUpdateHandle(c_uint (0),

self.data_handler)

self.edk.EE_DataGetNumberOfSample(

self.data_handler ,byref(nSamples ))

n = nSamples.value

if not n:

continue

container = np.empty ((14, n))

for i in range (14):

data = np.empty ((1,n))

data_ctype = np.ctypeslib.as_ctypes(

data)

self.edk.EE_DataGet(self.data_handler ,

i,byref(data_ctype),c_uint(n))

data_read = np.ctypeslib.as_array(

data_ctype)

container[i,:] = data_read [0]
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return container

This interface can be improved by implementing this basic initialization
and data acquisition functionality into a class definition, for modular inclu-
sion into a larger program. Listing 8 shows a basic implementation of a a
program object in Python which can read data from an Emotiv Epoc, in real
time. This class can be imported and used as shown in Listing 9. This class
was designed to operate with an interface comparable to the class used to
read data from the ISS Imagent.

Listing 9: Using the Emotiv Epoc Python Class
from emotiv import Epoc

device = Epoc()

while True:

# acquires all EEG data currently available

data = device.read()

print data

2.3 Neulog brand sensors

Neulog11 is a brand of sensors made by Scientific Educational Systems, Ltd.
These sensors are designed as individual hardware modules, which may be
connected together using a common interface. These blocks include a number
of low cost, portable, single-channel sensor technologies, such as galvanic skin
response (GSR) and plethysmograph-based heart rate estimation.

Blocks of these connected sensors are then ultimately interfaced to a
computer using a USB cable or via a wireless connection. Software is provided
to monitor and record the data collected by the sensors. The device itself
is seen by the software as a serial device, which allows for other programs
to access the data directly by using the same protocol used by the provided
software.

Listing 10: Neulog Sensors Class
import serial

import time

import os

class Neulog(object ):

def __init__(self , port , baud):

self.ser = serial.Serial(port=port ,

11http://www.neulog.com/
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baudrate=baud)

self.status = ’connected ’

self.buf = []

t = time.time()

while not self.connect ():

if time.time() - t > 2:

break

def send(self , s, checksum = False):

time.sleep (0.02)

self.ser.flushInput ()

self.ser.flushOutput ()

for c in s:

self.ser.write(c)

if checksum:

self.ser.write(chr(sum([ord(c)

for c in s]) % 256))

def receive(self , i = False):

time.sleep (0.02)

iw = self.inWaiting ()

if False == i: i = iw

if iw >= i:

r = self.read(i)

return r

return ’False ’

def connect(self):

self.ser.close()

self.ser.open()

self.ser.send(chr (85) + ’NeuLog!’)

if ’OK -V’ != self.receive (4): return False

self.status = ’connected ’

return ’.’.join([str(ord(c))

for c in self.ser.receive (3)])

def scanStart(self):

if self.status != ’connected ’: return False

self.send(chr (18) + chr (96) + \

chr (34) + chr(9), True)

r = self.receive (4)

print "What’s this: %i" % (ord(r[-1]))

if chr (18) + chr (96) + chr (11) == r[:-1]:

self.status = ’scanning ’

return True

return False

def scanRead(self):

if self.status != ’scanning ’:

return False

sensors = []

r = self.receive ()

while len(r) > 7:

chunk , r = r[:8], r[8:]

if chr (85) != chunk [0]:

continue

chunk = [ord(c) for c in chunk]
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check = chunk [-1] != sum(chunk [: -1]) % 256

if check:

continue

stype , sid , ssndver = chunk [1:4]

sver = ’.’.join([str(i)

for i in chunk [4:7]])

sensors.append ((stype , sid , sver))

return sensors

def scan(self):

t = time.time()

sensors = []

self.scanStart ()

time.sleep (1)

sensor = self.scanRead ()

while len(sensor) !=0:

sensors += sensor

sensor = self.scanRead ()

self.scanStop ()

self.sensors = sensors

def scanStop(self):

if self.status != ’scanning ’:

return False

self.send(chr (18))

self.receive ()

self.status = ’connected ’

return True

def getSensorsData(self , stype , sid):

if self.status != ’connected ’:

return False

self.send(chr (85) + chr(stype) + \

chr(sid) + chr (49) + (3 * chr(0)), True)

r = self.receive ()

if not r or chr (85) != r[0] or chr (49) != r[3]:

return False

r = [ord(c) for c in r]

if r[-1] != sum(r[:-1]) % 256:

return False

return r

def read(self):

data = []

for stype , sid , vid in self.sensors:

x = self.device.getSensorsData(stype ,sid)

data.append(x)

return data
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Listing 11: Using the Neulog Python Class
from Neulog import Neulog

device = Neulog("COM3", 9600)

# Determine which sensors are connected

# (GSR , Heart rate , etc.)

device.scan()

while True:

# acquires all sensor data currently available

data = device.read()

print data
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3 Data Processing Methods

In this section, common signal processing functions which may be used for
each modality of interest are discussed, and strategies for implementation in
a real-time setting are presented. Example source code is also given for each
processing method. Note that the organization of each processing method
under a listed modality should not suggest that a particular method is exclu-
sive to that particular modality. Most of the discussed processing methods
are generally applicable for a large variety of purposes.

3.1 EEG Data Processing

Processing methods for EEG data largely take place in frequency domain
(within the transform domain of the discrete Fourier transform or a similar
orthonormal transformation), though not all EEG processing methods are
necessarily of this type.

EEG devices have a fast sample rate compared to fNIRS. For example, the
Emotiv Epoc collects data at the rate of 128 Hz, compared to the ISS Imagent
at 6 Hz. This necessitates that the selection of the data processing functions
of a real-time EEG monitoring system must take into account computational
complexity, to prevent significant lag between acquisition and classification.
While this is still true of an fNIRS monitoring system, it is less of a concern
due to the lower sampling rate than for an EEG monitoring system.

If the sample rate is much higher than what is necessary to monitor all of
the phenomena of interest, then it is also possible to down-sample the data
during acquisition (ie. collect every other data point rather than the entire
data buffer), to reduce the dimension of the raw data to only what is needed
in processing.

3.1.1 Frequency Band Filtering

If a set of frequency bands of interest are known a priori, it is possible to
remove any other frequency bands from the data using band-pass filtering
using the discrete Fourier transform, typically via an implementation of Fast
Fourier Transform (FFT). The jth component of the discrete Fourier trans-
form F̂ of a one-dimensional signal F is given as
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F̂j =
n∑
k=1

exp

(
−2iπjk

n

)
Fk.

Recalling the Euler formula exp (iθ) = cos (θ) + i sin (θ), it is clear that
the discrete Fourier transform fits a series of sine and cosine of increasing
frequency to the input data. By analyzing or manipulating the values of
F̂j, the contribution of each fundamental sine and cosine frequency can be
quantified, or even modified artificially.

This form of filtering may be explicit (ie. we perform the transform,
manipulate the coefficients in transform domain within the band of interest,
then invert the transformation back into time domain), or implicit (analysis
is conducted in frequency domain within a band of interest, but the transform
is not inverted).

For instance, if we would like to compute the spectral power of α waves
(which operate between 8 Hz and 15 Hz) within a block of EEG data from
a channel, then we must first compute the FFT of the data, isolate the
coefficients in transform domain corresponding to this frequency band, and
return the sum of the square magnitudes of these coefficients. A Python
implementation of this is shown in Listing 12, with real-time computation of
α and β waves within a stream of data from an Emotiv Epoc. A general-
purpose spectral power function is implemented, that accepts raw data and
band specification as input in order to compute the spectral power within
that band. This is then used to implement functions to compute the power
within the α wave and β wave spectral bands. Note that if the power within
a number of spectral bands is needed within production code, it would be
more efficient to implement a function to compute them with only a single
FFT.

NASA/TM—2015-218824 16



Listing 12: Computing α And β Wave Levels In Python
import numpy as np

from emotiv import Epoc

def band_power(data , sample_rate , band):

"""

General function for computing

spectral power

"""

N = data.shape [1]

windowed = np.hamming(N)*data

freqs = float(sample_rate )/N*np.arange(N/2 + 1)

psd = np.abs(np.fft.rfft(windowed , axis = 1))**2

idx = np.sum(psd[:, (freqs >= band [0])

& (freqs <= band [1])], axis =1)

return idx

def alpha_levels(data , sample_rate =128):

return band_power(data , sample_rate , [8, 15])

def beta_levels(data , sample_rate =128):

return band_power(data , sample_rate , [16, 31])

device = Epoc()

data = device.read()

buffer_size = 1024

while True:

new = device.read()

data = np.concatenate ((data , new), axis = 1)

if data.shape [1] > buffer_size:

data = data[:,-buffer_size :]

alpha = alpha_levels(data)

beta = beta_levels(data)

print "Current alpha wave level:", alpha

print "Current beta wave level:", beta

3.1.2 Matched Filtering

In some cases, it is desirable to remove noise from EEG data which may be
better thought of as time-domain phenomena. For instance, in the case of a
short-lived artifact (such as an eye blink or other momentary muscle twitch),
the contamination may be momentary, and perhaps does not occur at any
predictable frequency. Band-pass filtering would be ill-suited to remove such
an artifact. Instead, a process known as matched filtering may be applied to
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remove these artifacts.
In matched filtering, the cross-correlation function (the convolution be-

tween a discrete function and the time-reversal of another discrete function)
of a data source and a template function is computed in order to identify
instances of the template within the data. By selecting a template which
represents a form of contamination (such as an eye blink) and identifying
locations where this contamination occurs, localized filtering may be applied
to remove the contamination from the data.

Thanks to the Fourier convolution theorem, cross-correlations can be ef-
ficiently computed in O (n log n) operations, using the FFT[3]. Thus, if an
FFT implementation is available, matched filtering is relatively simple to
implement.

Listing 13 shows a simple implementation of a matched filter for the
reduction of blink artifacts in a single channel of EEG data, shown at top of
Figure 2. An FFT-based convolution function is available within the SciPy
library, and was used to compute the cross-correlation function. For this
example, a blink template (shown in Figure 1) was collected from another
data set, and the cross-correlation between it and the EEG channel was
computed (shown in the middle plot of Figure 2). The isolated peaks within
the cross-correlation indicate time locations within the EEG channel which
correlate very highly with the blink template. By subtracting off a multiple
of the template from the channel data only at these maximum-correlation
locations, the blink artifacts may be removed, as seen in the bottom plot of
Figure 2.
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Figure 1: Eye blink artifact template used for matched filtering.

Figure 2: Example of matched filtering for the reduction of eye blink artifacts.
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Listing 13: Computing A Matched Filter In Python
import numpy as np

from scipy.signal import fftconvolve

# Load a noisy EEG channel

signal = np.loadtxt("eeg_noisy.dat")

# Load saved blink template

blink = np.loadtxt("blink.dat")

# Cross -correlation is convolution

# with a reversed kernel

cross_corr = fftconvolve(signal , blink [::-1],

mode="same")

# find peaks , and subtract template:

filtered = np.zeros(signal.shape)

filtered [:] = signal [:]

filtered [300:337] += -15*blink

filtered [500:537] += -20*blink

3.1.3 Wavelet Filtering

One weakness of matched filtering is that positive detection does require that
an instance of the template to be matched within a signal has a magnitude
comparable to that of the template itself. If it is desired to perform detec-
tion and filtering in the case where a template is known, but the location and
amplitude are not, then wavelet threshold filters may be an appropriate fil-
tering method. Wavelet filters are also a very effective method for removing
unwanted noise and slow drift within data.

The discrete wavelet transform has become a popular tool for the com-
pression, denoising, and general analysis of single and multidimensional dig-
ital signals. There are a number of inherent features of the discrete wavelet
transform which motivate its use for these and other purposes[21]. In sim-
plest terms, the discrete wavelet transform is a simultaneous decomposition
of a signal in both time (or space) and frequency. It is most often computed
by successive convolution with a set of digital filter banks. This form of
the discrete wavelet transformation is known as Multi-Resolution Analysis
(MRA).

Given a discrete signal f ∈ Rm of dyadic dimension m = 2k, k ∈ Z,

the decomposition of f into wavelet coefficients (written as
_

f ) will have

a dual subband structure[21]. The first half of the components of
_

f will
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represent a low pass filtered version of f , and the remaining components will
represent a high pass filtered version of f . These subbands are also referred
to as approximation coefficients and detail coefficients, respectively. These
subbands are generated through discrete convolution with a scaling filter
φ [x] ∈ Rm and wavelet filter ψ [x] ∈ Rm, respectively. So at the first level,
the two subbands H1 and L1 are computed as

L1 = ↓
2

[f ∗ φ] , H1 = ↓
2

[f ∗ ψ] .

The ∗ represents discrete convolution, and ↓
2

represents the dyadic down sam-

pling operation, which is performed by discarding every other component in
the vector upon which it is applied. Finally, the two down sampled subbands

are combined into single vector so that
_

f ∈ Rm.
This combination of discrete convolution and down sampling to produce

an MRA represents an overall linear transformation[21]. Therefore, a 1-level
discrete wavelet transform may be written as

_

f =Wφ,ψf =
[
L1 H1

]T
,

where Wφ,ψ ∈ Rm×m is a matrix encoding the discrete wavelet transform.
In the case where wavelet and scaling filters ψ and φ are chosen to pro-

duce an orthonormal discrete wavelet transform, it would be the case that
WT

φ,ψWφ,ψ = Wφ,ψWφ,ψ
T = f . Thus the inverse wavelet transform would be

given by

f =WT
φ,ψ

_

f .

In the case of biorthogonal wavelet transforms, Wφ,ψ will fail to be an or-
thogonal matrix. However, its inverse will still be well-defined, so that

f =W−1φ,ψ
_

f .

To compute a successive level of the decomposition, the exact procedure de-
scribed above is repeated on the low pass subband (the approximation coeffi-

cients) L1 of
_

f . Thus the multi-level 1D forward and inverse discrete wavelet
transforms are generated recursively through successive applications of single
level wavelet transformations. A j-level 1D discrete wavelet transform can
be expressed as a single linear transformation

_

f =Wφ,ψ,jf =
[
Lj Hj · · · H1

]T
,
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Figure 3: Four level wavelet transformation of single-channel EEG data. The top
plot is the original data, all others are the wavelet coefficients at each decomposi-
tion level.

with orthogonality and biorthoginality leading to well-defined inverse trans-
formations, just as in the case of a one-level transformation. The computa-
tional complexity of the 1D discrete wavelet transform is O (n), where n is
the length of the input.

Filtering methods based on the discrete wavelet transform operate by
choosing some τj > 0 for shrinking the magnitude of the coefficients within
the detail subbands of the j levels. Ultimately, the use of wavelet filtering
requires the selection of a type of wavelet filter (which determines the pair
(φ, ψ)), the number of decomposition levels to perform, and the threshold
values to apply. The Pywavelets12 package in Python implements a variety
of discrete wavelet transformation functions and helper methods.

12http://www.pybytes.com/pywavelets/
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Figure 4: Artifact and slow drift removal of an EEG channel using wavelet filter-
ing. The original EEG channel is the top plot, the wavelet reconstruction of slow
drift and blink artifacts is the middle plot, and their difference gives the bottom
plot.

Listing 14: Using A Wavelet Filter In Python
import numpy as np

import pywt

# Load a noisy EEG channel

signal = np.loadtxt("eeg_noisy.dat")

# Compute a 5-level discrete wavelet transform

# using the Db5 wavelet filter

coeffs = pywt.wavedec(signal , "db5",level =5)

# Filter the coefficients to separate out

# high -frequency data from low -frequency

# data , at multiple levels of resolution

c = [coeffs [0]]

for i in xrange (5):

new_coeff = pywt.thresholding.hard(coeffs[i+1] ,20)

c.append(new_coeff)

# construct the artifact+drift approximant

filtered = pywt.waverec(c, "db5")

# remove slow drift from the signal

signal = signal - filtered
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3.2 fNIRS Data Processing

There are a variety of ways in which fNIRS data can be processed, which is
largely due to the number of hardware implementations of fNIRS technology[8,
17]. Continuous-wave fNIRS is the simplest implementation of the technol-
ogy, and the associated calculations can be applied to data taken from the
ISS Imagent.

3.2.1 Modified Beer-Lambert Law

The most basic data processing function to be implemented is based off
of the Modified Beer-Lambert Law (MBLL), which quantifies the relation-
ship between relative changes in the concentrations of oxygenated and de-
oxygenated hemoglobin (∆[HbO] and ∆[Hb], respectively) and the optical
intensity measurements taken by the Imagent[5]. The MBLL has the form(

∆[HbO]
∆[Hb]

)
=

(
εHbO,690 εHb,690
εHbO,830 εHb,830

)−1(
µ690

µ830

)
where εi,k is the extinction coefficient of species i at wavelength k, and µ

is computed as

µi =
log
(
−It0,i
It,i

)
r ∗DPFi

where DPFi is the differential path length factor at wavelength i, It0,i is
a baseline optical intensity measurement taken by the fNIRS instrument as
a time t = 0 for wavelength i, It,i is the current optical intensity measure-
ment at wavelength i, and r is the source-detector separation for the current
measurement[5, 31]. These are parameters which should have known values
prior to the data processing.
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Listing 15: Computing the MBLL in Python
from math import log

from ISS import Imagent

def mu(I, r, dpf , baseline ):

return log(abs(baseline/I))/(r*dpf)

def MBLL(i690 ,i830 ,baseline690 , baseline830 ):

# These constants are specific to

# an experimental setup

e_hbo_l1 = 0.956

e_hbo_l2 = 2.3153

e_hb_l1 = 4.9307

e_hb_l2 = 1.7914

dpf1 ,dpf2 = 5.49, 6.0

r = 1.25

mu_l1 = mu(i690 ,r,dpf1 ,baseline690)

mu_l2 = mu(i830 ,r,dpf2 ,baseline830)

denom = e_hb_l1*e_hbo_l2 - e_hbo_l1*e_hb_l2

hbo = (e_hb_l1*mu_l2 - e_hb_l2*mu_l1)/denom

hb = (e_hbo_l2*mu_l1 - e_hbo_l1*mu_l2)/denom

return hb, hbo

# initialize data acquisition

device = Imagent(’COM5’, 115200)

# get baseline measurements

base1 , base2 = device.read()

while True:

# get new data

i690 , i830 = device.read()

print MBLL(i690 , i830 , base1 , base2)

Listing 15 shows a Python implementation of the MBLL, involving acqui-
sition and basic real-time processing of a single channel fNIRS data stream
from the ISS Imagent. The data is collected using the code that was shown
in Section 2.1.

3.2.2 Physiological Corrections

fNIRS data may contain a significant amount of physiological noise[20]. If
the physiological noise is limited to particular spectral bands, then band-pass
or wavelet filtering are potential methods for the removal of this kind of noise
(see Section 3.1.1 for details and implementations).
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Another option is to collect an additional channel of fNIRS data at a
depth shallower than brain tissue monitored by the primary channel. This
channel can then be used to remove physiological noise via subtraction or
regression[10].

If the data is to be processed offline, and it is believed that a physio-
logical signal is present within a data source which is independent from the
signal that one wishes to isolate, then Principal or Independent Component
Analysis are also potential filtering strategies (see Sections 3.3.1 and 3.3.2).

3.3 Other General-Purpose Processing Methods

There are a large variety of signal processing methods and general purpose
transformations which may be of use in processing and analyzing data, de-
pending on the context.

3.3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a procedure which seeks to re-
express a collection of data in a more meaningful way, in the sense of reducing
noise, removing redundancy or revealing hidden dynamics and unknown cou-
pling relationships between data sources.

More specifically, PCA is an orthogonal transformation P on a matrix
of data sources A ∈ Rm×n, designed so that the columns of Y = P · A are
numerically decorrelated, in the sense that

σ2
Yi,Yk

=
1

n− 1

(
Yi − Ȳi

) (
Yk − Ȳk

)T
= 0,

where i 6= k and Ȳi and Ȳk are the mean values of Yi and Yk, respectively.
The rows of the matrix P are referred to as the principal components. In or-
der for each column vector in the new basis to be uncorrelated, the covariance
matrix SY of Y = PA must be diagonal

SY =
1

n− 1
Ȳ Ȳ T =

 σ2
Y1

0
. . .

0 σ2
Yn

 ,

where Ȳ is the matrix Y with the mean of each column subtracted off, and the
diagonal elements of SY are the individual variances of the columns Y . This
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can also be written in terms of the original matrix A and the transformation
matrix P

SY =
1

n− 1
Ȳ Ȳ T = P

(
1

n− 1
AAT

)
P T ,

where one quickly notes that 1
n−1AA

T is a real symmetric matrix. Recall-
ing that every real symmetric matrix is diagonalized by an orthonormal ma-
trix of its own eigenvectors, it follows that by normalizing the matrix A and
getting the eigenvectors of 1

n−1AA
T gives the principal components directly.

Rather than approach this problem by directly computing the eigenvectors of
1

n−1AA
T , it is much more effective and numerically stable to compute them

by way of the Singular Value Decomposition (SVD).
The SVD is a matrix decomposition of the form

A = UΣV T ,

where U ∈ Rm×m is a orthonormal matrix of the eigenvectors of AAT ,
V ∈ Rn×n is an orthonormal matrix of eigenvectors of ATA, and Σ ∈ Rm×n

is a diagonal matrix containing the square roots of the eigenvalues of AAT

along its main diagonal. The SVD has a number of efficient and stable
implementations which are more effective than forming AAT directly.

Since the PCA transformation matrix is orthonormal, the transform can
always be easily inverted by multiplying by P T (the transpose of one of the
matrix of eigenvectors recovered using the SVD). In this way, any manip-
ulations made within PCA transform domain may be manifested as filters
within the original data.

As an example of this, consider the 7 second block of 14-channel EEG
data shown in Figure 5(a), which is contaminated with a series of rapid eye
blink artifacts in nearly half of the channels. In this case, each channel of
EEG data is stored as a row within a matrix, and the PCA of this matrix is
shown in Figure 5(b), in which the eye blinks are largely concentrated within
the first two principal components. By multiplying these two components
by zero and inverting the PCA, we retrieve a filtered version of the original
data, with the eye blink artifacts removed (Figure 5(c)).

Since the SVD exists for all finite dimensional matrices and can be com-
puted in a stable manner, PCA can be peformed for all but the very largest
data sets.
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(a) Original data

(b) PCA of data (c) Filtered result

Figure 5: Graphical example of PCA as a filtering method, for removing
rapid eye blink artifacts.
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3.3.2 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is family of algorithms which are
each very similar in structure and purpose to PCA. ICA also performs a
linear transformation on a given matrix of data to produce a new matrix of
data, but instead of defining a transformation so that the resulting vectors
are decorrelated, ICA seeks to maximize higher order measures of statisti-
cal independence, such as negative kurtosis and mutual entropy[13]. The
various independence measures that may be approximated are what largely
differentiate the various ICA implementations that exist.

Compared to PCA, ICA can often separate independent sources and per-
form filtering more effectively, as the transformation is not restricted to be
orthogonal. However, ICA algorithms may not necessarily converge for a
given data set, and thus may not always be applied for a given problem.

An example of ICA is shown in Figure 6. In this example, a sine wave, a
square wave, and a random noise source were added together with different
ratios to produce 3 mixed data sources, shown in Figure 6(a). Applying
PCA to them, shown in Figure 6(b) does manage to separate out the sine
wave somewhat, though not very effectively. However, applying ICA very
effectively separates out the three sources from the mixtures, as seen in Figure
6(c).

Listing 16 shows how to use PCA and ICA in Python, using the scikit-
learn library.
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(a) Original data

(b) PCA of data (c) ICA of data

Figure 6: Graphical example comparing PCA and ICA for the separation
of mixed signals. This original data (a) was created by mixing different
multiples of a sine wave, square wave, and random noise source, which are
not very well separated by PCA(b) but are very effectively recovered by
ICA.(c)
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Listing 16: Using PCA and ICA In Python
import numpy as np

from scipy import signal

from sklearn import decomposition

# Create example signals

x = np.arange (0 ,10 ,0.01)

sin_wave = np.sin(x)

noise = 0.5*np.random.randn(len(x))

square = signal.square (10*x)

# Make mixtures

mix_1 = sin_wave + noise - square

mix_2 = 2* sin_wave - 0.3* noise + 0.75* square

mix_3 = -sin_wave + 0.1* noise + square

mixed_data = np.array([mix_1 , mix_2 , mix_3 ]).T

# Compute PCA to recover signals

ica = decomposition.FastICA ()

ica_data = ica.fit_transform(mixed_data)

# Compute ICA to recover signals

pca = decomposition.PCA()

pca_data = pca.fit_transform(mixed_data)

# Get ICA transformation matrix , P

P = ica.get_mixing_matrix ()

# Use already fitted ICA tranform on some new data

new_data = np.random.randn (100 ,3)

new_ica_data = ica.transform(new_data)

PCA, ICA, and other matrix decomposition algorithms may be too com-
putationally expensive to use in a real-time system (in the sense of re-
computing the decomposition at each iteration of a real-time loop). However,
if a transformation P associated with a decomposition like PCA or ICA is
pre-computed before operation, it is very possible to apply this transforma-
tion to new acquired data sets in a online system, if it is believed that the
dynamics between the sources which are being separated are constant over
time. This is demonstrated at the bottom of Listing 16.
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4 Machine Learning Methods

There are a variety of machine learning algorithms that are commonly used
for the analysis, representation, and generalization of data sets. These in-
clude methods for finding unknown patterns within given data (graphically
or numerically), or exploiting known patterns in data in order to provide
needed functionality in a system. Broadly speaking, we are interested in two
types of algorithms: Classification, Clustering.

Clustering is an exploratory data mining process that seeks to partition a
set of observations into groups (or ”clusters”), such that observations which
belong to the same cluster are more similar to each other (with respect to
some measurement) than they are to observations within different groups[32].

Classification is the process of determining which among a set of cate-
gories that an observation belongs to, using some characteristics of the obser-
vation together with any known information about the considered categories.
One example of a classification system would be a ”spam” filter for an e-mail
server, where a determination must be made by the server whether a new
received message should be delivered to a recipient or not. Classification
methods typically require a ”training” phase, where the system is provided
with sets of example data that has been pre-classified into the categories
of interest, so that a robust set of decision rules may be determined. For
the e-mail filter example, this would involve selecting a set of valid e-mails
along with a set of unsolicited spam e-mails, and providing them both to the
classification system so that it may be trained appropriately.

The following sections discuss a few selected classification and clustering
methods.

4.1 Naive Bayes Classification

Naive Bayes is a simple classification algorithm that is based on Bayes’ the-
orem of conditional probability. It is simple to formulate, and is one of the
few classification methods which (by its definition) attaches empirical prob-
abilities to its classification results. However, its use is predicated upon cer-
tain assumptions which may not necessarily generalize well to more complex
problems involving highly non-linear couplings between data measurements.
Principally, the assumption of independence between the separate features
used for classification. The ”Naive” part of the algorithm’s name is due to
this assumption of independence, though this alone should not discourage
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its use in practice[33]. Naive Bayes classification has been used successfully
for problems such as e-mail spam filtering[29], general text classification[22],
and cognitive state classification [24, 19].

Naive Bayes Classification can be derived as follows. Suppose we would
like to find the probability of a certain discrete category y = {0, 1, . . . , n}
based on a collection of data measurements X ∈ Rm (for instance, determin-
ing whether a medical patient has a particular illness or not (y0 or y1), based
upon a collection of x1, x2, . . . , xm separate measurable risk factors). Using
Bayes’ theorem of conditional probability, it would follow that

P (y0|X) =
P (y0)P (X|y0)

P (X)

P (y1|X) =
P (y1)P (X|y1)

P (X)

...

P (yn|X) =
P (yn)P (X|yn)

P (X)

where P (yi|X) (the value of interest) is the probability of state yi given
data X, P (yi) is the overall probability of state yi, P (X|yi) is the probability
of the values of the data assuming yi is the current state (similar to the
definition of a p−value[7] in statistical hypothesis testing), and P (X) is
the probability of the measured data overall. If all of these values can be
computed, then the value of P (yi|X) which has the highest value indicates
the most likely state.

Now, if we assume that each data measurements (or ”features”) X =
[x1, . . . , xm] is independent, then it follows that their joint probability is
equal to the product of their marginal probabilities, so that

P (X|yi) = P (yi)P (x1|yi)P (x2|yi) · . . . · P (xm|yi)

= P (yi)
m∏
k=1

P (xk|yi).

Therefore, the relationship between each type of feature and each state
(P (x1|yi)) can each be summarized separately as an expectation over a prob-
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ability distribution. The most common practice is to select a type of dis-
tribution for each one of these features, and then fit the free parameters of
this distribution using some known data, using the common least-squares or
maximum-likelihood estimation methods. For example, one popular choice
is the Gaussian distribution, which gives

P (xk|yi) =

∫
R
xk
(
2πσ2

i,k

)− 1
2 exp−(xk − µi,k)2

2σ2
i,k

dxk.

Fitting a naive Bayes classifier would then involve individually fitting µ
and σ values for each one of these k · i distributions. This may be compu-
tationally expensive depending on the amount of data that is available and
selected to fit the models, but not difficult to implement, as each represents
a standard problem in statistical point estimation.

In contrast, the factors P (yi) are determined a priori either from available
theory (or are perhaps left as tuning parameters), and the values P (X) in the
denominator are most often computed implicitly as normalizing constants,
after all other values have been computed.

Listing 17 shows how to use a Naive Bayes classifier with Gaussian like-
lihood models in Python, using the scikit-learn library. In this code, a base
class is imported and used which automatically fits all of the µ and σ param-
eters, and estimates the P (yi) factors based upon the distribution of states
present within the training data. This program object can then be used to
classify new data directly, measure the probability of individual states, and
more.
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Listing 17: Using A Naive Bayes Classifier In Python
from sklearn import datasets

from sklearn.naive_bayes import GaussianNB

# Collection of data

# (four features per data point)

data = [[0,11,3,10],

[10,11,1,0],

[10,11,13,11],

[1,11,0,11],

[10,11,2,1],

[10 ,11 ,13 ,11]]

# The state associated with each of the

# above data points

states = [0,1,2,0,1,2]

# Create a naive bayes classifier w/ gaussian

# likelihood models

gnb = GaussianNB ()

# Fit to our data

gnb.fit(data , states)

# Measure its accuracy

print (states != gnb.predict(data )). sum()

# Show state probabilites for a new point

probabilities = gnb.predict_proba ([1,8,0,8])

# Classify a new point (simply return state with

# the highest probability)

result = gnb.predict ([1,8,0,8])

4.2 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are a collection of machine learning al-
gorithms which can be used to perform classification or regression. They
were introduced by Guyon and Vapnik in 1995[4], and have since been
become widely used in a number of distinct problem domains, from text
processing[14], to face detection in digital images[27], classification of brain
states in fMRI[25] and EEG[6], and beyond.

As a classification algorithm, SVMs require a set of pre-classified training
data to be provided, which is then used to fit an appropriate classification
model. This model is then used to assign categories to future data.

More generally, say we have n observations of data available, with each
observation made up of m separate values, and each observation known to
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Figure 7: Example of a linearly separable 2-dimensional SVM problem

belong to one of two categories of interest. Then we can write the training
data as

T = {(Xi, yi) |i = 1, . . . , n,Xi ∈ Rm, yi ∈ {−1, 1}}
with each of the n vectors Xi being a sample observation, belonging to a
category yi.

Figure 7 illustrates an example training data set in two dimensions, where
the + marks indicate an observation that belongs to one category, and the ·
marks indicate observations which belong to another category. The objective
of an SVM is to fit a model that approximates the dashed line that separates
the two categories within the observation space.

That is, SVMs seek to fit a linear separation model to the given training
data. This becomes a quadratic optimization problem that takes the form[4]

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi (1)

s.t. : yi (wXi + b) ≥ 1− ξi (2)

ξi ≥ 0∀i = 1, . . . , n (3)

where C > 0 is a regularization parameter that offers a tunable balance
between fidelity to the training data (high values of C) with over-fitting (low
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values of C). This problem has the dual formulation

min
a

1

2
aTQa− eTa

s.t. : yTa = 0

0 ≤ ai ≤ C∀i = 1, . . . , n

where Qi,j = XT
i Xj and e = [1, . . . , 1]. Solving this numerically gives

classification function F : Rm → {−1, 1} of the form

F (Xnew) = sign

(∑
i

aiyiX
T
i Xnew

)
which can assign any new observation Xnew to one of the two categories

presented in the training data, by returning a value of -1 or 1.
Note that both the problem statement (the dual formulation) and the

decision function refer to data in the observation space (whether training
data or a new observation) only by means of an inner product of the form
XT
i Xj. Consider replacing this expression with some transformation function

K (Xi, Xnew), known as a kernel. The decision function then becomes

F (Xnew) = sign

(∑
i

aiyiK (Xi, Xnew)

)
.

This is known in the machine learning community as the ”Kernel Trick”,
and allows for the application of support vector machines to data sets which
are not linearly separable within the observation space[4]. For example, con-
sider the data shown in Figure 8, where the two categories of interest are
clearly not linearly separable within the observation space.

In this case, one may use a kernel transformation function in order to fit
a separation model, such as the one approximated by the dashed line. Table
1 lists a number of popular kernel transformation functions.

Kernel selection is a somewhat nuanced process, but a number of generally
applicable best practices have been documented by the machine learning
community[11]. For instance, it has been observed that the radial basis kernel
performs very well across a wide number of problem types, and does not over-
fit problems with training data that is linearly separable. As a consequence,
many users consider the radial basis function as a robust choice for a default
SVM kernel.
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Figure 8: Example of a non-linearly separable 2-dimensional SVM problem

Name K (Xi, Xj) Parameters
Linear XT

i Xj (None)

Polynomial
(
XT
i Xj

)p
p > 0

Sigmoid tanh
(
k ∗XT

i Xj + d
)

k, d > 0
Radial Basis Function (RBF) exp (−γ‖Xi −Xj‖22) γ > 0

Table 1: Commonly used SVM kernel functions
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Regardless of the choice of kernel function, a value of the tuning parameter
C must be also determined by the user. And as seen in Table 1, a number
of kernel functions have their own free parameters that must be selected by
the user. Strategies for determining free parameters are discussed in Section
4.4.

SVMs can be used in Python code very easily, using the scikit-learn li-
brary. Listing 18 illustrates how to construct a very simple SVM in Python.
In this example, the SVM instantiated with an RBF kernel and specified
parameter values, and is then trained to emulate the XOR operator. The
trained SVM is then applied to 3 new inputs (the last of which is ”noisy”,
and not even integer valued), and the SVM is shown to correctly classify
them.

Listing 18: Using SVMs In Python
from sklearn import svm

# Training data

observations = [[0, 0], [0, 1], [1, 0], [1, 1]]

labels = [0, 1, 1, 0]

# Make an SVM with RBF kernel , and set parameter values

classifier = svm.SVC(kernel=’rbf’, C=1, gamma =1)

# Fit the SVM to our data

classifier.fit(observations , labels)

# Classify some new data points

print classifier.predict ([0 ,1])

print classifier.predict ([0 ,0])

print classifier.predict ([0.9 ,0.01])

4.3 k-means Clustering

k-means clustering is an algorithm that seeks to partition a given set of
observations into k distinct sets (or ”clusters”), such that each observation
belongs to the set that has a mean value closest to the observation. Its
purpose is not to provide a classification for future data, but instead to
provide unknown insight into a given data set. The data provided does not
have to be labeled or pre-classified in any way. However, the user must select
a priori the number of clusters to partition the given data into.
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Computationally, this problem has the form[1]

min
k∑
i=1

∑
n∈Si

‖Xi − µi‖2

where each Xi is an observation, Si represents the set of points in cluster i, µi
is the mean of cluster Si, and the minimization is taken over the placement
of the observations into each Si.

There are a number of solution methods that have been implemented
to solve this problem efficiently, with the most common being a sequential
alternating re-estimation procedure known as Lloyd’s Algorithm (for details,
see [18]).

Listing 19 shows a smaller code example of how to use the k−means
algorithm in Python, using the scikit-learn library. The input data was
roughly made to lie in either the first or third quadrants, and the k−means
algorithm was run with k = 2.

Listing 19: Using k−means In Python
from sklearn import cluster

# Some data

data = [[1, 1],[2,1], [1,3], [-1,-1], [-2,-3], [-2,-1]]

# Create instance of k-means , with k=2

kmeans = cluster.KMeans(n_clusters =2)

# Run the algorithm

kmeans.fit(data)

# Gather the results

labels = kmeans.labels_

centroids = kmeans.cluster_centers_

print labels

print

print centroids

4.4 Parameter Selection Via Cross-Validation

Machine learning methods are rarely block-box methods, in the sense of no
configuration being required by a user. Instead, there are often free parame-
ters that must be selected a priori. These parameters often serve the purpose
of regularization. That is, they tune a balance between fidelity to the pro-
vided data and tractability of the resulting classifier. This is comparable
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(a) Original data

(b) k = 2 (c) k = 3

Figure 9: Graphical example of the k−means algorithm. The top image
shows the original data, the bottom-left figure shows the clustering of this
data with k = 2, and the bottom-right shows the clustering with k = 3.
The large Xs in the bottom two figures show the centroid of each computed
cluster.
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to the balance that must be maintained when fitting any sort of numerical
model.

For example, consider the simpler problem of fitting a polynomial to a
collection of data points, as seen in Figure 10. In this case, the degree
of the polynomial to be fitted is a free parameter which must be selected.
When the degree is one (linear fit), the resulting fit is not very accurate on
a point-by-point basis, but generalizes very well outside of the range given
in the input data. So it is not very suitable for interpolation within the
range of the given data points, but is suitable for extrapolation. When the
degree is very high, the fitted model will be able to reproduce all of the input
data perfectly, but generalizes extremely poorly. This makes it suitable for
continuous interpolation within the range of the original data, but fairly
useless for prediction. Thus, it is important to select this parameter so that
the resulting model has the correct sought behavior.

The free parameters in any machine learning method together play the
exact same role as the polynomial degree in this example, and should be
thought of in the same way. For example, the C parameter for Support Vector
Machines directly controls the trade-off between fidelity to the training data,
and the size of the fitting coefficients that define the resulting SVM model,
as seen in Equation 1. The parameters of the kernel functions listed in Table
1 play similar roles.

If good values for these parameters are not known from past experience,
there are a number of strategies for determining suitable values. The most
commonly used procedure is known as cross-validation[23, 16, 11].

In a cross-validation procedure, the data which is available to be used
for training is partitioned into two groups: One group is used for training
the classifier, the other group is used to validate the resulting classifier af-
ter training. This validation is performed by computing the percent of the
data points within the validation set which are correctly classified. This pro-
cedure is repeated many times using the same parameter values, but each
time under a different random partitioning of the available data. A total
accuracy measure is computed by averaging over the accuracy computed for
each iteration. If the training data that is available is suitably robust for the
problem at hand, then this procedure provides a good qualitative estimate
for both the accuracy and generalizability of a classification model trained
using the given set of parameter values. To determine the best values for
a set of parameters, one can then perform numerical optimization or Monte
Carlo sampling on this cross-validation procedure.
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Listing 20 shows an example implementation of a cross-validation proce-
dure in Python. In this example, the free parameters of SVM with a RBF
kernel are optimized via Monte Carlo sampling, to determine parameters
that produce the most robust classifier.

Listing 20: Cross-validation Procedure In Python
from sklearn import svm

from sklearn import cross_validation

import random

def cv_score(observations , labels , C, gamma ):

"""

Cross -validation score for particular C and gamma values

"""

classifier = svm.SVC(kernel=’rbf’, C=C, gamma=gamma)

scores= cross_validation.cross_val_score(classifier ,

observations ,

labels ,

cv=5,

score_func=metrics.f1_score)

return np.mean(scores)

def cross_validate(observations , labels , points =100):

"""

Finds C and gamma values with best Cross -validation score.

Uses Monte Carlo sampling.

"""

best = [0, 1, 1]

for i in xrange(points ):

C = random.randrange (0.1, 10000)

gamma = random.randrange (0.1, 10000)

score = cv_score(observations , labels , C, gamma)

if score > best [0] or (score == best [0] and (C < best [1])):

best = [score , C, gamma]

print "New best:", best

observations = [[0, 0], [0, 1], [1, 0], [1, 1]]

labels = [0, 1, 1, 0]

print cv_score(observations , labels , 1, 1)
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(a) Original data

(b) Linear fit (c) High-order fit

Figure 10: Graphical example of the balance that must be maintained when
choosing a free parameter value when fitting a numerical model. Here, the
free parameter is the degree of the polynomial used to fit the given data,
shown in (a).
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5 Processing Software Organization

This section discusses organization strategies for software written to process
single channel modalities, multi-channel modalities, and multi-modal data
processing systems. In these systems, each modality may have a variety of
sequential processing algorithms that are to be applied to the data, with a
classification system as the final step.

Software systems of this type benefit greatly from an object-oriented
structure. Object-oriented programming (OOP) is a paradigm which allows
for the specification of programmatic constructs, which describe data and
functions which operate on that data in a modular and re-usable fashion.

Examples of object-oriented design have already been given in Section 3,
where software interfaces to the ISS Imagent, Emotiv Epoc, and Neulog sen-
sors were shown written as Python classes, with a common interface across
the three device types. In this way, all of the code needed to read from these
devices (whether via serial port, or low level access to a compiled library
SDK) and all ancillary data involved (ie. bit maps that specify the commu-
nication protocols) can be written, tested, and maintained separately from
any application which needs to use these interfaces. Object oriented inter-
faces also allow for immediate support for interfacing with multiple devices
of the same type.

For example, if one wished to write code for two separate Neulog sensor
blocks, the code would look like what is shown in Listing 21. A non-object
oriented implementation may not scale in as modular a fashion as shown
here.

Listing 21: Example Of Using Multiple Class Instances
from Neulog import Neulog

device_1 = Neulog("COM3", 9600)

device_2 = Neulog("COM5", 14400)

device_1.scan()

device_2.scan()

while True:

data1 = device_1.read()

data2 = device_2.read()

...

Now, consider all of the data acquisition, data processing, and classification
algorithms that have been discussed to this point as separate objects - things
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that it would be desirable to implement, test, and maintain in isolation from
the other similar parts of a software system. In this way, one can organize
an entire data processing software system in a modular way.

5.1 Single Channel Processing

A single modality, single channel device is the simplest such system that
we may consider. This kind of processing may be thought of as a sequence
of functions being computed on data, with the output of one computation
passing as input to the next function in the sequence. Figure 11 shows an
example block chart of the data flow involved in a single channel real-time
EEG processing and classification system. This particular system operates
by collecting a contiguous block of data from a single channel of an EEG
device during use by a subject, then computes an index of task engagement
e, given as[28]:

e =
||β||2

||α||2 + ||θ||2

where ||.||2 denotes spectral power of the specified brainwave type (see
Section 3.1.1 for details). The engagement index is then provided to a pre-
trained classification algorithm to predict the current state (engaged or un-
engaged) of the subject. Listing 22 shows an implementation of this process-
ing in Python. Training the classifier used in this example involves computing
engagement indices on collections of prior data, and manually ascribing one
of the two cognitive states to those indices. Note that there is nothing which
limits this particular system to classification between two states only. If data
is available which is believed to delimit between three or more states, then
the classifier can be trained to classify data into these states simply by la-
beling the training data. In production code, this class should also include
methods for optimal selection of classifier parameters via cross-validation, as
discussed in Section 4.4. However for the sake of brevity, these are omitted
in example code shown in this section and the sections which follow.

If it is not clear a priori how many separable states are reflected within
a set of training data (or if it is not clear how the data should be labeled),
then this is where a clustering algorithm (such as k−means) is useful.

Listing 22: Single-Channel EEG Processing Example In Python
import numpy as np
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Figure 11: Example data flow for a single-channel EEG classification system.

from emotiv import Epoc

from sklearn import svm

class EEGChannel(object ):

def __init__(self , sample_rate =128.):

"""

Initializes object , sets defaults

"""

self.sample_rate = sample_rate

self.raw = np.zeros (10)

self.psd = np.zeros (10)

self.freqs = np.zeros (10)

self.power = [1,1,1]

self.engagement = 0

self.classifier = svm.SVC(kernel=’rbf’, C=1, gamma =1)

self.state = 0

def calc_psd(self):

"""

Computes power spectrum

"""

N = data.shape [1]

windowed = np.hamming(N)*data

self.freqs = float(sample_rate )/N*np.arange(N/2 + 1)

self.psd = np.abs(np.fft.rfft(windowed , axis = 1))**2

def calc_band_power(self):

"""

Computes beta , alpha , and theta levels

"""

self.power = []

for band in [[16, 31], [8, 15], [6, 10]]:

pwr = np.sum(self.psd[:, (self.freqs >= band [0])

& (self.freqs <= band [1])], axis =1)

self.power.append(pwr)

def calc_engagement(self):

"""
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Computes theta / (alpha + theta)

"""

self.engagement = self.power [0] / (self.power [1] + self.power [2])

def train(self , data , labels ):

"""

Train an SVM classifier

"""

self.classifier.fit(data , labels)

def run(self , data):

"""

Process raw data

"""

self.raw = data

self.calc_psd ()

self.calc_band_power ()

self.calc_engagement ()

def classify(self):

"""

Classify based on current engagement index

"""

self.run()

self.state = self.classifier.predict(self.engagement)

# initialize acquistion and processing objects

device = Epoc()

processing = EEGChannel ()

# load data and train classifier

train_data = np.loadtxt("eeg_engagement.dat")

train_labels = np.loadtxt("eeg_engagement_labels .dat")

processing.train(train_data , train_labels)

# select EEG channel to use

chan = 7

# initialize data array

data = device.read ()[ chan]. tolist ()

buffer_size = 1024

while True:

new = device.read ()[ chan]

data.extend(new)

if len(data) > buffer_size:

data = data[-buffer_size :]

processing.classify(data)

print processing.state
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Figure 12: Conceptual multi-channel processing system, with no pre-processing
or cross-channel calculations.

5.2 Multiple Channel Processing

A multiple channel (such as fNIRS or EEG), single modality system are
considered next. If the processing which is to be performed on each channel
is independent of the data for other channels yet identically defined, than the
simplest way to implement such a processing system is create instances of
single-channel processing objects and make use of their interfaces. If there is
not pre-processing or post-processing to be performed which combines inter-
channel data in some way, than this structure is sufficient to define the entire
processing model. Figure 12 shows a block chart of the data flow involved
in a multi channel processing and classification system, which has no pre-
processing, post-processing, or cross-channel processing.

In contrast, Figure 13 shows a block chart of the data flow involved
in a multi channel processing and classification system, that includes pre-
processing, post-processing, and cross-channel processing.

Listing 23 shows an example implementation of a multi-channel EEG
processing and classification code which re-uses the object defined for single-
channel processing to simply its own definition. This code also pre-computes
a cross-correlation matrix and PCA transform between all of the input chan-
nels, and implements a post-processing SVM for classification. Each channel
is processing to produce the same engagement index described in Section 5.1,
but instead of training an SVM for each channel, a single SVM is created
which takes the engagement indices from each channel as input.

Listing 23: Multi-Channel EEG Processing Example In Python
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Figure 13: Conceptual multi-channel EEG processing system, with PCA pre-
processing and cross-correlation calculations.

import numpy as np

from emotiv import Epoc

from sklearn import svm

from sklearn.decomposition import PCA

from EEG import EEGChannel

class EEGMultiChannel(object ):

def __init__(self , sample_rate =128.):

"""

Initializes object , sets defaults

"""

self.channels = [EEGChannel(sample_rate) for i in xrange (14)]

self.classifier = svm.SVC(kernel=’rbf’, C=1, gamma =1)

self.state = 0

self.PCA = PCA()

self.correlation_matrix = np.zeros ((14, 14))

def train(self , data , labels ):

"""

Train a PCA transform pre -processor and

an SVM classifier

"""

self.classifier.fit(data , labels)

self.PCA.fit(data)

def classify(self):

"""

Classify based on engagement indices of each channel.

"""

self.run()

self.state = self.classifier.predict(self.engagement_values)

NASA/TM—2015-218824 50



def run(self , raw_data ):

"""

Computes correlation matrix of channels , then

process them using a pre -fitted PCA.

Engagement indices for each channel are then computed

"""

self.correlation_matrix = numpy.corrcoef(raw_data)

data = PCA.transform(raw_data)

self.engagement_values = []

for i, channel in enumerate(self.channels ):

channel.raw = data[i]

channel.run()

self.engagement_values.append(channel.engagement)

# initialize acquistion and processing objects

device = Epoc()

processing = EEGMultiChannel ()

# load data and train classifier

train_data = np.loadtxt("eeg_engagement.dat")

train_labels = np.loadtxt("eeg_engagement_labels .dat")

processing.train(train_data , train_labels)

# initialize data array

data = device.read()

buffer_size = 1024

while True:

new = device.read()

data = np.concatenate ((data , new), axis = 1)

if data.shape [1] > buffer_size:

data = data[:,-buffer_size :]

processing.classify(data)

print processing.state

5.3 Multi-modal Processing

Finally, the design of a multi-modality system (where each modality may
be single or multi-channel) is considered. Figure 14 shows a block chart of
the data flow involved in a multi-modal processing and classification system,
involving a layer of cross modality processing and classification. For example,
consider a system which involves real-time processing of both fNIRS and EEG
data, from an ISS Imagent and Emotiv Epoc (respectively). In this system,
each modality will be processed and classified using their own defined multi-
channel processing objects. These objects will use data processed for each
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channel as input to an SVM classifier. The classification results from both
of these modalities will then be used as input to a second classification layer,
which will use Naive Bayes as a classification algorithm. This effectively
implements a voting scheme between the different modalities, to determine
a single combined estimate of operator state.

The described two-modality data processing and classification can be im-
plemented by writing an object which creates an instance of both the EEG
processing and fNIRS processing class, and passes relevant data to each of
these instances appropriately.

However, on the data acquisition side, one issue that may come to mind is
that these two devices operate at very different sample rates. The Epoc op-
erates at 128 Hz, and the Imagent at 6 Hz. If we were sequentially acquiring
data from both of these devices within a single loop of a software program,
this program would only be able to respond and produce an updated classifi-
cation result (at the end of the main loop) at a rate no faster than the slowest
device, which in this case would be the fNIRS instrument. EEG data may be
lost, if the length of time between EEG acquisitions is long enough that the
device buffer fills. So as additional modalities are added, a large disparity
in sample rates may lead to a system which cannot operate for effectively
than the sum of its individual parts, if the acquisition is handled this simple
sequential way.

One way around this limitation is to acquire data asynchronously from
each instrument using two independent program scripts, which will update
a real-time database system concurrently. The main program which will
analyze and classify this data will read from this database at a much faster
rate than the acquisition from either of the two devices, and can update it’s
analysis and classification measures continuously.

Listings 24 and 25 show two programs that acquire data from an Imagent
and Epoc and write and update the data to two separate keys within the
same real-time database. These programs are started and run as background
processes, at the same time as the main program shown in Listing 26. The
real-time database object shown has many possible implementations, using
fast data storage implementations such as MongoDb13 or Redis14, together
with their respective Python interfaces. This database object effectively pro-
vides a scalable fast shared memory between multiple running programs, even

13https://www.mongodb.org/
14http://redis.io/
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Figure 14: Conceptual multi-modal processing system

between programs running on different computers but within the same local
network. This strategy will allow for flexible implementation of a multi-modal
classification system, that can scale to meet needs of additional modalities
which may not yet be identified.

Listing 24: ISS Imagent Acquistion And Database Writing
from ISS import Imagent

import database

# initialize acquistion and processing objects

db = database(ip="localhost", port =27017)

device = Imagent(’COM5’, 115200)

# initialize data array

data = device.read()

buffer_size = 48

while True:

new = device.read()

data = np.concatenate ((data , new), axis = 1)

if data.shape [1] > buffer_size:

data = data[:,-buffer_size :]

# update data array in the database

db.set("fnirs", data)
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Listing 25: Emotiv Epoc Acquistion And Database Writing
from emotiv import Epoc

import database

# initialize acquistion and processing objects

db = database(ip="localhost", port =27017)

device = Epoc()

# initialize data array

data = device.read()

buffer_size = 1024

while True:

new = device.read()

data = np.concatenate ((data , new), axis = 1)

if data.shape [1] > buffer_size:

data = data[:,-buffer_size :]

# update data array in the database

db.set("eeg", data)
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Listing 26: Multi-Modal Processing System Implementation
import numpy as np

import database

from sklearn.naive_bayes import GaussianNB

from EEG_Mult import EEGMultiChannel

from fNIRS_mult import fNIRSMultiChannel

class MultiModal(object ):

def __init__(self):

self.eeg = EEGMultiChannel ()

self.fnirs = fNIRSMultiChannel ()

self.classifier = GaussianNB ()

def train(self , data , labels ):

"""

Trains a second -level classification system

data (2-dim list) : predicated states from EEG and fNIRS svms

labels : true states

"""

self.classifier.fit(data , labels)

def classify(self. eeg_data , fnirs_data ):

self.eeg.classify(eeg_data)

self.fnirs.classify(fnirs_data)

estate = self.eeg.state

fstate = self.fnirs.state

self.state = self.classifier.predict ([estate , fstate ])

# initialize acquistion and processing objects

db = database(ip="localhost", port =27017)

processing = MultiModal ()

# load data and train classifier

eeg_data = np.loadtxt("eeg_engagement.dat")

eeg_labels = np.loadtxt("eeg_engagement_labels .dat")

processing.eeg.train(eeg_data , eeg_labels)

fnirs_data = np.loadtxt("fnirs_engagement.dat")

fnirs_labels = np.loadtxt("fnirs_engagement_labels .dat")

processing.fnirs.train(fnirs_data , fnirs_labels)

mm_data = np.loadtxt("mm_engagement.dat")

mm_labels = np.loadtxt("mm_engagement_labels .dat")

processing.train(mm_data , mm_labels)

while True:

eeg_data = db.get("eeg")

fnirs_data = db.get("fnirs")

processing.classify(eeg_data , fnirs_data)

print processing.state
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