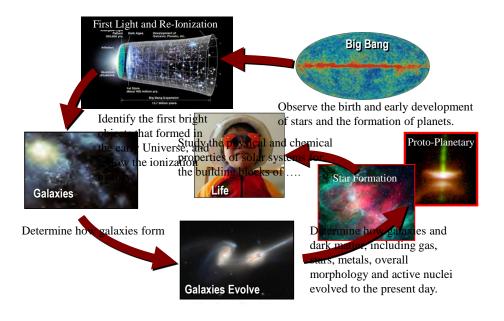


JWST Summary

Mission Objective

- Study origin & evolution of galaxies, stars & planetary systems
- Optimized for near infrared wavelength (0.6 -28 μm)
- -5 year Mission Life (10 year Goal)

Organization


- Mission Lead: Goddard Space Flight Center
- International collaboration with ESA & CSA
- Prime Contractor: Northrop Grumman Space Technology
- Instruments:
 - Near Infrared Camera (NIRCam) Univ. of Arizona
 - Near Infrared Spectrometer (NIRSpec) ESA
 - Mid-Infrared Instrument (MIRI) JPL/ESA
 - Fine Guidance Sensor (FGS) CSA
- Operations: Space Telescope Science Institute

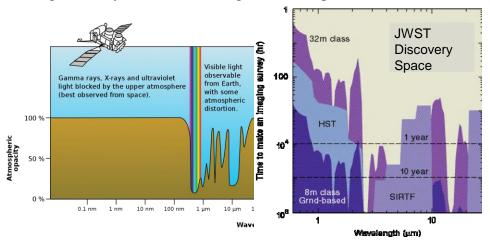
Origins Theme's **Two** Fundamental Questions

JWST Science Themes

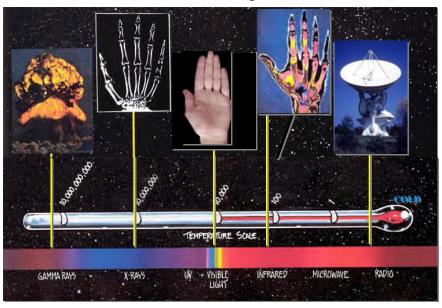
Three Key Facts

There are 3 key facts about JWST that enables it to perform is Science Mission:

It is a Space Telescope

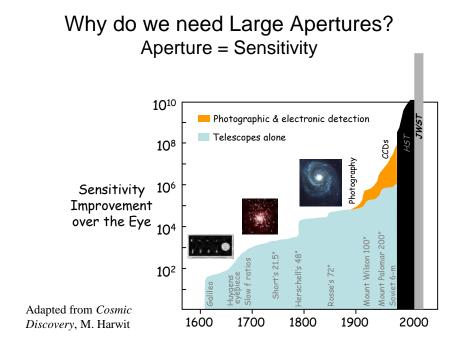

It is an Infrared Telescope

It has a Large Aperture

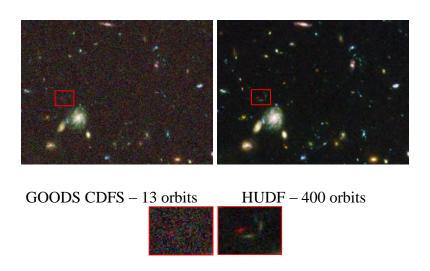

Why go to Space

Atmospheric Transmission drives the need to go to space.

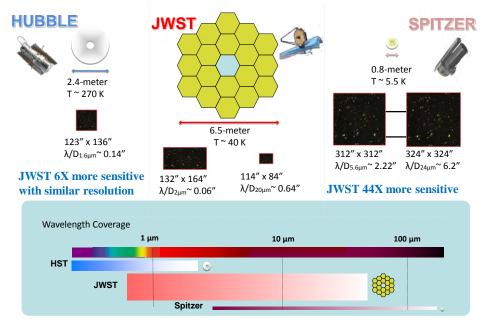
Infrared (mid and far/sub-mm) Telescopes (also uv, x-ray, and gamma-ray) cannot see through the Atmosphere

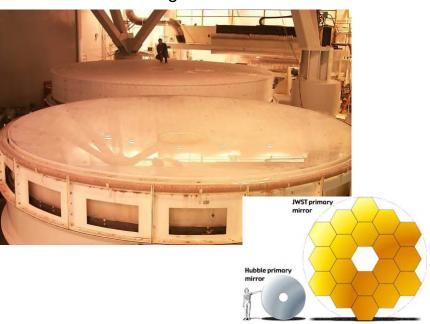


Infrared Light



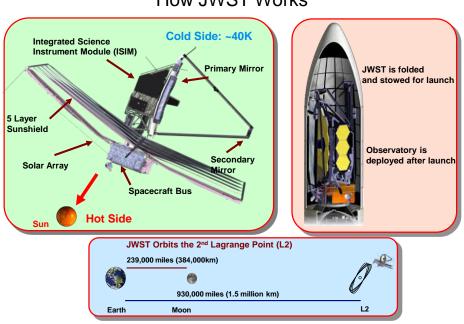
Why Infrared?



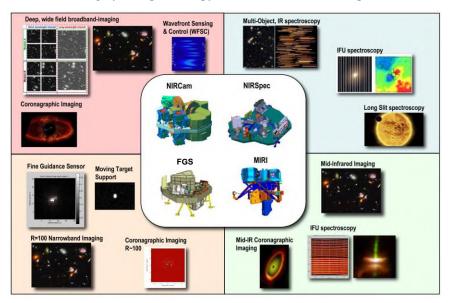

Sensitivity Matters

JWST will be more Sensitive than Hubble or Spitzer

How big is JWST?



Full Scale JWST Mockup


21st National Space Symposium, Colorado Springs, The Space Foundation

How JWST Works

JWST Science Instruments

enable imagery and spectroscopy over the 0.6 - 29 micron spectrum

JWST Requirements

Optical Telescope Element

25 sq meter Collecting Area2 micrometer Diffraction Limit

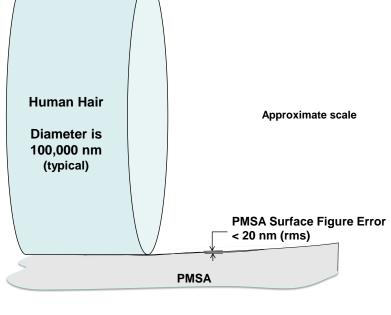
< 50K (~35K) Operating Temp

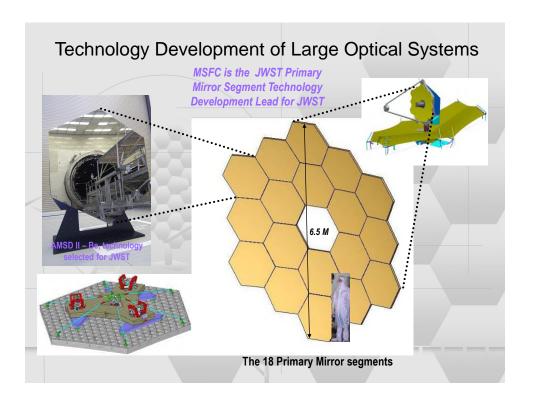
Primary Mirror

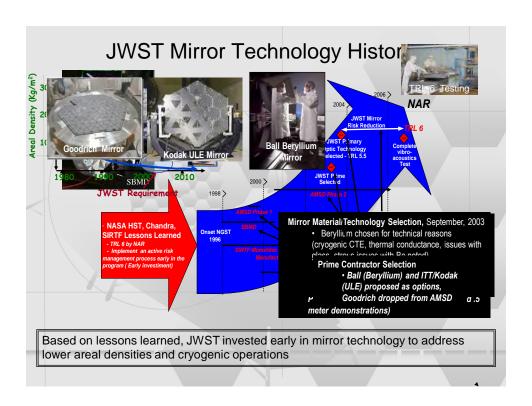
6.6 meter diameter (tip to tip)

- < 25 kg/m² Areal Density
- < \$6 M/m² Areal Cost

18 Hex Segments in 2 Rings Drop Leaf Wing Deployment

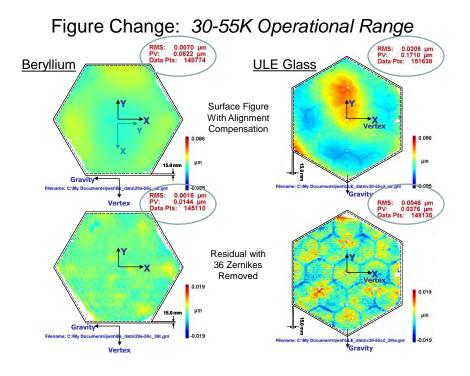

Segments


- 1.315 meter Flat to Flat Diameter
- < 20 nm rms Surface Figure Error



Low (0-5 cycles/aper)	4 nm rms
CSF (5-35 cycles/aper)	18 nm rms
Mid (35-65K cycles/aper)	7 nm rms
Micro-roughness	<4 nm rms

Fun Fact - Mirror Surface Tolerance

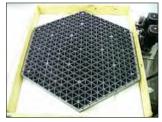


Advantages of Beryllium

Very High Specific Stiffness – Modulus/Mass Ratio Saves Mass – Saves Money

High Conductivity & Below 100K, CTE is virtually zero. Thermal Stability

Brush Wellman



Axsys Technologies

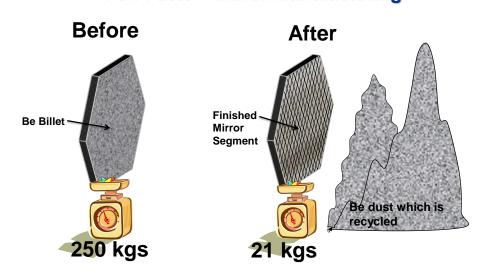
Batch #1 (Pathfinder) PM Segments

PMSA#1 (EDU-A / A1)

PMSA #2 (3 / B1)

PMSA #3 (4 / C1)

Batch #2 PM Segments



PMSA #4 (5 / A2)

PMSA #5 (6 / B2)

PMSA #6 (7 / C2)

Fun Facts - Mirror Manufacturing



Over 90% of material is removed to make each mirror segment – want a little mirror with your Be dust?

Mirror Processing at Tinsley

Optical Testing Challenge

JWST

In-Process Optical Testing

Requirement Compliance Certification Verification & Validation is probably the most difficult metrology job of our generation But, the challenge has been met:

by the hard work of dozens of optical metrologists, the development and qualification of multiple custom test setups, and several new inventions, including 4D PhaseCam and Leica ADM.

4-D PhaseCam & Leica ADM

PhaseCam

Simultaneous Phase-Measuring Interferometer enables ability to test 16 m ROC JWST PMSA.

Camera: 2k x 2k

(1.3 mm/pixel at PMSA) Precision: 0.5 nm rms

Absolute Distance Meter

Polarization Phase-Modulation Beam can be interrupted Range: 1.7 to 50 meters Resolution: 1 µm

Absolute Accuracy: 25 to 50 μm Reproducibility: 10 to 20 μm

Tinsley In-Process Metrology Tools

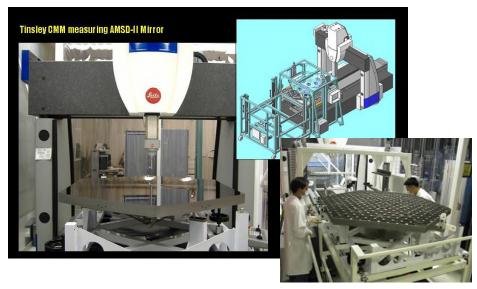
Metrology tools provide feedback at every manufacturing stage:

Rough Grinding CMM

Fine Grinding/Rough Polishing Scanning Shack-Hartmann

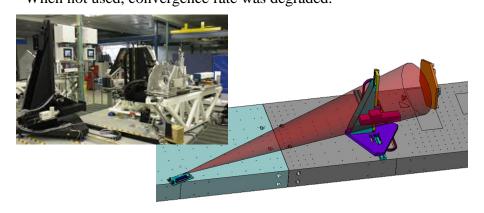
Final Polishing/Figuring/CNF Interferometry

PMSA Interferometer Test Stations included:

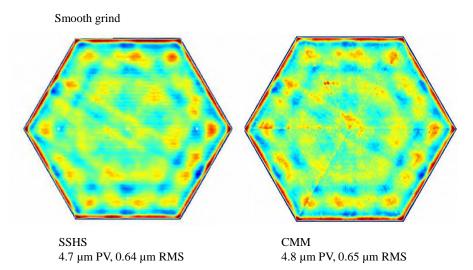

2 Center of Curvature CGH Optical Test Stations (OTS1 and OTS2)

Auto-Collimation Test Station

Data was validated by comparing overlap between tools


Independent cross check tests were performed at Tinsley and between Tinsley, Ball and XRCF.

Leitz CMM
CMM was sized to test PMSA Full Aperture



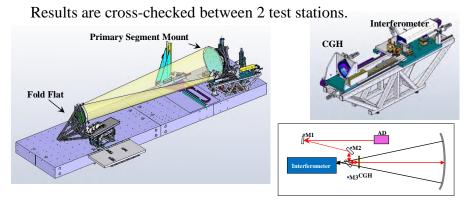
Wavefront Sciences Scanning Shack-Hartmann

SSHS provided bridge-data between grind and polish, used until PMSA surface was within capture range of interferometry SSHS provide mid-spatial frequency control: 222 mm to 2 mm Large dynamic range (0 – 4.6 mr surface slope) When not used, convergence rate was degraded.

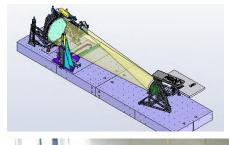
Comparison to CMM (222 - 2 mm spatial periods) 8/1/2006 data

Point-to-Point Subtraction: SSHS - CMM = $0.27 \mu m$ RMS

Full Aperture Optical Test Station (OTS)


Center of Curvature Null Test (Prescription, Radius & Figure)

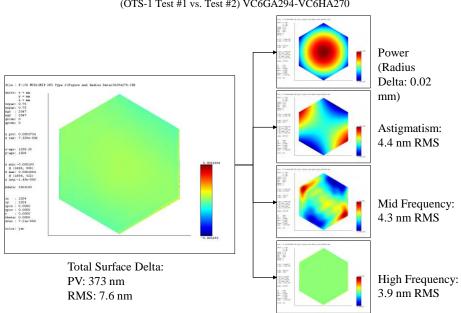
PMSAs measured in 6 rotational positions to back-out gravity


ADM - measures spacing between CGH and segment

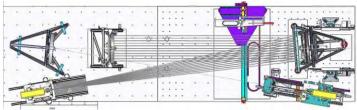
CGH - generates aberrated wavefront

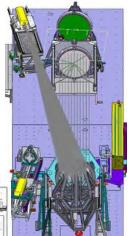
Quad cells – mounted to segments measure displacement of spots projected through CGH to determine parent vertex location

Full Aperture Optical Test Station (OTS)



Test Reproducibility (OTS-1 Test #1 vs. Test #2) VC6GA294-VC6HA270

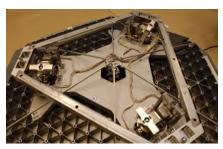

Auto-Collimation Test

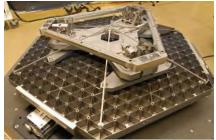

Auto-Collimation Test provides independent cross-check of CGH Center of Curvature Test

Verifies:

Radius of Curvature Conic Constant Off-Axis Distance Clocking

Note: is not a full-aperture figure verification test




Tinsley Laboratory – Final Shipment

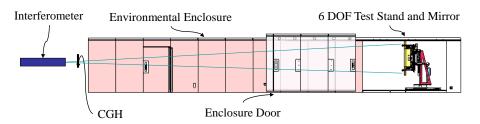
Primary Mirror Segment Assembly at BATC

Ball Optical Test Station (BOTS)

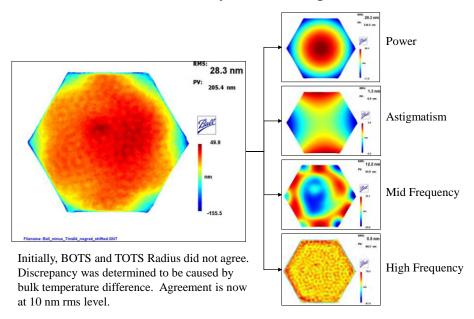
Tinsley ambient metrology results are 'cross-checked' at BATC

BOTS measurements:

Measure Configuration 1 to 2 deformation

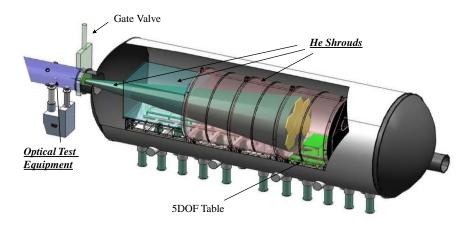

Measure Configuration 2 to 3 deformation

Create a Gravity Backout file for use at XRCF

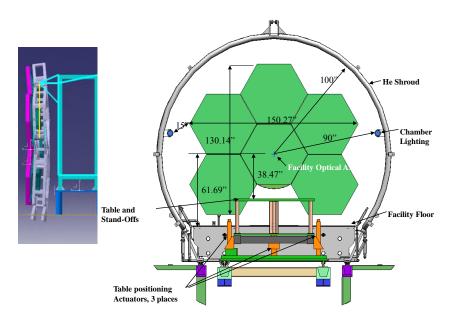

Measure Vibration Testing Deformation

Measure Vacuum Bakeout Deformation

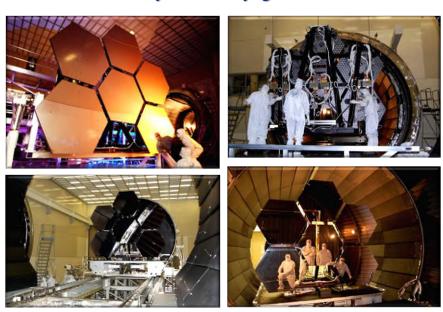
Measure Configuration 2 mirrors for BATC to Tinsley Data Correlation



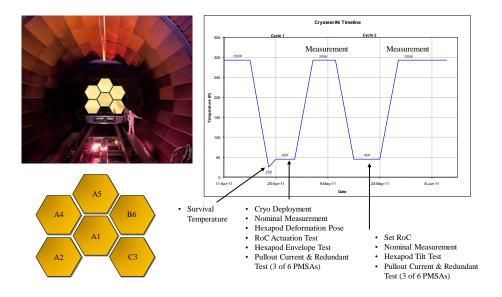
BOTS to Tinsley Initial Comparison


PMSA Flight Mirror Testing at MSFC XRCF

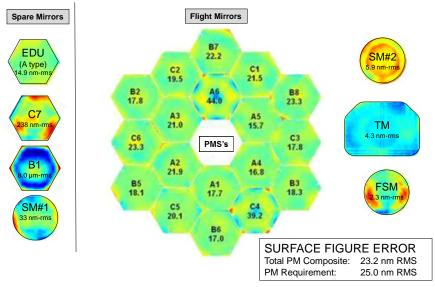
Cryogenic Performance Specifications are Certified at XRCF



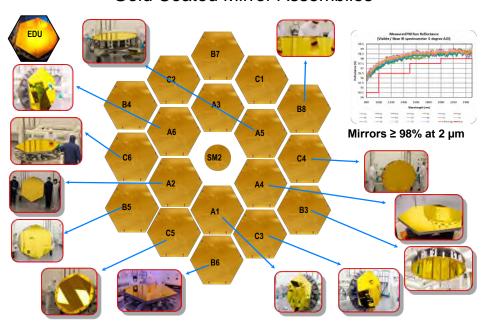
Cryo-Vacuum Chamber is 7 m dia x 23 m long


JWST Flight Mirror Test Configuration

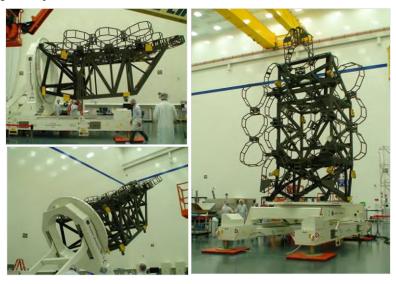
Primary Mirror Cryogenic Tests


XRCF Cryo Test

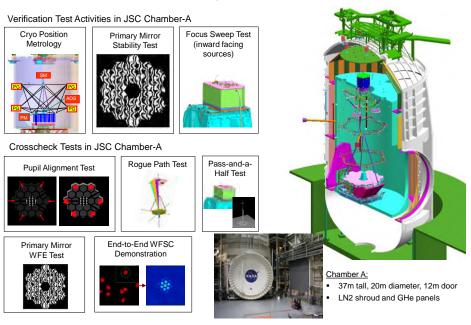
Flight Mirrors in XRCF



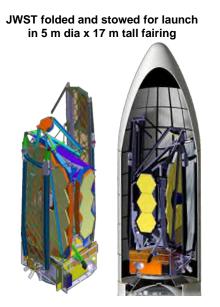
Mirror Fabrication Status ALL DONE & DELIVERED

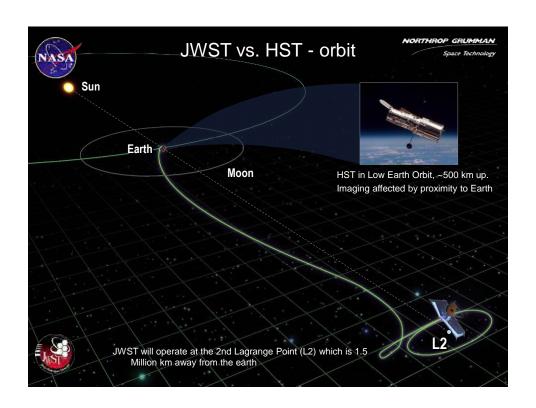

James Webb Space Telescope: large deployable cryogenic telescope in space. Lightsey, Atkinson, Clampin and Feinberg, Optical Engineering 51(1), 011003 (2012)

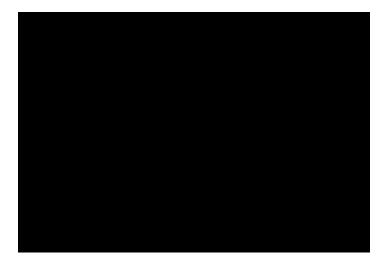
Gold Coated Mirror Assemblies

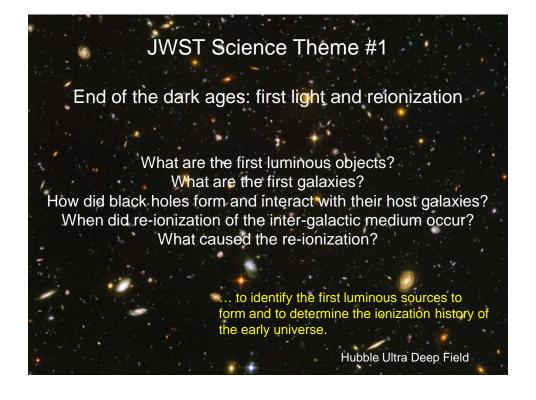


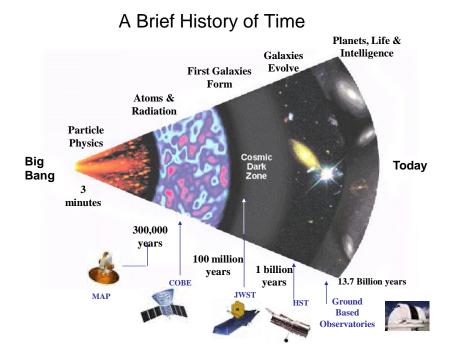
Primary Mirror Backplane

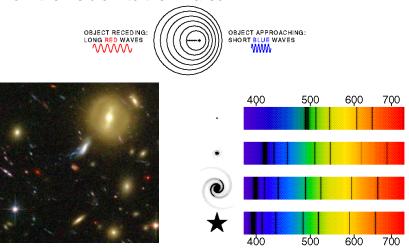

Pathfinder backplane (central section) is complete for test procedure verification at JSC Flight Backplane under construction


Observatory level testing occurs at JSC Chamber A




JWST Launched on Ariane 5 Heavy





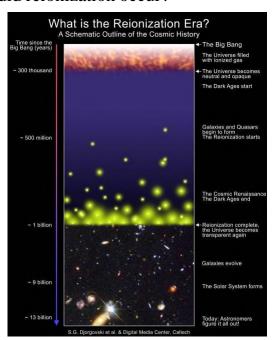
Redshift

The further away an object is, the more its light is redshifted from the visible into the infrared.

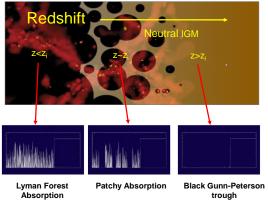
When and how did reionization occur?

Re-ionization happened at z > 6 or < 1 B yrs after Big Bang. WMAP says maybe twice?

Probably galaxies, maybe quasar contribution


Key Enabling Design Requirments:

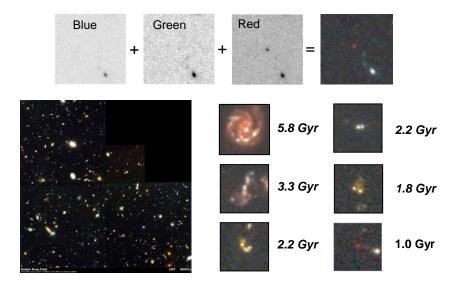
Deep near-infrared imaging survey (1nJy)


Near-IR multi-object spectroscopy Mid-IR photometry and spectroscopy

JWST Observations:

Spectra of the most distant quasars Spectra of faint galaxies

First Light: Observing Reionization Edge



Reionization started at about 600 M yrs after Big Bang. At 780 M yrs after BB the Universe was up to 50% Neutral. But, by 1 B years after BB is was as we see it today. 787 M yr Galaxy confirmed by Neutral Hydrogen method.

Neutral 'fog' was dissolved by very bright 1^{st} Generation Stars (5000X younger & ~100X more massive than our sun).

SPACE.com, 12 October 2011

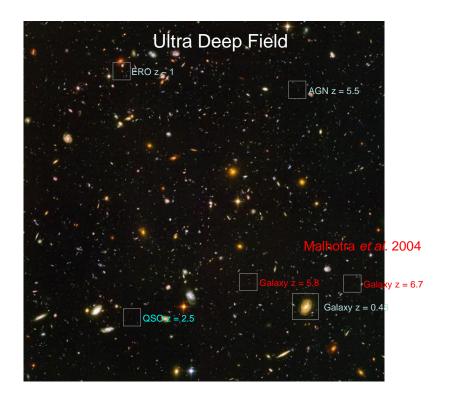
How do we see first light objects?

Oldest Gamma Ray Burst – 520M yrs after BB

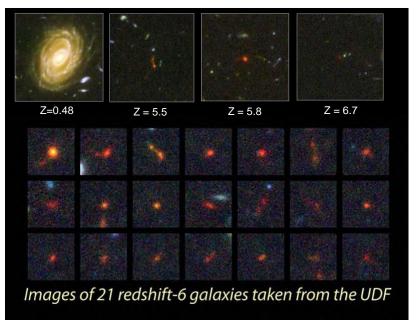
29 Apr 2009, SWIFT detected 5 sec gamma ray burst.
Afterglow in Gemini image has no visible light.
Also, no red-shifted Lyman 'forest' was detected.

Once afterglow faded, nothing was visible

TOO FAR

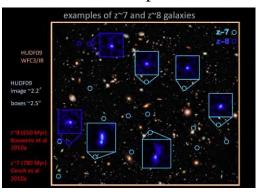

Estimated Age is 520 million years after big bang, 13.14 billion light-years from Earth (Red Shift 9.4).

These first light objects are TOO RED SHIFTED for current telescopes. JWST will study them.

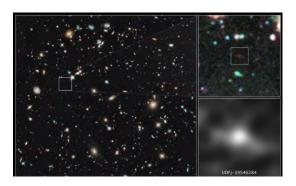


Jonathan Amos Science correspondent, BBC News Tammy Plotner, Universe Today, May 26, 2011

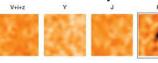
Results from UDF



Hubble Ultra Deep Field - Near Infrared

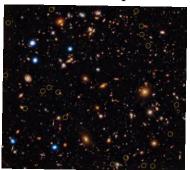

Near-Infrared image taken with new Wide-Field Camera 3 was acquired over 4 days with a 173,000 second exposure.

Hubble Ultra Deep Field - Near Infrared



47 Galaxies have been observed at 600 to 650 Myrs after BB.

Hubble Ultra Deep Field – Near Infrared



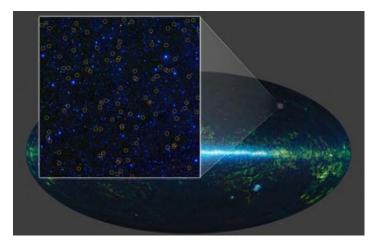
At 480 M yrs after big bang (z ~ 10) this one of oldest observed galaxy. Discovered using drop-out technique. (current oldest is 420 M yrs after BB, maybe only 200 M yrs)

Left image is visible light, and the next three in near-infrared filters. The galaxy suddenly pop up in the H filter, at a wavelength of 1.6 microns (a little over twice the wavelength the eye can detect). (Discover, Bad Astronomy, 26 Jan 2011)

Hubble Ultra Deep Field – Near Infrared Chandra Deep Field South

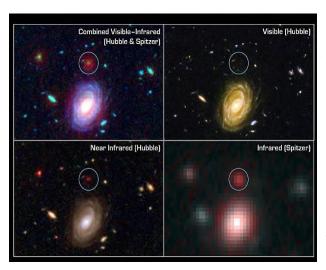
CREDIT: X-ray: NASA/CXC/U.Hawaii/E.Treister et al; Optical: NASA/STScI/S.Beckwith et al

Keith Cooper, Astronomy Now, 15 June 2011 Taylor Redd, SPACE.com, 15 June 2011


What came first - Galaxies or Black Holes?

Each of these ancient 700 M yrs after BB galaxies has a black hole.

Only the most energetic x-rays are detected, indicating that the black-holes are inside very young galaxies with lots of gas.

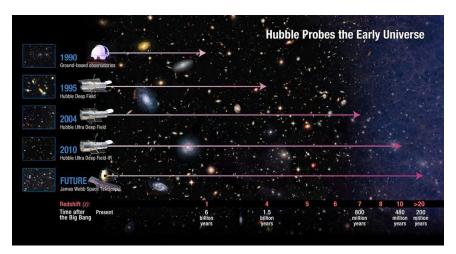

WISE is Wide-Field IR 'finder scope' for JWST

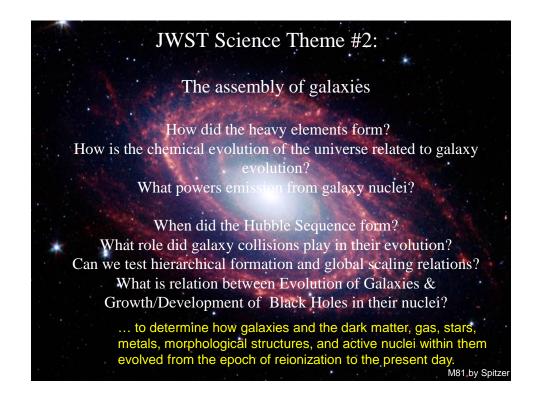
WISE has found millions of black holes in galaxies previously obscured by dust called hot DOGs, or dust-obscured galaxies.

Nancy Atkinson , Universe Today, on August 29, 2012

Unexpected "Big Babies": 800M yrs after BB

Spitzer and Hubble have identified a dozen very old (almost 13 Billion light years away) very massive (up to 10X larger than our Milky Way) galaxies.


At an epoch when the Universe was only ~15% of its present size, and ~7% of its current age.


This is a surprising result unexpected in current galaxy formation models.

Michael Werner, "Spitzer Space Telescope", William H. Pickering Lecture, AIAA Space 2007.

JWST – the First Light Machine

With its 6X larger collecting aperture, JWST will see back in time further than Hubble and explore the Universe's first light.

Formation of Heavy Elements

Carl Sagan said that we are all 'star dust'.

All of the heavy elements which exist in the universe were formed from Hydrogen inside of stars and distributed via supernova explosions. But observations in the visible couldn't find enough dust.

Dust is cold, therefore, it can only be seen in IR.

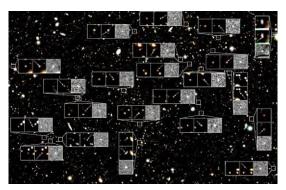
Looking in the IR (with Herschel and Spitzer) at Supernova 1987A, 100,000X more dust was seen than in the visible – the total mass of this dust equals about half of our Sun.

Image of Supernova 1987A, taken in the infrared by Herschel and Spitzer, shows some of the warm dust surrounding it. CREDIT: Pasquale Panuzzo SPACE.com, Taylor Redd, 7 July 2011

2nd Generation Stars – 700M yrs after BB

This star is a 2nd generation star after the big bang because it has trace amounts of heavy elements – meaning that at least one supernova had exploded before it was formed.

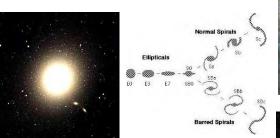
But its existence contradicts current theories because it has too much Hydrogen and too much Helium and not enough Carbon and other heavy elements.



Nola Taylor Redd, SPACE.com, 31 August 2011; CREDIT: ESO/Digitized Sky Survey 2

Subaru Deep Field: Ancient Supernova 3.7B yrs after BB

22 of 150 ancient supernovae in 10% of Subaru Deep Field 12 occurred around 3.7B yrs after big bang.
Supernova were 10X more frequent at this time than today.


Supernova helped seed early universe with chemical elements.

Clara Moskowitz, SPACE.com, 05 October 2011

The Hubble Sequence

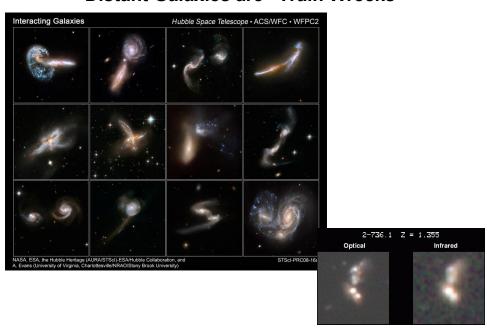
Hubble classified nearby (present-day) galaxies into Spirals and Ellipticals.

The Hubble Space Telescope has extended this to the distant past.

Where and when did the Hubble Sequence form? How did the heavy elements form?

Galaxy assembly is a process of hierarchical merging

Components of galaxies have variety of ages & compositions


JWST Observations:

Wide-area near-infrared imaging survey Low and medium resolution spectra of 1000s of galaxies at high redshift

Targeted observations of galactic nuclei

Distant Galaxies are "Train Wrecks"

Merging Galaxies = Merging Black Holes

Combined Chandra & Hubble data shows two black holes (one 30M & one 1M solar mass) orbiting each other – separated by 490 light-years. At 160 million light-years, these are the closest super massive black holes to Earth.

Theory says when galaxies collide there should be major disruption and new star formation.

This galaxy has regular spiral shape and the core is mostly old stars.

These two galaxies merged with minor perturbations.

Galaxy NGC3393 includes two active black holes X-ray: NASA/CXC/SAO/G.Fabbiano et al; Optical: NASA/STScI

Charles Q. Choi, SPACE.com, 31 August 2011

Galaxy Formation – 0.6 B yrs after BB

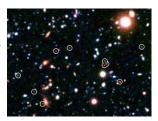
The early universe was smooth and without structure. Clumping began small and grew to form large galaxies. But how and when?

At 600 Myrs after big bang, these 5 tiny galaxies (circled) are the youngest galaxy cluster yet observed.

They ranging from 10% to 50% the size of our own Milky Way. But they're about as bright as the Milky Way, because they're feasting on huge amounts of gas via mergers with other galaxies.

Since this time, they may have merged to form a giant galaxy.

Borg 58 galaxy field: composite image taken in visible and near-infrared light, reveals the location of five tiny galaxies clustered together 13.1 billion light-years away. The circles pinpoint the galaxies.


(Space.com 10 Jan 2012)

Galaxy Formation – 1.1B yrs after BB

Previous oldest cluster is 1.1 B-yrs after BB.

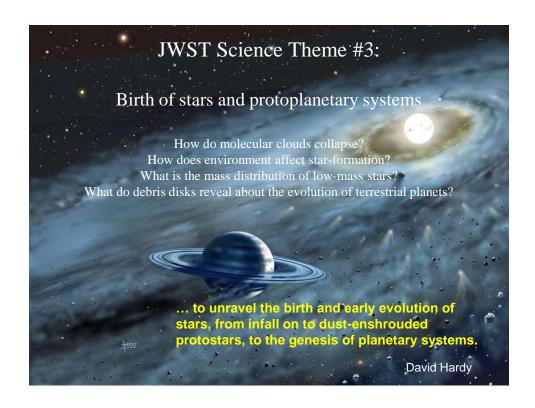
Cluster contains 11 min-galaxies which are all much smaller than the Milky Way. One has a 30 million solar mass black hole.

These too may have merged to form a galaxy.

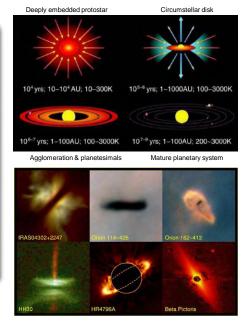
Cluster COSMOS-AZTEC3, located in the Sextans, contains 11 minigalaxies (circled red dots). Cluster is 1.1 billion yrs after Big Bang. Subaru / NASA / JPL-Caltech

Discovery required observations from: Chandra X-ray, James Clerk Maxwell Sub-MM, Hubble, Subaru, Keck, Spitzer & several Radio Telescopes

(Sky and Telescope, Robert Naeye, 13 Jan 2011)


Galaxy Formation

Rings of interstellar dust circulating around Andromeda's galactic core viewed in Far-IR by the Herschel space observatory.


The brighter the ring, the more active the star fomation. Further out rings are extremely cold, only a few tens of degrees warmer than absolute zero.

Discovery News; Jan 29, 2013 03:00 PM ET // by <u>Ian O'Neill</u>

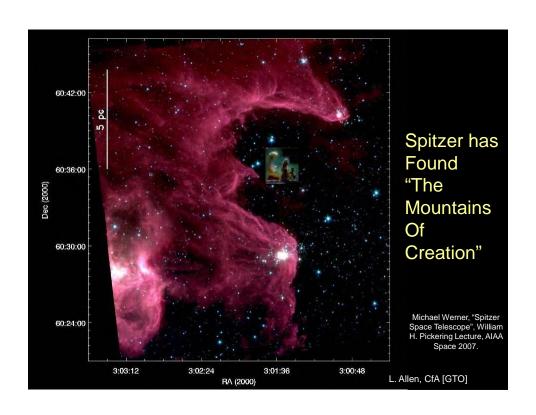
Birth of Stars and Proto-planetary Systems

- What is the role of molecular clouds, cores and their collapse in the evolution of stars and planetary systems?
- . How do protostars form and evolve?
- How do massive stars form and interact with their environment?
- How do massive stars impact their environment by halting or triggering further star formation. How do they impact the evolution of disks?
- What is the initial mass function down to planetary masses?
- How do protoplanetary systems form and evolve?
- How do astrochemical tracers track star formation and the evolution of protoplanetary systems?

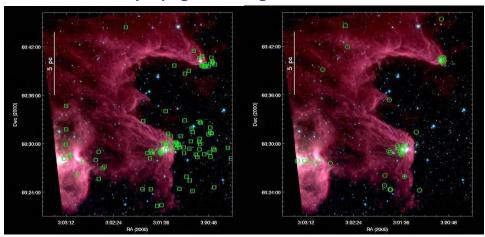
How does environment affect star-formation?

Massive stars produce wind & radiation

Either disrupt star formation, or causes it.

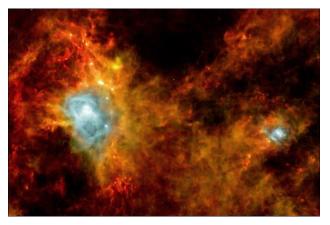

Boundary between smallest brown dwarf stars & planets is unknown Different processes? Or continuum?

JWST Observations:


Survey dark clouds, "elephant trunks" or "pillars of creation" star-forming regions

The Eagle Nebula as seen in the infrared

The Mountains Tell Their Tale Interstellar erosion & star formation propagate through the cloud



Young (Solar Mass) Stars are Shown in This Panel

Really Young Stars are Shown in This Panel

Michael Werner, "Spitzer Space Telescope", William H. Pickering Lecture, AIAA Space 2007.

Star Formation in Dust/Gas Cloud

Herschel discovered 700 newly-forming stars condensing along filaments of dust in a never before penetrated dark cloud at the heart of Eagle Nebula. Two areas glowing brightest in icy blue light are regions where large newborn stars are causing hydrogen gas to shine.

SPACE.com 16 December 2009

Impossible Stars

100 to 150 solar mass stars should not exist but they do.

When a star gets to 8 to 10 solar mass its wind blows away all gas and dust, creating a bubble and stopping its growth (see Herschel Image).

The bubble shock wave is creating a dense 2000 solar mass region in which an 'impossible' star is forming. It is already 10 solar mass and in a few 100 thousand years will be a massive 100 to 150 solar mass – making it one of the biggest and brightest in the galaxy.

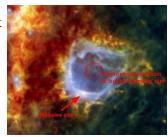
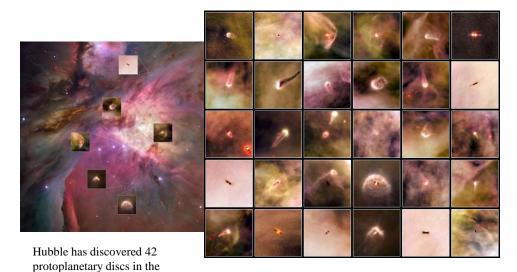
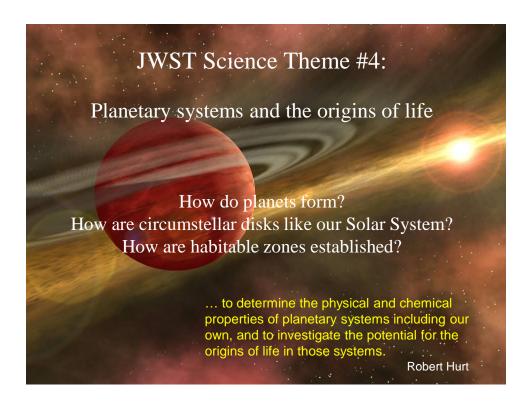



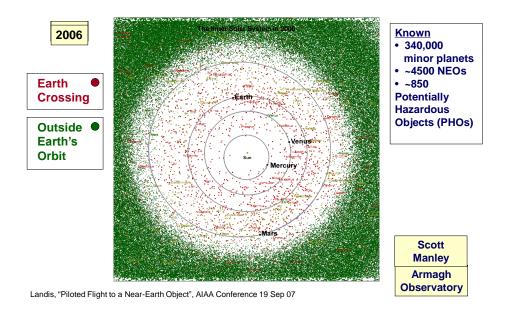
Image of RCW 120 (ESA), Discover.com, Ian O'Neill, 7 May 2010


(Space.com, 6 May 2010)

Orion Nebula

Orion Nebula Protoplanetary Discs

Credit: NASA/ESA and L. Ricci (ESO)



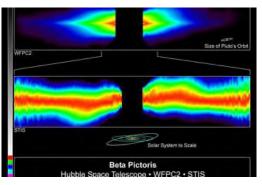

Planetary Formation Questions and 2 Models

- How do planets and brown dwarfs form?
- How common are giant planets and what is their distribution of orbits?
- How do giant planets affect the formation of terrestial planets?
- What comparisons, direct or indirect, can be made between our Solar System and circumstellar disks (forming solar systems) and remnant disks?
- What is the source of water and organics for planets in habitable zones?
- How are systems cleared of small bodies?
- What are the planetary evolutionary pathways by which habitability is established or lost?
- Does our solar system harbor evidence for steps on these pathways?

History of Known (current) NEO Population

Planetary System Formation effects Dust

This star has 3 large (10X Jupiter mass) planets (observed by Hubble, Keck & Gemini North) which are causing a huge halo of fine dust particles (indicating lots of colliding objects) around the star. Dust which can be detected by an infrared telescope.

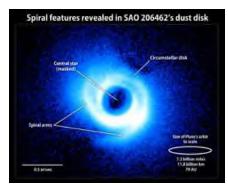


NASA's Spitzer Space Telescope captured this infrared image of a giant halo of very fine dust around the young star HR 8799, located 129 light-years away in the constellation Pegasus. The brightest parts of this dust cloud (yellow-white) likely come from the outer cold disk similar to our own Kuiper belt (beyond Neptune's orbit). The huge extended dust halo is seen as orange-red. Credit: NASA/JPL-Caltech/Univ. of Ariz.

Astrophysical Journal, Nov 2009

Planetary System Formation effects Dust

'Kinks' in the debris disk around Beta Pictoris was caused by the formation and subsequent migration of a Jupiter-sized planet called Beta Pictoris b.



The planet orbiting Beta Pictoris has caused a kink in the debris disk surrounding the star, as seen in this false-color image from the Hubble Space Telescope. CREDIT: Sally Heap (GSFC/NASA)/ Al Schultz (CSC/STScI, and NASA)

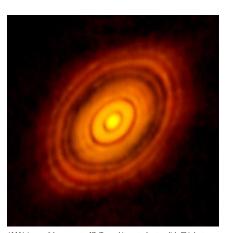
Nola Taylor Redd, SPACE.com; 08 December 2011

Spiral Arms Hint At The Presence Of Planets

Disk of gas and dust around a sun-like star has spiral-arm-like structures. These features may provide clues to the presence of embedded but as-yet-unseen planets.

Near Infrared image from Subaru Telescope shows disk surrounding SAO 206462, a star located about 456 light-years away in the constellation Lupus. Astronomers estimate that the system is only about 9 million years old. The gasrich disk spans some 14 billion miles, which is more than twice the size of Pluto's orbit in our own solar system.

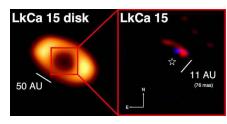
Photonics Online 20 Oct 2011


Direct Imaging of Planet Formation

ALMA is mm/sub-mm 15-km baseline array telescope producing a 35 mas resolution image. (10 m telescope at 500 nm has 10 mas)

HL Tau is 1 million year old 'sunlike' start 450 light-years from Earth in constellation Taurus.

Concentric rings separated by gaps suggest planet formation.


HL Tau is hidden in visible light behind a massive envelope of dust and gas. ALMA wavelength sees through dust.

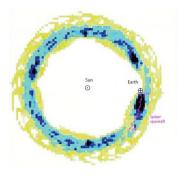
ALMA image of the young star HL Tau and its protoplanetarydisk. This best image ever of planet formation reveals multiple rings and gaps that herald the presence of emerging planets as they sweep their orbits clear of dust and gas. Credit: ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)

Direct Image of an ExoPlanet being Formed

Image shows the youngest exoplanet yet discovered. Its Star (slightly smaller than our Sun) is only 2 million years old. Dust is accreting (falling) into the new planet leaving a gap in the planetary disk. New planet is ~ 6X mass of Jupiter.

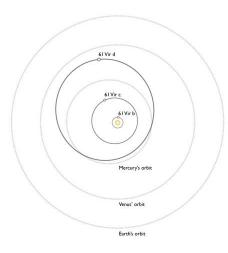
Using the Keck Telescope

Left: The dusty disk around the star LkCa 15. All of the light at this wavelength is emitted by cold dust in the disk; the hole in the center indicates an inner gap.


Right: An expanded view of the central part of the cleared region, showing a composite of two reconstructed images (blue: 2.1 microns; red: 3.7 microns) for LkCa 15 b. The location of the central star is also marked.

CREDIT: Kraus & Ireland 2011 SPACE.com; 19 October 2011

Planets and Dust


Earth has a 'tail' of dust particles.

10 to 20 micrometer size particles are slowed or captured by Earth's gravity and trail behind Earth. The cloud of particles is about 10 million km wide and 40 million km long.

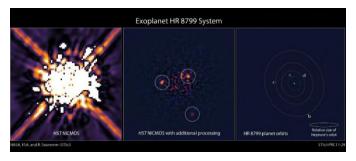
(Wired.com, Lisa Grossman, 8 July 2010)

Radial Velocity Method finds planets close to stars

61 Virginis (61 Vir) has 3 planets inside of Venus's orbit.

From their star, the planets have masses of ~5X, 18X & 24X Earth's mass.

They orbit 61 Virginis in 4, 38 & 124 day periods.

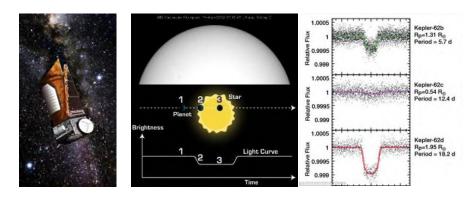

Also, direct Spitzer observations indicate a ring of dust at twice the distance of Neptune from the star.

Bad Astronomy Orbital schematic credit: Chris Tinney

Direct Imaging detects planets far from their star

HR 8799 has at least 4 planets

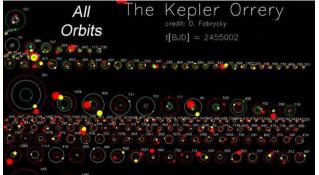
- 3 planets ('c' has Neptune orbit) were first imaged by Hubble in 1998. Image reanalyzed because of a 2007 Keck discovery.
- 3 outer planets have very long orbits or 100, 200 & 400 years. Multiple detections are required to see this motion.



Denise Chow, SPACE.com; 06 October 2011

Transit Method Finds Planets

Kepler (launched in 2009) searched for planets by staring continuously at 165,000 stars looking for dips in their light caused when a planet crosses in front of the star.


As of Dec 2011, Kepler found 2326 planets

Kepler Planetary Systems – Dec 11

Of the 2326 planets which Kepler discovered:

- > 800 in single planet systems,
- > 400 in 170 systems with 2 to 6 transiting planets, and
- 207 potential Earth size; 680 super-Earth size; 48 in Habitable Zone

Graphic shows multiple-planet systems as of 2/2/2011. Hot colors to cool colors (red to yellow to green to cyan to blue to gray) indicate big planets to smaller planets. CREDIT: Daniel Fabrycky (SPACE.com, 23 May 2011)

Kepler's planet candidates by size. CREDIT: NASA/Wendy Stenzel (SPACE.com 2 Feb 2011)

Kepler Update – Jan 2013

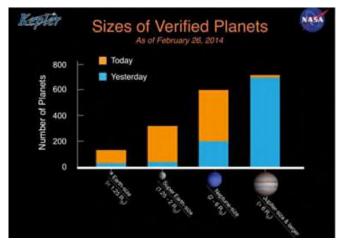
Kepler has discovered 461 new potential planets, boosting total to 2,740 including 4 slightly larger than Earth in Habitable Zone.

114 are confirmed; > 2500 are probable; 350 are Earth Size 467 stars have more than 1 planet

Mike Wall, SPACE.com Senior Writer; 07 January 2013

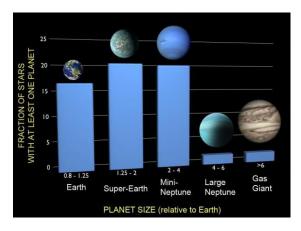
Kepler Pipeline results - Nov 2013

Summary



- 3,553 candidates associated with 2,658 stars discovered from analysis of 34 months of data.
- > 600 are earth-size or smaller
- 104 candidates are in the HZ; 24 are smaller than 2 Re
- 22% of stars have more than one candidate
- Flat radius distribution within 3 Re
- 17% of main sequence stars have an earth-size planet within P = 85 days
- At least 70% of main sequence stars have a planet within P = 400 days
- \sim 50% of M dwarfs harbor a planet smaller than 2 Re in the HZ
- 170 confirmed/characterized planets, including many rocky planets.

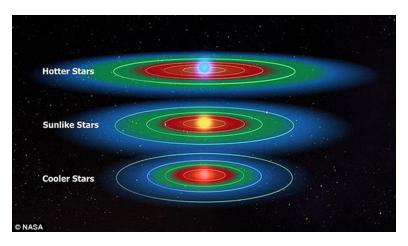
Batalha, Kepler Conference Nov 2013


Kepler Update – 26 Feb 2014

NASA announced 715 new confirmed planets, increasing the total to over 1000.

Elizabeth Howell, Universe Today; 26 Feb 2014

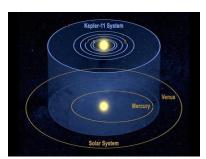
Nearly All Stars have Planets



Our galaxy has 100B stars, so could be 17B Earth size planets. But only a few will be in Habitable Zone Also, need a moon.

Nancy Atkinson; Universe Today; January 7, 2013

Habitable Zone

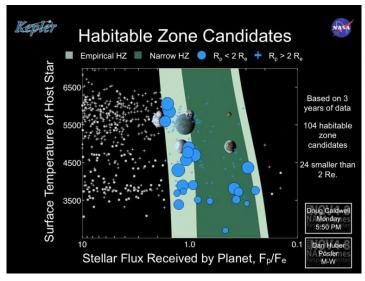

Life requires water. Liquid water can only exist in the 'Goldilocks' Zone. The hotter the star, the further away the zone.

'Billions of stars' in the Milky Way may have planets that contain alien life, Ellie Zolfagharifard, Dailymail.com, 18 March 2015

Kepler Mission

Kepler-11has a star like ours & 6 mini-Neptune size planets

Five of six Kepler-11 exoplanets (all larger than Earth) orbit their star closer than Mercury orbits the sun. One orbits inside Venus.

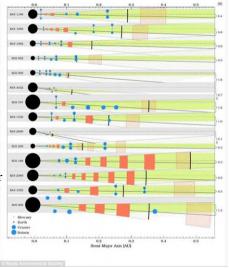

Credit: NASA/AP (Pete Spotts, Christian Science Monitor.com, 23 May 2011.) Kepler 22b is the first in the habitable zone.

Kepler-22b is located about 600 lightyears away, orbiting a sun-like star. Its is 2.4 times that of Earth, and the two planets have roughly similar temperatures (maybe 22C).

CREDIT: NASA/Ames/JPL-Caltech

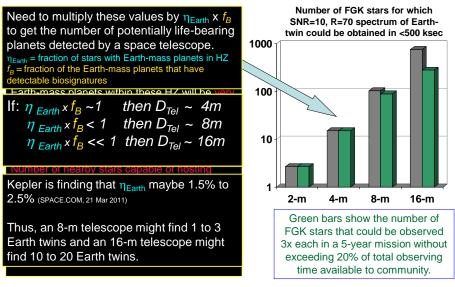
> 100 Habitable Zone Planet Candidates > 24 smaller than 2 Earth Radii

Batalha, Kepler Conference Nov 2013


All Stars may have 1 to 3 HZ Planets

Titius-Bode law (used to predict Uranus) states that ratio between the orbital period of the first and second planet is the same as the ratio between the second and the third planet and so on.

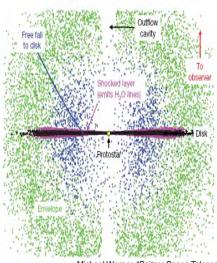
Thus, if you know how long it takes for some planets to orbit a star, you can calculate how long it takes for others to orbit and can calculate their position in the planetary system.

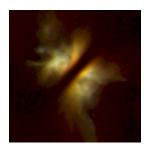

Blue dots show planets measured by Kepler in 151 systems.

Red boxes predicted 'missing' 228 planets Average of 1 to 3 HZ planets per star.

'Billions of stars' in the Milky Way may have planets that contain alien life, Ellie Zolfagharifard, Dailymail.com, 18 March 2015

Is There Life Elsewhere in the Galaxy?




Marc Postman, "ATLAST", Barcelona, 2009; Modified by Stahl, 2011

How are habitable zones established?

Spitzer Spectrum Shows Water Vapor Falling onto Protoplanetary Disk

Michael Werner, "Spitzer Space Telescope", William H. Pickering Lecture, AIAA Space 2007.

Proto-Stars produce Water

In a proto-star 750 light-years away, Herschel detected:

Spectra of Atomic Hydrogen and Oxygen are being pulled into the star, and

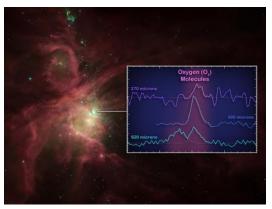
Water vapor being spewed at 200,000 km per hour from the poles.

The water vapor freezes and falls back onto the proto-planetary disk.

Discovery is because Herschel's infrared sensors can pierce the dense cloud of gas and dust feeding the star's formation.

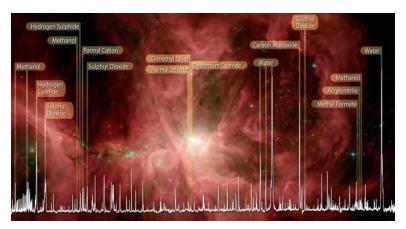
A Protostar and its Polar Jets NASA/Caltech

Other Herschel Data finds enough water in the outer reaches of the young star TW Hydrae (175 lightyrs from Earth) to fill Earth's oceans several thousand times over.


Mike Wall, SPACE.com; Date: 20 October 2011

(National Geographic, Clay Dillow, 16 June 2011)

Molecular Oxygen discovered in space


Herschel found molecular oxygen in a dense patch of gas and dust adjacent to star-forming regions in the Orion nebula.

The oxygen maybe water ice that coats tiny dust grains.

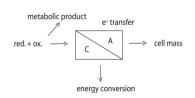
SPACE.com, 01 August 2011

All of Life's Ingredients Found in Orion Nebula

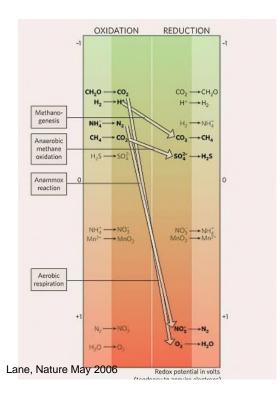
Herschel Telescope has measured spectra for all the ingredients for life as we know them in the Orion Nebula.

(Methanol is a particularly important molecule)

Wired.com Mar 2010


Search for Habitable Planets atmosphere Silicate Planet Almosphere Silicate Planet Silicate Planet Almosphere habitability L. Cook interior surface

Search for Life


What does life do?

Life Metabolizes

Sara Seager (2006)

Sara Seager (2006)

All Earth life uses chemical energy generated from redox reactions

Life takes advantage of these spontaneous reactions that are kinetically inhibited

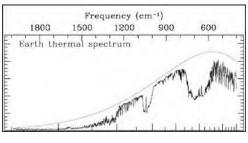
Diversity of metabolisms rivals diversity of exoplanets

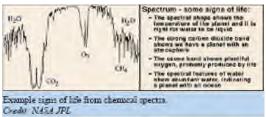
Sara Seager (2006)

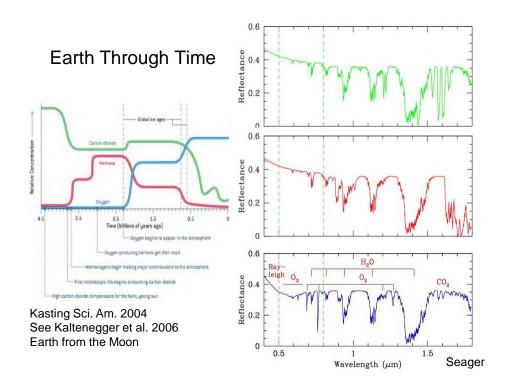
Bio Markers

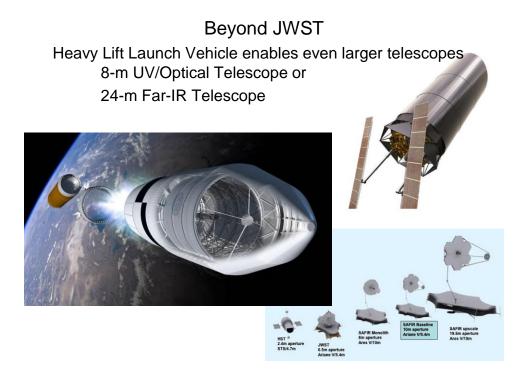
Spectroscopic Indicators of Life

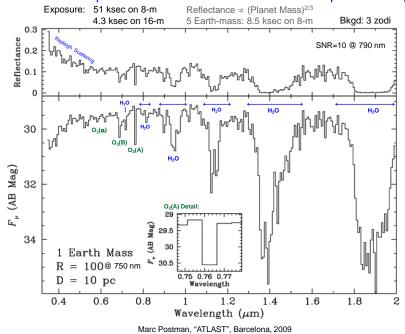
Absorption Lines

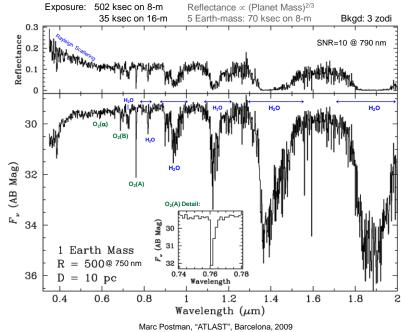

CO2

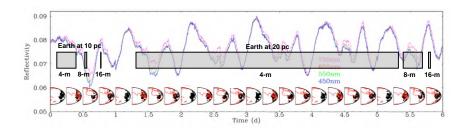

Ozone


Water


"Red" Edge



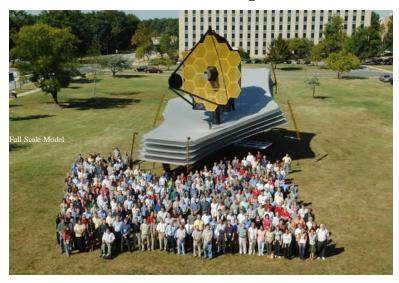



R=100 ATLAST Spectrum of 1 Earth-mass Terrestrial Exoplanet at 10 pc

R=500 ATLAST Spectrum of 1 Earth-mass Terrestrial Exoplanet at 10 pc

Detecting Photometric Variability in Exoplanets

Marc Postman, "ATLAST", Barcelona, 2009


Countdown to Launch

JWST is

making excellent technical progress will be ready for launch late 2018 will be the dominant astronomical facility for a decade undertaking a broad range of scientific investigations

1000s of Scientists and Engineers in USA and around the world are working to make JWST.

