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entry, and abort (LEA) scenarios; zero gravity (0-g) extravehicular activity (EVA) (both unscheduled and 
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presentation of four possible pressure paradigm options for use by the CSSE, the risks and design 
impacts of these options, and the down-selected pressure option.  
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Who Am I? 

 Ryan Lee 

 Senior Project Engineer – ESCG/Barrios 
Tech. 

 Constellation Space Suit Element 
 Pressure Garment Subsystem 

 Education 
 M.S. Aerospace Engineering 

– Space Human Factors Curriculum 

 7 years of advanced space suit design 
experience 

 2 years of EMU training experience 
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My Daughter: Liberty 
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Why Am I Here? 

 The Constellation Pressure Garment 
Subsystem (PGS) team performed a study 
to determine what the drivers would be for 
selecting an operating pressure in a space 
suit that meets Constellation requirements 

 Presentation Goals 

 Review Study Objectives 

 Examine the Pressure Selection Problem 

 Review Historical Suit Pressure Selection 

 Present Recommendations Based on Study 
Results 
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Study Objectives 

 Bound The Pressure Selection Problem 

 Understand Historical PGS Pressure 

Selection Rationale 

 Determine the Effects of Pressure 

Selection on PGS Design 

 Recommend Operational Pressure 

Paradigm for CSSE PGS 

 Contingency and Nominal Suit pressures 
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The 

Pressure 

Selection 

Problem 
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The Pressure Selection Problem 

 The pulmonary system is a pressure driven system 

 The human body needs external pressure roughly equal 
to the pressure of inspired gases for physiological 
processes to work efficiently 

 Pressurization with breathing gas makes sense 

 In a pressure vessel the wall stress (σ) is directly 
proportional to the internal vessel pressure (p): 
                                σ α p 

 Increased wall stress means increased wall 
stiffness 

 The stiffer the walls of a pressure vessel 
the more difficult it is to flex 

 Low pressure is more desirable for greater mobility 



National Aeronautics and Space Administration 

The Pressure Selection Problem 

 Question: 

 

 

 

 

 

 

 
 Lower bound of design space, highest suit mobility 

 

How Low 

Can You 

Go? 
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The Pressure Selection Problem 

 Sea level atmosphere is a mix of O2 and N2 at 

14.7 psi 

 21% is O2 so PPO2 is 3.1 psi 

 In healthy, non-smoking people arterial blood is 

almost completely saturated with O2 at sea level 

 Doctors don’t recommend supplemental oxygen 

until blood saturation levels are lower than 90% 

 Hypoxic conditions begin to manifest 

 



National Aeronautics and Space Administration 

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5

Atmospheric PPO2 (psi)

%
 B

lo
o

d
 O

x
y
g

e
n

 S
a
tu

ra
ti

o
n

The Pressure Selection Problem 

 Blood Oxygen Dissociation Curve (PPO2 vs. 

Blood O2 Saturation) 
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The Pressure Selection Problem 

 90% Blood O2 saturation at 2.1 psi (10,000 ft.) 

 Represents lower bound of design space 

 US EVAs currently performed at 4.3 psi 

 Apollo EVAs performed at 3.7 psi 

 Lowest ppO2 allowed on ISS is 2.42 psi 

 During 10.2 psi airlock operations 

 Recommended atmosphere for lunar ops is 8.0 

psi w/ 32% O2 

 ppO2 = 2.56 psi 

 2.5 psi is ppO2 at 5500 ft. (Denver, Colorado) 
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The Pressure Selection Problem 

Top of Mt. Yale - Colorado 

Altitude: 14,196 ft         Atmospheric Pressure: 8.3 psi        ppO2: 1.7 psi 
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 Orion/Lunar spacecraft will operate with a mixed 
oxygen/nitrogen environment 

 Both gasses will be dissolved in blood 

 A decrease in pressure will cause a decrease in the 
concentration of nitrogen dissolved in the blood 

 Excess gas normally expired through lungs 

 If pressure difference is great enough some excess 
gas will remain in body tissues and organs  

 Symptoms range from light pain, to impaired 
judgment, and even death 

 This condition is called Decompression Sickness 
(DCS) 

The Pressure Selection Problem 
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The Pressure Selection Problem 

 Common way to track risk of DCS is by the ratio 
of body N2 to final absolute suit pressure  

 

 

 

 

 Higher R-Value = Greater Risk  

 Research has demonstrated a 5% risk of minor 
DCS symptoms in 1-g environment at R=1.4 

 U.S. EVAs performed at R~1.6 

 Russian EVAs performed at R~1.8 
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The Pressure Selection Problem 

 Depressing from Sea Level (14.7 psi) 
 Highest Constellation vehicle pressure condition 

 Atmospheric PPN2 = 11.6 psi 

PPN2 Body 
(Psi) 

PSuit 
(Psi) 

R-value 
1g Risk of 

Minor 

Symptoms 

11.6 11.6 1 None 

11.6 9.7 1.2 <2% 

11.6 8.3 1.4 ~5% 

11.6 7.3 1.6 ~20% 

11.6 6.4 1.8 ~45% 

11.6 4.3 2.7 Huge 
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The Pressure Selection Problem 

 Upper design space boundary depends on 

acceptable risk 
 R=1.4 to 1.6 (suit pressure 7.3 psi - 8.3 psi) 

PPN2 Body 
(Psi) 

PSuit 
(Psi) 

R-value 
1g Risk of 

Minor 

Symptoms 

11.6 11.6 1 None 

11.6 9.7 1.2 <2% 

11.6 8.3 1.4 ~5% 

11.6 7.3 1.6 ~20% 

11.6 6.4 1.8 ~45% 

11.6 4.3 2.7 Huge 
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The Pressure Selection Problem 

 Risk of DCS controlled by: 

 O2 Pre-Breathe to Reduce PPN2 

 Higher Initial R-value Means Longer Pre-Breathe 

 Reducing Cabin PPN2 Prior to EVA 

 Reduced Overall Pressure, Higher PPO2 

 Increase Suit Pressure 

 Suit performance decreases with suit pressure 

increase 
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The Pressure Selection Problem 

 PPN2 is reduced by breathing O2 

 

 

 

 

 

 

 After 4 hours PPN2 ~ 7.0 psi 

 R-value for U.S. EVA = 7.0/4.3 = 1.63 
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Solving the Pressure Problem: 

                   APOLLO 



National Aeronautics and Space Administration 

U.S. Pressure Selection – Apollo 

 Apollo spacecraft operated with a pure oxygen cabin 
pressure of 5.0 psi 

 Pure oxygen cabin meant no prebreathe required 

 Maximizing mobility was prime concern while minimizing 
risk of hypoxia 

 3.1 psi was the starting minimum operational pressure 

 Accounting for purge pressure drops, potential hardware 
failures, and emergency operations, the actual minimum 
nominal operating pressure was increased to 3.5 psi 

 Accounting for the regulator error band, the final 
operating pressure for the Apollo spacesuit  
was 3.75  0.25 psi 
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Solving the Pressure Problem: 

SHUTTLE 
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U.S. Pressure Selection – Shuttle 

 Decision was made to operate the Space Shuttle 
at sea-level pressure to account for future Space 
Station 

 For zero prebreathe, an 8.3 psi suit was 
recommended in 1973 (R=1.4) 

 NASA had no experience beyond Apollo suit 
pressure and considered an 8.3 psi program too 
expensive 

 Shuttle program conceded to a minor pressure 
increase to 4.1  0.1 psi  

 Because of the large pressure difference 
between cabin N2 and suit pressure, pure 
oxygen prebreathe would be required 
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U.S. Pressure Selection – Shuttle 

 Efforts to devise a means of prebreathe without 

the possibility of breaking protocol failed 

 In 1980 NASA attempted to eliminate prebreathe 

with a procedure to decrease the spacecraft 

cabin pressure to 9.0 psi, 12 hours before EVA 

 This decision required increasing the maximum 

allowable R-value to 1.6 (~20% risk of minor 

DCS symptoms) 

 9.0 psi was rejected because it would require a 

maximum 30% O2 in the Shuttle cabin and it was 

only certified to 25.9% 
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U.S. Pressure Selection – Shuttle 

 Astronaut Joe Kerwin, M.D. recommended 

decreasing the cabin pressure to 10.4 psi 

for 12 hours prior to EVA, and raising the 

EMU operational pressure to 4.3 psi 

 His method produced an R-value of 1.78, 

which he tried to justify as safe based on 

DCS risk calculations using alveolar gas 

rather than expired gas concentrations 

 This method was ultimately rejected 
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U.S. Pressure Selection – Shuttle 

 In parallel, Hamilton Sundstrand engineers 

suggested reducing cabin pressure to 11.8 psi 

for 12 hours and increasing suit operational 

pressure to 5.8 psi 

 This method would maintain an R-value of 1.6 

and require no prebreathe 

 An operational pressure increase to 5.8 psi 

would have required significant modifications to 

the EMU currently under production as a 4.1 psi 

suit 

 Method was rejected for cost reasons 
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U.S. Pressure Selection – Shuttle 

 In 1981 a JSC team suggested a hybrid approach of 
using both prebreathe and pressure manipulation 

 The method required: 
 One hour of pure oxygen prebreathe prior to cabin depress 

 Cabin pressure would be reduced to 10.2 psi for 12 hours 

 40 minutes of in-suit prebreathe prior to airlock depress 

 EMU operating pressure would be increased to 4.3 psi 

 Using an R-value of 1.6 

 Method was accepted but not certified to use until 1984 

 3.5 hour in-suit prebreathe was used prior to method 
certification 
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U.S. Pressure Selection – Shuttle 

 With the new prebreathe protocol (R-value of 1.6), 
models/testing predicted a 5% chance of serious DCS 
symptoms 

 DCS treatment was now a consideration 

 EMU had been certified to a proof pressure equal to 1.5 
times the max operating pressure of 5.3 psi (maximum 
PPRV pressure), or 8.0 psi, without structural damage 

 Bends Treatment Adapter (BTA) was developed that 
increased positive pressure relief to 8.8 psi max 

 Procedure written to use suit as hyperbaric chamber for 
DCS treatment at 6.0 and 8.0 psi  

 Suit taken to 8.0 psi cannot be reused until it has 
undergone an engineering evaluation 
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Solving the Pressure Problem: 

ORLAN 



National Aeronautics and Space Administration 

Russian Pressure Selection - Orlan 

 Russian spacecraft have always operated at 14.7 psi 

 Orlan pressure was chosen to minimize prebreathe 

 Russian DCS testing was performed using subjects 
wearing space suits (U.S. testing was done in shirtsleeve 
environment) 

 Tests resulted in an acceptable (~20% risk of minor DCS 
symptoms) R-value of 1.8 

 A zero prebreathe suit with an R-value of 1.8 results in 
an operating pressure of: 11.6 psi / 1.8 = 6.4 psi 

 30 minutes of oxygen prebreathe prior to 
airlock depress was added 

 Resulted in Orlan operating pressure 
of 5.8 psi 
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Solving the Pressure Problem: 

CONSTELLATION 
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The Pressure Selection Problem 

 NASA Exploration Atmospheres Working 

Group Final Report Recommendations  

Mission 

Phase 

Nominal 

Cabin 

(psi) 

Oxygen 

Concentration 

(%) 

PPO2 

(psi) 

PPN2 

(psi) 

Launch/ISS 14.7 21 3.1 11.6 

Lunar Coast 10.2 26.5 2.7 7.5 

Lunar Surface 8.0 32 2.6 5.4 
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The Pressure Selection Problem 

 Four Nominal Pressure Options Examined 

 Option 1: Minimum Operating Pressure – 2.5 psi 

 Maximize Suit Operating Characteristics 

 Option 2: Sea Level O2 Operating Pressure – 3.5 psi 

 Reduces Risk Associate with Option 1 

 Apollo History – Lessons Learned 

 Option 3: Zero Pre-Breathe Operating Pressure 

 Eliminate Pre-Breathe Operational Overhead 

 Would operate at a different pressures for each environment  

 Option 4: Minimal Pre-Breathe Operating Pressure 

 20 minute pre-breathe 

 Minimal Overhead, Increased Suit Operability 
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The Pressure Selection Problem 

 For Nominal Operations: 

Pressure Option 

Ambient 

Spacecraft 

Pressure (psi) 

Nominal Operating 

Pressure (psi) 

Prebreathe Time 

Required 

Minimum O2 

14.7 
10.2 
8.0 

2.5 
2.5 
2.5 

> 9 hrs to R=1.6 
5.5 hrs to R=1.6 
4.5 hrs to R=1.3* 

Sea Level O2 

14.7 
10.2 
8.0 

3.5 
3.5 
3.5 

> 6 hrs to R=1.6 
2.5 hrs to R=1.6 
1.8 hrs to R=1.3* 

No Pre-Breathe 

14.7 
10.2 
8.0 

7.3 
4.7 
4.2 

0 min to R=1.6 
0 min to R=1.6 
0 min to R=1.3* 

Min Pre-Breathe 

14.7 
10.2 
8.0 

6.9 
4.5 
4.0 

20 min to R=1.6 
20 min to R=1.6 
20 min to R=1.3* 

* For Lunar EVA operations an R-value of 1.3 was recommended by the 

NASA Exploration Atmospheric Working Group 
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The Pressure Selection Problem 

 Eliminated options 1 and 2: 

 Excessive prebreathe (greater than 40 minutes) 

 Eliminated option 3: 

 Recognized advantages to allowing a small 

amount of prebreathe 

 EVA prep will likely always require some steps 

while pressurized 

 Recognized EVA from 14.7 psi not required 

 ISS missions will perform EVAs from ISS A/L 

 Non-ISS missions will reduce cabin to 10.2 psi for 

a minimum of 36 hours prior to 0-g EVA 
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The Pressure Selection Problem 

 For Nominal Operations: 

Pressure Option 
Ambient Spacecraft 

Pressure (psi) 

Nominal Operating 

Pressure (psi) 

Prebreathe Time 

Required 

Min Pre-Breathe 
10.2 
8.0 

4.5 
4.0 

20 min to R=1.6 
20 min to R=1.3* 
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The Pressure Selection Problem 

 Contingency operations – DCS Treatment: 

 EMU program uses an in-suit treatment 

pressure equivalent to suit ‘proof’ pressure 

 8 psi, or 1.5 x max operating (relief valve) pressure 

(5.3 psi) 

 EMU is no-go for EVA prior to an engineering 

evaluation 

 ‘Structural’ pressure (1.5 x Nominal operating 

pressure: 6.6 psi) is used to check suit 

integrity after build up prior to flight 
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The Pressure Selection Problem 

σ 

ε 

Nominal Ops (4.3 psi) 

Max Nom/PPRV (5.3 psi) 

Structural = 1.5 x Nom (6.6 psi) 

Proof = 1.5 x Max (8.0 psi) 

Ultimate = 2.0 x Max (10.6 psi) 

 At Issue are loads in the hoop direction 

 Hoop stress is twice the plug load 

 The only restraint in the hoop direction is the base 
restraint fabric 

Design Factors of Safety 

2.0 x max against ultimate 

1.5 x max against yield 

Yield 
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The Pressure Selection Problem 

 Requirements guarantee no structural damage at 

proof pressure 

 Beyond that there is no guarantee that 

permanent damage has not occurred 

 For CSSE lunar case, engineering evaluation will 

not be possible 

 Max DCS treatment pressure should not exceed 

suit ‘structural’ pressure 

 Structural pressure should be greater than 6.0 

psi (First Shuttle treatment pressure) 
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The Pressure Selection Problem 

 Contingency Operations – Rapid Cabin 
Depress: 

 Worst case instantaneous cabin 
decompression would be from 14.7 psi 

 NASA flight surgeons state that 8 psi is the 
minimum emergency prebreathe pressure for 
cabin depress from 14.7 psi 
 Design driving: Suit must have a minimum proof 

pressure of 8.0 psi 

 This scenario would be mission ending, a one 
time use of the suit at 8.0 psi for this case 
would be acceptable 
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The Pressure Selection Problem 

 For contingency operations: 

Pressure 

Option 

Ambient 

Spacecraft 

Pressure 

(psi) 

Nominal 

Operating 

Pressure 

(psi) 

Structural/

Max DCS 

Treatment 

Pressure 

(1.5 x Nom) 

Max 

Operational 

Pressure* 

(PPRV Set) 

(psi) 

Proof/Max 

Emergency 

Prebreathe 

Pressure 

(1.5 x Max) 

Min Pre-

Breathe 

10.2 
8.0 

4.5 
4.0 

6.8 
6.0 

5.5 
5.0 

8.25 
7.5 

*Assumed Nominal Operating Pressure + 1.0 psi 

 Minimum 4.3 psi required for 8.0 psi proof pressure 

 Reduced Pressure Selection Design Space: 

 4.5 psi for 0-g EVA with 20 minute prebreathe  

 4.3 psi to meet contingency 8.0 psi case 
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PGS Team Recommendation 

 Minimum single pressure paradigm that 

meets 8.0 psi emergency prebreathe 

pressure: 

 

 

 

 

 Selection of Single Pressure 

 Raises 0-g EVA prebreathe time to 40 min  

 0-g EVA currently not a nominal CSSE task 

Pressure 

Option 

Ambient 

Spacecraft 

Pressure 

(psi) 

Nominal 

Operating 

Pressure (psi) 

Structural/Max 

DCS Treatment 

Pressure (1.5 x 

Nom) 

Max 

Operational 

Pressure 

(PPRV Set) 

(psi) 

Proof/Max 

Emergency 

Prebreathe 

Pressure 

(1.5 x Max) 

Prebreathe Time 

Required 

Single 

Pressure 

10.2 
8.0 
8.0 

4.3 
4.3 
4.3 

6.6 
6.6 
6.6 

5.3 
5.3 
5.3 

8.0 
8.0 
8.0 

40 min to R=1.6 
0 min to R=1.27 

20 min to R=1.23 
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CSSE PGS Loading Considerations 

 Pressure Selection will also affect PGS 

design loads 

 PGS loading includes two types of loads 

 Pressure induced, or ‘plug’ loads 

 Man induced, or ‘man’ loads 

 Plug load 

 Based on suit geometry 

 Loads are easily predicted 
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CSSE PGS Loading Considerations 

 Man loading occurs both internal and external 
to the suit 

 Internal loads are called ‘isometric’ loads 
 EMU is certified to an isometric man load 

equivalent to 95th percentile isometric strength 
with a specified negative sizing delta  

 External loads are also referred to as 
‘satellite’ man loads 
 Satellite/man loads are a product of reacting large 

mass inertial loads while restrained in a foot 
restraint 

 Currently, satellite/man loads do not apply to the  
CSSE operational paradigm 
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CSSE PGS Loading Considerations 

 Sample EMU Load Limits (Taken from EMU S/AD) 

Pressure 

(psig) 

Plug Load 

(lb) 

Max Man Load 

(lb)* 
Load Limit (lb) 

Upper Arm Axial – 

Per Restraint Line 

4.3 122 163** 285 

8.0 227 45 272 

Lower Arm Axial – 

Per Restraint Line 

4.3 55 163** 218 

8.0 103 45 148 

Waist Axial – Per 

Restraint Line 

4.3 394 507** 901 

8.0 735 158 893 

Leg Outboard Axial – per 

Restraint Line 

4.3 104 470** 574 

8.0 189 79 268 

*Max man load at 8.0 psi is for an inactive crewmember at max BTA 

**Max man load is satellite/man load 
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CSSE PGS Loading Considerations 

 Load Limit Comparison Using Isometric Man Loads 

 

 

 

 
 

 

 

 

 

 

   * Isometric loads taken from EMU S/ADs 

Pressure 

(psig) 

Plug 

Load (lb) 

Isometric 

Man Load 

(lb)* 

Load Limit 

(lb) 

EMU Load 

Limit (lb) 

Upper Arm Axial – 

Per Restraint Line 

4.3 122 134 256 

285 6.6 187 134 321 

8.0 227 134 361 

Lower Arm Axial – 

Per Restraint Line 

4.3 55 134 189 

218 6.6 84 134 218 

8.0 103 134 237 

Waist Axial – Per 

Restraint Line 

4.3 394 351 745 

901 6.6 605 351 956 

8.0 735 351 1086 

Leg – per Restraint 

Line 

4.3 102 240 342 

574 6.6 157 240 397 

8.0 189 240 429 
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CSSE PGS Loading Considerations 

 Pressure selection also effects operational life  

 Ops Con will dictate the operational life limits of 

the PGS  

 Certified EMU Operational Life: 

Time 

(Yrs.) 

Pressurized 

 Hours at  

4.3 psig 

Pressure  

Cycles at  

4.3 psig 

Pressure  

Cycles at 

5.3 psig 

Pressure  

Cycles at  

6.6 psig 

Hard Upper Torso – 

(Fiberglass) 
15 458 194 74 32 

Arm Assembly –  10 458 194 74 32 

Gloves –  8 229 97 37 16 

Lower Torso Assembly –  10 458 194 74 32 
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Summary 

 Nominal PGS pressure selection range: 

 Low End: 4.3 psi 

 Physiologically ~2.5 psi is low end 

 For 20 minute lunar prebreathe 4.0 psi is low end 

 4.3 psi driven by 8.0 psi emergency prebreathe requirement 

 High End: 4.5 psi 

 Considering 20 minute prebreathe from 10.2 psi cabin 

 For zero prebreathe from 10.2 psi cabin 4.7 is high end 

 Assumes no EVA from 14.7 psi 

 For nominal operations 4.3 psi chosen 

 Optimal suit usability characteristics 

 Zero lunar prebreathe, 40 min 0-g prebreathe 
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Summary 

 For contingency operations: 

 6.6 psi maximum for DCS treatment 

 Equivalent to suit ‘structural’ pressure 

 Can continue nominal operation after treatment w/o 

engineering evaluation 

 May require reduced man load certification (equivalent to 

EMU incapacitated crewmember load)  

 8.0 psi minimum for emergency prebreathe 

 For instantaneous cabin depress from 14.7 psi 

 May require reduced man load certification 
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Summary 

 Loading Considerations: 

 Isometric loads will be a major driving force in the 

PGS Design 

 Satellite man loads will not apply 

 Need to determine if any other external loading does apply 

 If full isometric loads must be considered at 

contingency pressures the design load limit will be 

higher than current satellite man loads in many cases 

 Reduced man load schemes need to be considered 

for contingency operations 

 

 




