
Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

Edward A. Van Cise Brian J. Kelly Jeffery P. Radigan Curtis W. Cranmer NASA Lyndon B. Johnson Space Center, Houston, TX, USA

International Space Station

ISS External Infrastructure

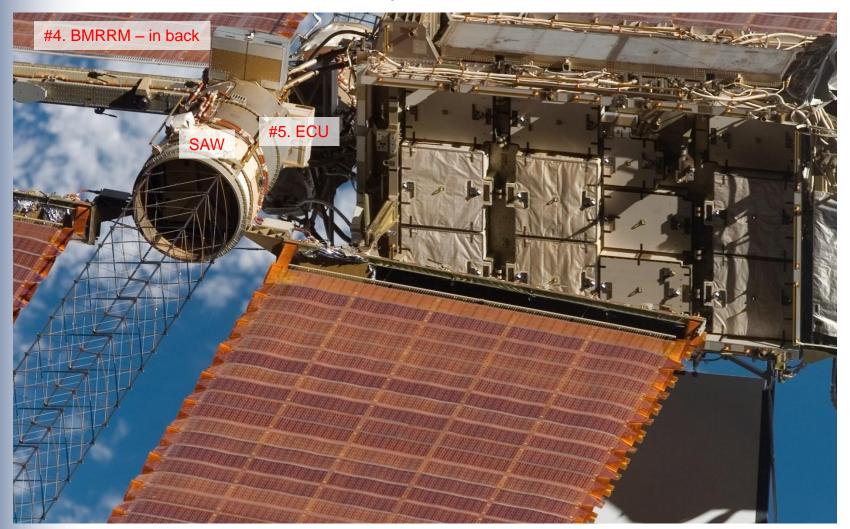
- ISS primary utilities (power, thermal) located externally
 - Power routing and conversion
 - Route primary power from solar arrays/batteries to various internal and external loads
 - Convert primary power (~160 VDC) to stable secondary power (~120 VDC)
 - Primary thermal control system
 - Transfer heat from internal loads to external cooling loop via heat exchangers
 - Transfer heat from external loads to external thermal cooling loop via coldplates
 - Reject heat via radiators
 - Command and Data Handling
 - Multiplexer/Demultiplexers (MDMs) controlling external hardware such as cooling loops, solar arrays, robotics

Complications with Infrastructure

- Most hardware located on Integrated Truss Structure facing into velocity vector
 - Potential damage/loss due to Micro-Meteoroid/Orbital Debris (MM/OD)
- Most hardware on the Contingency EVA list has limited or no redundancy
 - Example: Loss of single Pump Module or Flex Hose Rotary Coupler results in loss of 1 of 2 external thermal control loops. Loss of 1 loop requires shutting down half of USOS primary power system due to lack of cooling. USOS becomes zero fault tolerant for survival.
- Maintenance and Supportability of these systems was reduced during ISS design and development
 - In recent years, internal and external jumper cables has led to a somewhat improved redundancy risk posture
- Drove development of "Critical Contingency EVA" List

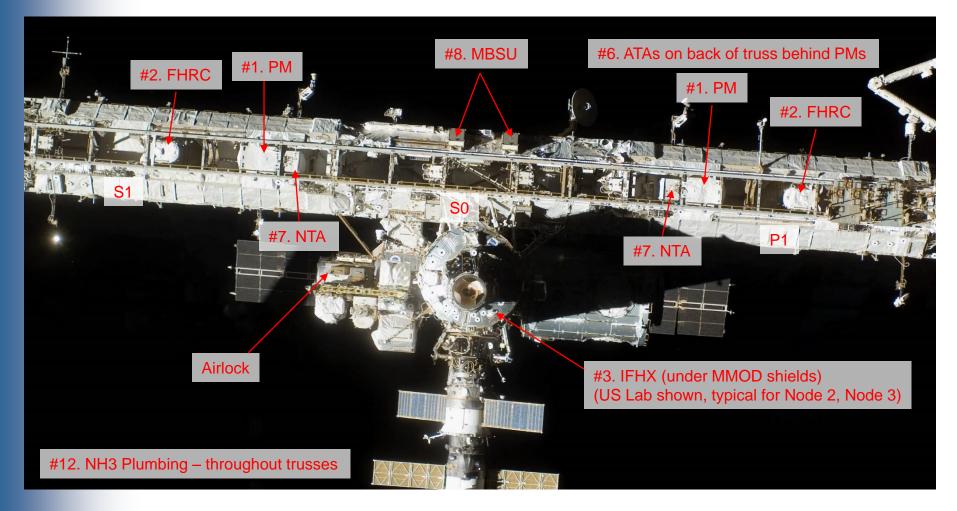
Critical Contingency EVA List

- Started as listing of EVA tasks that, by hardware design or system implementation, would be difficult for EV crew to remove/replace or could impede ISS assembly
- As ISS grew in size, list grew from "Big 8" to "Big 9" to "Big 14" to "Big 11" to now the "Big 13"
 - These are the number of *types* of Orbital Replacement Units (ORUs) there are generally 2 or more of each type
- First CCE was performed in Fall 2010 to replace a failed external cooling loop pump
 - Quick turnaround EVA response only theory prior to this event
- Lessons learned from those EVAs (3 were required) demonstrated the need for additional pre-failure analysis prior to future contingency EVAs
 - Spawned development of Failure Response Assessment Team (FRAT)

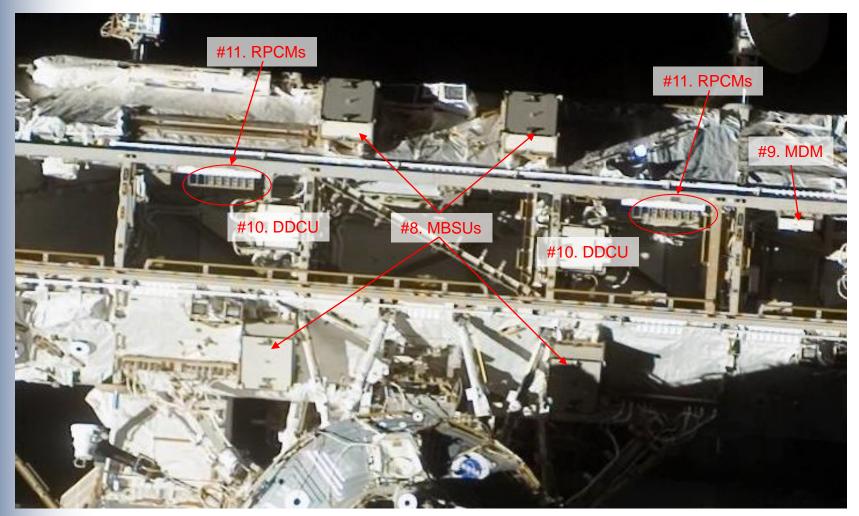

Current CCE List

(in order of priority)

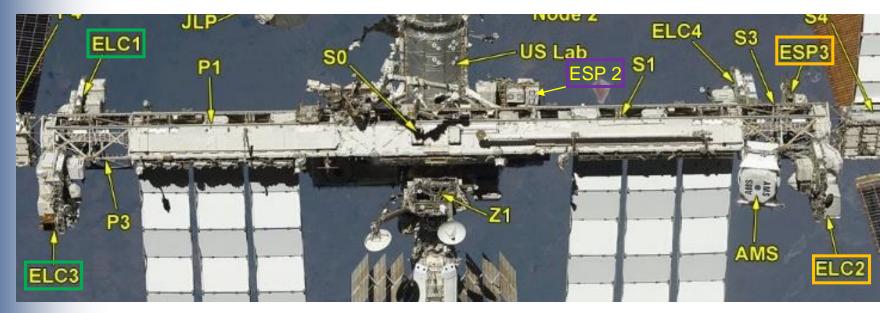
- 1. Pump Module (PM) R&R
- 2. Flex Hose Rotary Coupler (FHRC) R&R
- 3. Interface Heat Exchanger (IFHX) R&R
- 4. Solar Array Wing (SAW) Bearing Motor Roll Ring Module (BMRRM) R&R
- 5. SAW Electronics Control Unit (ECU) R&R
- 6. Ammonia Tank Assembly (ATA) R&R
- 7. Nitrogen Tank Assembly (NTA) R&R
- 8. Main Bus Switching Unit (MBSU) R&R
- 9. External (EXT) Multiplexer/Demultiplexer (MDM) R&R
- 10. DC-to-DC Converter Unit (DDCU) R&R
- 11. External Remote Power Control Module (RPCM) R&R
- 12. Ammonia (NH3) Leak Isolation and Recovery
- 13. Micrometeoroid/Orbital Debris (MMOD) penetration pinpoint and repair



Solar Array CCE ORUs



S1, S0, P1 Truss CCE ORUs


S0 Truss CCE ORUs

Sparing

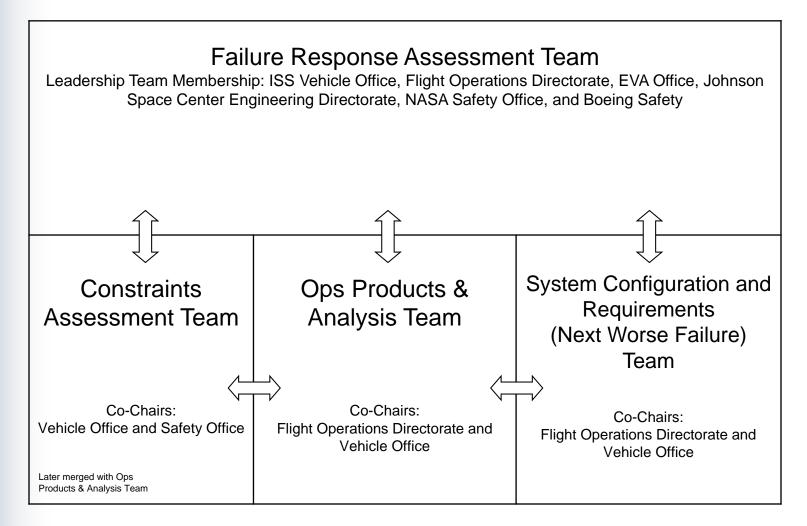
- Spares for most Contingency EVAs are already externally staged
 - Spare IFHX, DDCU, and BMRRM are internal

- P3 Truss
 - ELC 1
 - PM, NTA, ATA
 - ELC 3
 - ATA

- ESP 2
 - Forward side of Airlock
 - PM, MBSU (2), FHRC

S3 Truss

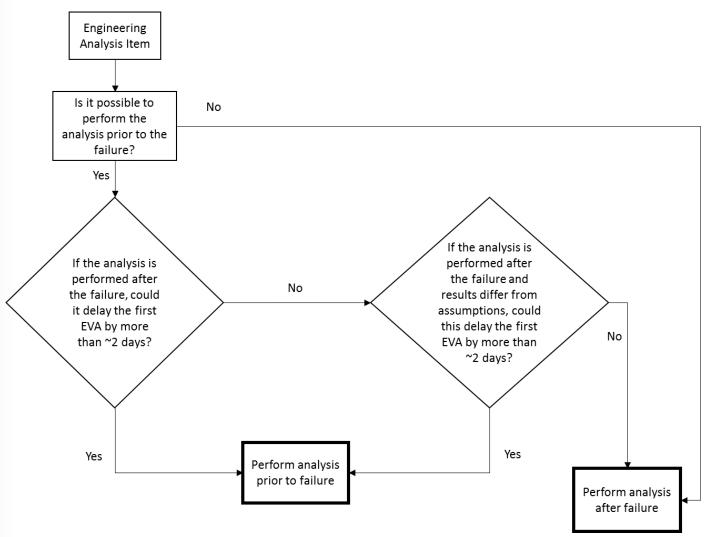
- ESP 3
- FHRC
- ELC 2
 - PM, NTA



Lessons from 2010 PM R&R

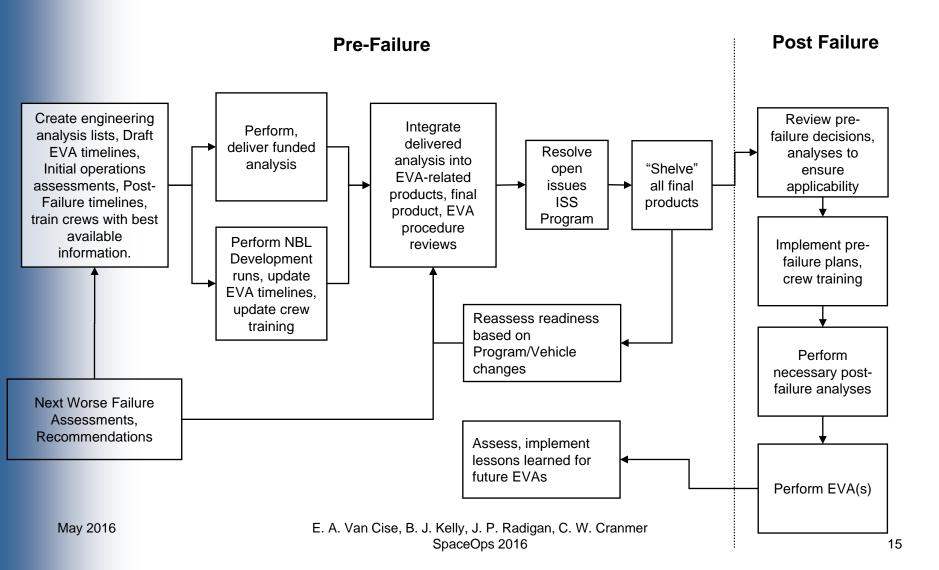
- Much of the "Big 14" (2006 2008) work was useful in generating EVA response plans and procedures but had not been taken far enough
- Assumptions made pre-failure for procedures and analysis need to be more thoroughly documented, reviewed, and accepted
- As much engineering analysis as possible should be performed pre-failure
 - Trade off between cost/schedule and risk if work is not done
 - Earlier approach only identified needed analysis, did not have funding to perform analysis
- Pre-failure planning must include protections to be put in place after the failure to better posture ISS for the Next Worse Failure (e.g. a failure of the only other functioning coolant loop)

FRAT Organization



FRAT Products

- Integrated Operations Product Template (IOPT) Process
 - All possible analysis needed for an EVA, notating which *can* be done pre-failure, which *should* be done pre-failure, long (hours) the generic analysis will take if performed pre-failure, and how long the failurespecific analysis would take if performed post-failure
- Pre-failure analysis
 - Subset of IOPT analysis funded and performed in advance of a failure
- Pre-failure planning products
 - Operational procedures, training, post-failure timelines for each ORU created to guide the response from initial failure until execution of the EVA(s)
- Post failure response
 - Briefing to real-time teams to transition from generic FRAT work to postfailure specific work
 - Tailoring of generic pre-failure analysis, assumptions, and decisions to actual situation
 - Finalizing, uplinking, and executing operational products and EVA(s)



Pre- or Post- Failure?

Overall FRAT Project Flow

Summary

- Initial "Big 14" work was put to the test for the first time in 2010. Deficiencies were found in some of the planning and approaches to that work.
- Failure Response Assessment Team created in 2010 to address deficiencies
 - Identify and perform engineering analysis in operations products prior to failure; incorporate results into operations products
 - Identify actions for protecting ISS against a Next Worse Failure after the first failure occurs
 - Better document not only EVA products but also planning products, assumptions, and open actions
- Pre-failure investments against critical failures best postures ISS for swift response and recovery
 - A type of insurance policy
 - Has proven effective in a number of contingency EVA cases since 2010
 - Planning for MBSU R&R in 2012
 - Second PM R&R in 2013
 - EXT MDM R&R in 2014
- Current FRAT schedule projects completion of all analysis in 2018

Backup Data

Acronym List

- BMRRM Bearing Motor Ring Roll Module
- CCE Critical Contingency EVA
- DDCU DC-to-DC Converter Unit
- ECU Electronics Control Unit
- ELC External Logistics Carrier
- EMU Extra-vehicular Mobility Unit
- EPS Electrical Power System
- ESP External Stowage Platform
- EV Extra-Vehicular
- EVA Extra-Vehicular Activity
- EXT External
- FHRC Flex Hose Rotary Coupler
- FOD Flight Operations Directorate
- FRAT Failure Response Assessment Team
- GJOP Generic Joint Operations Panel
- IFHX Interface Heat Exchanger
- IOPT Integrated Operations Product Tempalte
- ISS International Space Station
- ITS Integrated Truss Segment
- LSAR Logistics Support Analysis Record
- MBSU Main Bus Switching Unit
- MDM Multiplexer/Demultiplexer (similar to computer)
- MHA Maintenance Hazard Analysis

- MM/OD Micrometeoroid/Orbital Debris
- NASA National Aeronautics and Space Administration
- NBL Neutral Buoyancy Laboratory
- NH3 chemical formula for Ammonia
- ORU Orbital Replacement Unit
- PM Pump Module
- R&R Remove and Replace
- RPCM Remote Power Control Module
- SAW Solar Array Wing
- USOS United States Orbital Segment
- VDC Volts, Direct Current

Photo References

- All photos are NASA downlink images
 - S120E008545
 - S120E008570
 - S120E008603
 - S120E009811
 - S120E009847
 - S122E011043