

### The NASA Electronic Parts and Packaging (NEPP) Program: Overview and Roadmap for FY16

Kenneth A. LaBel ken.label@nasa.gov 301-286-9936 Michael J. Sampson michael.j.sampson@nasa.gov 301-614-6233

Co- Managers, NEPP Program NASA/GSFC

http://nepp.nasa.gov

Acknowledgment:

This work was sponsored by:

NASA Office of Safety & Mission Assurance





Sundown at SCRIPPS Proton Therapy Center, Ken LaBel



### Outline

- NEPP Overview
- NEPP Tasks and Technology Selection
  - Background
  - Task "Roadmaps"
  - Other Cool Tasks
- Recent Highlights and "Concerns"
- Summary
- NEPP Electronics Technology Workshop (ETW) – June 13-16, 2016



### Acronyms

| Acronym        | Definition                                                        |  |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| 3D             | Three Dimensional                                                 |  |  |  |  |  |  |  |
| 3x PC          | 3x standard precision channel                                     |  |  |  |  |  |  |  |
| AAIA           | Automotive Aftermarket Industry Association                       |  |  |  |  |  |  |  |
| ACE            | Absolute Contacting Encoder                                       |  |  |  |  |  |  |  |
| ADAS           | Advanced Driver Assistance Systems                                |  |  |  |  |  |  |  |
| ADC            | Analog to Digital Converter                                       |  |  |  |  |  |  |  |
| AEC            | Automotive Electronics Council                                    |  |  |  |  |  |  |  |
| AFS            | Advanced Encryption Standard                                      |  |  |  |  |  |  |  |
| AF             | Air Force                                                         |  |  |  |  |  |  |  |
| AF SMC         | Air Force Space and Missile Systems Center                        |  |  |  |  |  |  |  |
| AFRI           | Air Force Besearch Laboratory                                     |  |  |  |  |  |  |  |
|                | United States Army Aviation and Missile Research, Development     |  |  |  |  |  |  |  |
| AMRDEC         | and Engineering Center                                            |  |  |  |  |  |  |  |
| AMS            |                                                                   |  |  |  |  |  |  |  |
|                |                                                                   |  |  |  |  |  |  |  |
| APC            | Amor Research Center                                              |  |  |  |  |  |  |  |
| ARC            | Annes Research Center                                             |  |  |  |  |  |  |  |
|                | Avalansha Tashnalagu Sain Transfer Terrus                         |  |  |  |  |  |  |  |
| Avaianche SI I | Avaianche rechnology Spin Fransfer Forque                         |  |  |  |  |  |  |  |
| BAE Systems    | Marconi Electronic Systems (MES) and British Aerospace (BAe)      |  |  |  |  |  |  |  |
|                | merged to form BAE Systems                                        |  |  |  |  |  |  |  |
| BGA            | Ball Grid Array                                                   |  |  |  |  |  |  |  |
| BOK            | Body of Knowledge                                                 |  |  |  |  |  |  |  |
| CAN            | Controller Area Network                                           |  |  |  |  |  |  |  |
| CAN-FD         | Controller Area Network Flexible Data-Rate                        |  |  |  |  |  |  |  |
| CBRAM          | Conductive Bridging Random Access Memory                          |  |  |  |  |  |  |  |
| CGA            | Column Grid Array                                                 |  |  |  |  |  |  |  |
| CMOS           | Complementary Metal Oxide Semiconductor                           |  |  |  |  |  |  |  |
| <b>C</b> N     | Xilinx ceramic flip-chip (CF and CN) packages are ceramic         |  |  |  |  |  |  |  |
| CN             | column grid array (CCGA) packages                                 |  |  |  |  |  |  |  |
| CN/Kyocera     | CN Package assembled at Kyocera                                   |  |  |  |  |  |  |  |
| Corp.          | Corporation                                                       |  |  |  |  |  |  |  |
| сотя           | Commercial Off The Shelf                                          |  |  |  |  |  |  |  |
| CRC            | Cyclic Redundancy Check                                           |  |  |  |  |  |  |  |
| CSA            | Canadian Space Agency                                             |  |  |  |  |  |  |  |
| CSI2           | Camera Serial Interface 2nd Generation                            |  |  |  |  |  |  |  |
| CU             | Control Unit                                                      |  |  |  |  |  |  |  |
| Cu             | Cuallov                                                           |  |  |  |  |  |  |  |
| DDR            | Double Data Rate (DDR3 = Generation 3: DDR4 = Generation 4)       |  |  |  |  |  |  |  |
|                | Defense Logistics Agency - Land and Maritime                      |  |  |  |  |  |  |  |
| DIA            | Direct Memory Access                                              |  |  |  |  |  |  |  |
| DIVIA          | Direct Memory Access                                              |  |  |  |  |  |  |  |
| DCD            | Divital Circal Deservice                                          |  |  |  |  |  |  |  |
| USP            | Digital Signal Processing                                         |  |  |  |  |  |  |  |
| USPI           | Dynamic Signal Processing Instrument                              |  |  |  |  |  |  |  |
| DIKA           | Defense i freat Reduction Agency                                  |  |  |  |  |  |  |  |
| Dual Ch.       | Duai channel                                                      |  |  |  |  |  |  |  |
| ECC            | Error-Correcting Code                                             |  |  |  |  |  |  |  |
| EEE            | Electrical, Electronic, and Electromechanical                     |  |  |  |  |  |  |  |
| EMAC           | Equipment Monitor And Control                                     |  |  |  |  |  |  |  |
| ESA            | European Space Agency                                             |  |  |  |  |  |  |  |
| eTimers        | Event Timers                                                      |  |  |  |  |  |  |  |
| EZSS           | Air Force Components and Standardization Branch                   |  |  |  |  |  |  |  |
| FCCU           | Fluidized Catalytic Cracking Unit                                 |  |  |  |  |  |  |  |
| FinEET         | Fin Field Effect Transistor (the conducting channel is wrapped by |  |  |  |  |  |  |  |
| 1 m n 'E 1     | a thin silicon "fin")                                             |  |  |  |  |  |  |  |
| FPGA           | Field Programmable Gate Array                                     |  |  |  |  |  |  |  |
| FY             | Fiscal Year                                                       |  |  |  |  |  |  |  |
| GaN            | Gallium Nitride                                                   |  |  |  |  |  |  |  |
| GAN GIT        | Panasonic GaN GIT Eng Prototype Sample                            |  |  |  |  |  |  |  |

| Acronym      | Definition                                                |  |  |  |  |  |
|--------------|-----------------------------------------------------------|--|--|--|--|--|
| Gb           | Gigabyte                                                  |  |  |  |  |  |
| GIC          | Global Industry Classification                            |  |  |  |  |  |
| GIDEP        | Government Industry Data Exchange Program                 |  |  |  |  |  |
| GPU          | Graphics Processing Unit                                  |  |  |  |  |  |
| GRC          | Glenn Research Center                                     |  |  |  |  |  |
| GSFC         | Goddard Space Flight Center                               |  |  |  |  |  |
| GTH/GTY      | Transceiver Type                                          |  |  |  |  |  |
| HALT         | Highly Accelerated Life Test                              |  |  |  |  |  |
| HAST         | Highly Accelerated Stress Test                            |  |  |  |  |  |
| HBM          | High Bandwidth Memory                                     |  |  |  |  |  |
| HDIO         | High Density Digital Input/Output                         |  |  |  |  |  |
| HDR          | High-Dynamic-Range                                        |  |  |  |  |  |
| HIREV        | High Reliability Virtual Electronics Center               |  |  |  |  |  |
| HMC          | Hybrid Memory Cube                                        |  |  |  |  |  |
| HP Labs      | Hewlett-Packard Laboratories                              |  |  |  |  |  |
| HPIO         | High Performance Input/Output                             |  |  |  |  |  |
| HQ           | Headquarters                                              |  |  |  |  |  |
| hr           | hour                                                      |  |  |  |  |  |
| 12C          | Inter-Integrated Circuit                                  |  |  |  |  |  |
| i2MOS        | Microsemi second generation of Rad-Hard MOSFET            |  |  |  |  |  |
| IBM/GF       | International Business Machines/Global Foundaries         |  |  |  |  |  |
| IC           | Integrated Circuit                                        |  |  |  |  |  |
| IPC          | IR/Convection Reflow Profile                              |  |  |  |  |  |
| IR           | Infrared                                                  |  |  |  |  |  |
| JAXA         | Japan Aerospace Exploration Agency                        |  |  |  |  |  |
| IEDEC        | Ioint Electron Device Engineering Council                 |  |  |  |  |  |
| IPEG         | Joint Photographic Experts Group                          |  |  |  |  |  |
| IPI          | NASA let Propulsion Laboratory                            |  |  |  |  |  |
| ISC          | Johnson Space Center                                      |  |  |  |  |  |
| KB           | Kilobyte                                                  |  |  |  |  |  |
| khrs         | one thousand hours                                        |  |  |  |  |  |
| KSC          | Kennedy Space Center Home                                 |  |  |  |  |  |
| 12 Cache     | independent caches organized as a bierarchy (11.12. etc.) |  |  |  |  |  |
| LaRC         | Langley Research Center                                   |  |  |  |  |  |
|              |                                                           |  |  |  |  |  |
| LCMC         | Air Force Life Cycle Management Center                    |  |  |  |  |  |
| LinFlex      | Local Interconnect Network Flexible                       |  |  |  |  |  |
| L-mem        | Long-Memory                                               |  |  |  |  |  |
| LP           | Low Power                                                 |  |  |  |  |  |
| M/L BIST     | Memory/Logic Built-In Self-Test                           |  |  |  |  |  |
| MBSE         | Model-Based Systems Engineering                           |  |  |  |  |  |
| MDA          | Missile Defense Agency                                    |  |  |  |  |  |
| MIPI         | Mobile Industry Processor Interface                       |  |  |  |  |  |
| MLCC         | Multi Layer Ceramic Capacitor                             |  |  |  |  |  |
| MPSOC        | Multiprocessor System-on-Chip                             |  |  |  |  |  |
| MPU          | Microprocessor Unit                                       |  |  |  |  |  |
| MSFC         | Marshall Space Flight Center                              |  |  |  |  |  |
| NAND         | Negated AND or NOT AND                                    |  |  |  |  |  |
| NASA         | National Aeronautics and Space Administration             |  |  |  |  |  |
| NAVSEA Crane | Naval Sea Systems Command Crane Division                  |  |  |  |  |  |
| Navy Crane   | Naval Surface Warfare Center, Crane, Indiana              |  |  |  |  |  |
| NEPAG        | NASA Electronic Parts Assurance Group                     |  |  |  |  |  |
| NEPP         | NASA Electronic Parts and Packaging                       |  |  |  |  |  |
| NEPP-ETW     | NEPP Electronics Technology Workshop                      |  |  |  |  |  |
| NGSP         | Next Generation Space Processor                           |  |  |  |  |  |

| Acronym     | Definition                                             |
|-------------|--------------------------------------------------------|
| NOR         | Not OR logic gate                                      |
| NRL         | Naval Research Laboratory                              |
| NRO         | United States Navy National Reconnaissance Office      |
| NY-PEMC     | New York Power Electronics Manufacturing Consortium    |
| OCM         | on-chip RAM                                            |
| OSMA        | Office of Safety and Mission Assurance                 |
| PBGA        | Plastic Ball Grid Array                                |
| PCB         | Printed Circuit Board                                  |
| PCIe        | Peripheral Component Interconnect Express              |
| PCIe Gen2   | Peripheral Component Interconnect Express Generation 2 |
| PCIe Gen4   | Peripheral Component Interconnect Express Generation 4 |
| pcs         | pieces                                                 |
| POC         | Point of Contact                                       |
| POF         | Physics of Failure                                     |
| РоР         | Package on Package                                     |
| PPAP        | Production Part Approval Process                       |
| Proc.       | Processing                                             |
| QFN         | Quad Flat Pack No Lead                                 |
| R&D         | Research and Development                               |
| R&M         | Reliability and Maintainability                        |
| RAM         | Random Access Memory                                   |
| ReRAM       | Resistive Bandom Access Memory                         |
| RGB         | Red Green and Blue                                     |
| RH          | Rediction Hardened                                     |
| RHA         | Radiation Hardeness Assurance                          |
| CAE         | Society of Automotive Engineers                        |
| CAD         | Successive Approximation Register                      |
| SAR         | Successive-Approximation-Register                      |
| SATA        | Senar Auvanced Technology Attachment                   |
|             | Secondary Control Unit                                 |
| SD/EIVIIVIC | Secure Digital embedded MultiMediaCard                 |
| SD-HC       | Secure Digital High Capacity                           |
| SDRAM       | Synchronous Dynamic Random Access Memory               |
| SEE         | Single Event Effect                                    |
| SEE-MAPLD   | Single Event Effects Symposium and the Military and    |
|             | Aerospace Programmable Logic Devices                   |
| SERDES      | Serializer/Deserializer                                |
| Si          | Silicon                                                |
| SiC         | Silicon Carbide                                        |
| SK Hynix    | SK Hynix Semiconductor Company                         |
| SMC         | Air Force Space and Missile Systems Center             |
| SOA         | Safe Operating Area                                    |
| SOC         | Systems on a Chip                                      |
| SPI         | Serial Peripheral Interface                            |
| STT         | Avalanche Technology Spin Transfer Torque              |
| TBD         | To Be Determined                                       |
| Temp        | Temperature                                            |
| ті          | Texas Instruments                                      |
| Tj          | junction temperature                                   |
| TRL         | Technology Readiness Level                             |
| T-Sensor    | Temperature-Sensor                                     |
| TSMC        | Taiwan Semiconductor Manufacturing Company             |
| LIART       | Universal Asynchronous Receiver/Transmitter            |
| LISAE       | United States Air Force                                |
|             | Universal Serial Rus                                   |
| VNAND       | Vertical NAND                                          |
| VINAIND     | VenucarinanD                                           |



### **NEPP - Frame of Reference**

- EEE (electrical, electronic, and electromechanical) parts are:
  - All the things that are on printed circuit boards (PCB) inside of electronics boxes.
- This includes:
  - Integrated Circuits (ICs or chips) like processors and memories as well as passives such as capacitors and resistors,
  - Hybrid devices or multi-chip modules: Small packages that house multiple chips internally that are placed on the PCB, and,
  - Connectors and wires used to send electrical or power signals between boards, boxes, or systems.
- This does not include:
  - The PCB NASA Workmanship Program responsibility.



PCB from Mars Rover Image courtesy NASA



Image courtesy BAE Systems



Image courtesy NASA



### NEPP

- NEPP was chartered during the late 1980's to ensure appropriate commodities expertise existed to support the Agency.
  - In 2000, a subset of NEPP was created (NASA Electronic Parts Assurance Group – NEPAG) to ensure:
    - Appropriate sharing of information between the Centers and with other agencies, and,
    - Sufficient infrastructure exists to support Agency needs and to provide Agency leadership in supporting/developing EEE parts specifications, standards, guidelines, and test methods.
- NEPP has become a *premier* program for evaluating new EEE parts technologies and to develop insertion, test, screening, and qualification guidance.
  - We do not qualify specific parts, but develop the knowledge on HOW to qualify/test the parts.

### Taking a Step Back... A Simple View of NEPP's Perspective of What We Do



#### NEPP Efforts Relate to Assurance of EEE Parts – It's not just the technology, but how to view the need for safe insertion into space programs.



### **NEPP** Overview

NEPP provides the Agency infrastructure for assurance of EEE parts for space usage



**NEPP** and its subset (**NEPAG**) are the Agency's points of contact (**POCs**) for assurance and radiation tolerance of EEE parts and their packages.

## **NEPAG "Extended Family"**





### Technology Selection Criteria for NEPP Investigations

- The technologies should satisfy all or most of the following criteria:
  - Wide applicability,
  - Product level or in productization, and,
  - No distinction: COTS to high-reliability aerospace.
- In general, we avoid:
  - Laboratory technologies, e.g., <TRL3,</li>
  - Limited application devices with certain exceptions (critical application or NASA center specialization).
- Note: Partnering arrangements with other organizations preferred.
  - Industry examples: Microsemi, Xilinx, Altera (Intel), TI
  - Other U.S. Government: AF SMC, AFRL, DTRA, Navy Crane, NRO, NRL



### **Technology Investigations: Sample Roadmaps Discussion**

- Caveats:
  - Guidelines are often a product of technology evaluation tasks.
  - Only major product categories shown.
- Notes:
  - Separate CMOS roadmap not included.
    - NEPP leverages samples from ongoing DoD and/or commercial sources.
    - 1xnm is current target (IBM/GF, INTEL, Samsung, TSMC).
  - "Reliability testing" may include product and/or package testing.
  - "Body of Knowledge" BOK document provides a snapshot status on a technology (manufacturing, reliability, radiation) and identifies gaps for future work.
- Technology areas not on NEPP Roadmap, but under consideration include:
  - Electro-optics (fiber optics),
  - Advanced analog and mixed-signal devices,
  - Imaging sensors,
  - Modeling and simulation,
  - High-speed communication (SERDES, fast data switches), and,
  - Adjunct processors (eg., graphics, signal processing).



### **Gartner Hype Cycle Concept**



# Field Programmable Gate Arrays (FPGAs)

#### **Trusted FPGA**

- DoD Development



### Xilinx Zynq UltraScale+ Multi-Processor System on a Chip (MPSoC) family

#### Processing System



From Xilinx.com



### **Advanced Processors**





- collaborative with Navy Crane





### Alternate Grade Electronics: Automotive

- NEPP has three goals for automotive electronics efforts
  - Determine exactly what :"automotive grade" does or does not entail.
    - Includes understanding:
      - Automotive Electronics Council (AEC) documents, and,
      - Manufacturer Production Part Approval Process (PPAP).
  - Perform "snapshot" screening and testing on representative automotive grade electronics.
  - Explore application of resilient automotive electronics system designs for space purposes.

| Automotive<br>application<br>constraints or<br>standard<br>compliance  | To be impl                                                            | emented and n                                   |                                                   |                                                                           |                         |
|------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|-------------------------|
|                                                                        | Audio IP                                                              | SoC                                             | Application<br>firmware/<br>software              | РСВ                                                                       |                         |
| Noisy ground(s)<br>voltage                                             | Common mode<br>rejection                                              |                                                 |                                                   | Passive<br>components'<br>accuracy                                        |                         |
| Audio perception<br>and spatialization                                 | THD+N, gain<br>mismatch, Pop-up<br>Noise                              | SoC routing resistance                          | Processing, starting<br>and stopping<br>sequences | Application<br>Schematics<br>consideration                                | news_img/20141209_2.jpg |
| Security                                                               | Primary diagnostic<br>circuitry                                       | Redundant audio<br>interface                    | audio diagnostic<br>firmware                      | Protection circuitry                                                      |                         |
| High Temperature<br>operation<br>(AEC-Q100 Grade<br>0/1 qualification) | High performance<br>at<br>junction<br>Temperature<br>-40 °C to 125 °C | Package thermal<br>dissipation<br>consideration |                                                   | PCB material and<br>component<br>soldering<br>technology<br>consideration |                         |



## **Small Missions/ Automotive**

#### **EEE Parts Guidelines**

- Small missions (Class D, CubeSat – 2 documents)
- System on a chip (SOC) single event effects (SEE) guideline
- **Board-level proton test guideline**

#### Small Mission Commodities

- See commodities roadmaps for processors, power
- CubeSat Star Tracker

#### Automotive grade electronics

- Multiple classes of electronics (passives, actives, ICs)
  - **NASA and Navy Crane**
- Freescale MPC56XX

#### Alternate system tests

- Automotive resilience system tests
- Use of board-level testing for screening and qualification - Body of Knowledge (BOK) document



### Automotive -Advanced Driver Assistance Systems (ADAS) for Space?

#### S32V234 Block Diagram



#### From Freescale.com

Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth A. LaBel and Michael J. Sampson at the Space Parts Working Group (SPWG), Torrance, CA, April 19–20, 2016.

18

# Power and Wide Band Gap (WBG) Devices





# IC Packaging





### A Few Other Cool Tasks...

- CubeSat mission success/failure root cause analysis
  - Grant to Saint Louis University
- Using a model-based systems engineering (MBSE) approach to radiation assurance
  - Grant to Vanderbilt
  - Co-sponsored by NASA Reliability and Maintainability Program
  - Uses a tool called "Goal Structured Notation"
- Keeping the CRÈME website alive
  - Support to Vanderbilt
  - Just standard maintenance and operation, no upgrades
- Proton test facilities
  - Come to SEE-MAPLD (Single Event Effects Symposium Military and Aerospace Programmable Logic Devices Workshop) or NEPP ETW for updates



### **Radiation Highlights**

- Independent heavy ion testing of Microsemi RTG4 FPGA
  - Collaboration with AF/The Aerospace Corp
  - Presentations planned for SEE-MAPLD and NEPP ETW
- Heavy ion single event safe operating area (SOA) for Schottky Diodes
  - Presentations planned for SEE-MAPLD and NEPP ETW
  - Guideline planned by end of FY
- Processors
  - Collaboration with Navy Crane
  - State of the art technology (1x nm CMOS) evaluation
  - Presentations planned for NEPP ETW
- Protons
  - Board level test guideline
    - Presentations planned for SEE-MAPLD and NEPP ETW



Testing of RTG4 at Texas A&M Cyclotron (TAMU), Ken LaBel



Testing of Intel Broadwell Processor at TAMU, Ken LaBel

# Mike's "Highlights and Concerns"

- NEPAG celebrates 15 years of stimulating, weekly discussions and knowledge interchange that is/has been Educational, Influential, Collaborative, and Current
- New NASA Standard, "Electrical, Electronic, and Electromechanical (EEE) Parts Management and Control Requirements for Space Flight Hardware & Critical Ground Support Equipment" in NASA review cycle
  - Standardizes around current, Center- specific and shared practices
  - Covers selection, acquisition, traceability, testing, handling, packaging, storage, and application of EEE parts
  - Includes radiation, prohibited materials and counterfeit avoidance
- Hermeticity/ Internal Gas Analysis
  - NEPAG has a focus on hermeticity testing
  - Concerned there is no optimum test for gross leak
  - Gross leak escapes are riskier than fine leak ones liquid versus gaseous contamination
  - NASA prototyped a gross leak standard
- IC Packaging Temp Cycling



Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth A. LaBel and Michael J. Sampson at the Space Parts Working Group (SPWG), Torrance, CA, April 19–20, 2016.



Courtesy NEPP/MSFC



### **Metal Foil Resistor Screening**





Courtesy NEPP/GSFC

- Thermal imaging identifies "hot spots" defects in the resistor pattern.
- The hot spots can be "seen" through the coating on this chip resistor
- Life testing is showing the foil at these locations, can break under the stress
- Hot spots visible in infrared before (left) and after (right) a 2000hr life test
- Disappearing hot spots correspond to metal bridges opening up
- Was electrically verified as an ~11,000ppm shift in resistance
- Manufacturer participating in this evaluation
- Goal is for the manufacturer to adopt as a screen for space grade parts

# NEPP Evaluation of Automotive Grade EEE Parts

| Manufacturer | Lot<br>Code | Description                                                                                           | Quantity on<br>Test | Life Testing<br>Status | Comments                                                                                                                                                                              |
|--------------|-------------|-------------------------------------------------------------------------------------------------------|---------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A            | 1302        |                                                                                                       | 120                 | 10khrs                 | 120 pcs on test.<br>17 catastophic life test failures with first occurring<br>~3.1khrs                                                                                                |
| В            | 1304        | Ceramic Chip Capacitor,<br>0805, 0.47uF, 50V                                                          | 120                 | 10khrs                 | 120 pcs on test.<br>IR degradation noticed @7.5khrs;<br>3 catastrophic failures beyond 8khrs of test                                                                                  |
| С            | 1131        |                                                                                                       | 120                 | 10khrs                 | 120 pcs on test.<br>No Catastrophic Life Test Failures                                                                                                                                |
|              |             |                                                                                                       |                     |                        |                                                                                                                                                                                       |
| D            | 201028      |                                                                                                       | 78                  | >2k Hrs                | few devices exhibit reduced IR (non-catastrophic)                                                                                                                                     |
| E            | TBD         | Ceramic Chip Capacitor,                                                                               | 80                  | >2k Hrs                | few devices exhibit reduced IR (non-catastrophic)                                                                                                                                     |
| F            | 1247        | 0402, 0.01uF, 16V                                                                                     | 79                  | >2k Hrs                | Stable IR thus far.<br>Note: Precious Metal Electrode                                                                                                                                 |
|              |             |                                                                                                       |                     |                        |                                                                                                                                                                                       |
| G            | TBD         | Microciruit, Transceiver                                                                              | 50                  | Not yet started        | Initial Electricals in Progress                                                                                                                                                       |
| н            | 1152        | Microciruit, Comparator                                                                               | 50                  | Not yet started        | Initial Electricals in Progress                                                                                                                                                       |
| l            | 1341        | Microciruit, Op Amp                                                                                   | 50                  | Not yet started        | Test Program in Development                                                                                                                                                           |
| J            | unknown     | Dual small signal NPN<br>Bipolar transistor<br>(similar to 2N2919 and<br>2N2920<br>MIL-PRF-19500/355) | 20                  | >4.5k Hrs              | 1 failure at 1k Hrs.<br>Failure may be handling related. Life test has<br>completed 4.5khrs with no additional failures.<br>Life test continuing to 5.5khrs or until a failure occurs |
| к            | 1339        | Switching diode<br>(similar to 1N4148,<br>MIL-PRF-19500/116)                                          | 20                  | Not yet started        | Radiography completed.<br>Initial electrical testing completed.<br>High Temp Reverse Bias burn-in will be starting soon                                                               |
| L            | unknown     | Transient Voltage<br>Suppressor, 36V minimum<br>breakdown voltage, 400<br>watt peak pulse power       | 20                  | Not yet started        | Parts Procured.<br>Test Plan is being reviewed at Crane.<br>Electrical test and life test boards to be fabricated                                                                     |

### AECQ Ceramic Chip Capacitors, Insulation Resistance at 125°C







# **Upcoming NEPP Challenges**

- Complexity issues for inspection, screening, device preparation, and test
  - 2.5/3D Packages/ICs
  - Package on Package (PoP) Commercial Devices
  - An FPGA combined with an SOC (MPSOC+ from Xilinx)
  - Cu Wirebonds
- Assurance
  - Automotive and catalog commercial EEE parts?
  - Increasing risk with a worldwide supplier base
    - Traceability
    - Change control
    - Screening?
  - Consolidation.
    - What if the only source left is in an inhospitable or unauditable part of the world?



## **Summary and Comments**

- NEPP Roadmaps and Tasks are constantly evolving as technology and products become available.
  - Like all technology roadmaps, NEPP's is limited to funding and resource availability.
  - Not shown are TBD passives and connector roadmaps under development.
  - Partnering is the key:
    - Government,
    - Industry, and,
    - University.
- We look forward to further opportunities to partner.

### https://nepp.nasa.gov



## Upcoming

- 7<sup>th</sup> Annual NEPP Electronics Technology Workshop
  - June 13-16, 2016
  - NASA/GSFC (on-site) plus web access available
    - Registration is open! https://nepp.nasa.gov/workshops/etw2016/
    - On-site limited to U.S. and green card only
  - Highlights of NEPP tasks
  - HiREV day
  - Special topics include:
    - Automotive electronics and SiC power devices
    - 2.5/3D ICs and proton testing splinter groups



## **Notional NEPP ETW Schedule**

| Mon                                                                                                | 13-Jun                                                                                                                                                                                     | Tues                        | 14-Jun                                                                                                                                       | Wed                                         | 15-Jun                                                                                                                                                                            | Thurs               | 16-Jun                |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
|                                                                                                    |                                                                                                                                                                                            |                             |                                                                                                                                              |                                             |                                                                                                                                                                                   |                     |                       |
| Assurance                                                                                          |                                                                                                                                                                                            | COTS and CubeSats           |                                                                                                                                              | Technology Focus Day                        |                                                                                                                                                                                   | NEPP, HiREV         |                       |
|                                                                                                    |                                                                                                                                                                                            | NEPP Technology             | Ken LeDel NACA                                                                                                                               | Automotive Electronics -                    | Mishael Common NACA                                                                                                                                                               | Invited Delighility |                       |
| NEPP MISSION                                                                                       |                                                                                                                                                                                            | коастар                     | Ken Label - NASA                                                                                                                             | NEPP Overview                               | Michael Sampson - NASA                                                                                                                                                            | Invited Reliability |                       |
| NASA Parts Standard                                                                                | Peter Majewicz -<br>NASA/LaRC                                                                                                                                                              | CubeSat Success<br>Analysis | Prof. Michael<br>Swartwout, St. Louis<br>University                                                                                          | Automotive Electronics -<br>Special Session | ADAS and ECC DRAMs - Ivan Ivanov,<br>Micron; Autonomous Car is the New<br>Driver for Resilient Computing and<br>Design-for-Test - Nirmal Saxena -<br>NVIDIA                       | HiREV               |                       |
| Thermal Signature<br>of a Resistor - And<br>Problems<br>Encountered Along<br>the Way               | Jack Shue, et al<br>NASA/GSFC                                                                                                                                                              | Cubesat COTS Efforts        | CubeSat Star Tracker -<br>Farokh Irom - JPL,<br>CubeSat Processing -<br>Steve Guertin - JPL,<br>CubeSat Power Update -<br>Leif Scheick - JPL |                                             | Leveraging Test Capabilities from<br>Other Communities - <b>Zef Malik,</b><br><b>Silicon Turnkey</b> ; Automotive<br>Electronics and PPAP - <b>Eli Kawam,</b><br><b>Microchip</b> |                     |                       |
| MIL/JEDEC<br>Standards Update<br>(includes underfill)                                              | Shri Agarwal - JPL                                                                                                                                                                         | RHA for Small<br>Missions   | Michael Campola -<br>NASA/GSFC                                                                                                               | SiC Special Session                         | NY PEMC Capabilities and SiC<br>Electronics, Alexey Vert, NY-PEMC                                                                                                                 |                     |                       |
| Cu Bond Wire and<br>PEM update –<br>Requirement<br>Documentation and<br>Data<br>Laser Ablation and | S. Ali Lilani, Integra<br>Technologies LLC                                                                                                                                                 | FPGAs                       |                                                                                                                                              |                                             | Anant Agarwal, US Department of<br>Energy; David Grider - Wolfspeed                                                                                                               |                     |                       |
| Chemical<br>Decensulation for                                                                      | Trevor Devaney, Hi-Kei                                                                                                                                                                     |                             |                                                                                                                                              |                                             |                                                                                                                                                                                   |                     |                       |
| Conner Wirebonds                                                                                   | Labs                                                                                                                                                                                       |                             |                                                                                                                                              | NEPP SiC Overview                           | TBD - NASA                                                                                                                                                                        |                     |                       |
| Future of QML<br>Hermetic ICs                                                                      | Tim Flaherty,<br>Golden Altos Corporation                                                                                                                                                  |                             |                                                                                                                                              | 2.5/3D Packaging Overview<br>and Challenges | Robert Patti, Tezzaron                                                                                                                                                            | NEPP GaN            | Leif Scheick<br>- JPL |
|                                                                                                    |                                                                                                                                                                                            |                             | Processors - Freescale,                                                                                                                      |                                             |                                                                                                                                                                                   |                     |                       |
|                                                                                                    | Pat McManus -                                                                                                                                                                              |                             | Intel, and more - Steve                                                                                                                      | Proton Test Facilities and                  | Ken LaBel - NASA; Steve Guertin -                                                                                                                                                 | NEPP - HIREV        |                       |
| Hermeticity Update                                                                                 | NASA/MSFC                                                                                                                                                                                  | Processing Session          | Guertin - JPL, TBD                                                                                                                           | Testing                                     | JPL                                                                                                                                                                               | Splinter            |                       |
|                                                                                                    | RHA Guideline - Michael<br>Campola - NASA/GSFC,<br>Board-level Proton Test<br>Guideline - Steve Guertin -<br>JPL, Schottky Diode SOA -<br>Megan Casey - NASA/GSFC;<br>Euturo BHA Altornato |                             | Automotivo                                                                                                                                   | Soliptor 1: 2 E/2D                          |                                                                                                                                                                                   |                     |                       |
|                                                                                                    | Assurance Approach (R&M) -                                                                                                                                                                 |                             | Microcontroller - Ted                                                                                                                        | Packaging - future                          |                                                                                                                                                                                   |                     |                       |
| Radiation Assurance                                                                                | TBD, Vanderbilt University                                                                                                                                                                 |                             | Wilcox - AS&D/NASA                                                                                                                           | assurance challenge                         | Splinter 2: Proton test and facilities                                                                                                                                            |                     |                       |