Iodine Hall Thruster

For space exploration

Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars.

In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio.

In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (~3,000 s) and 60 percent at high thrust (Isp ~2,000 s).

Applications

NASA

- Orbit raising and interplanetary transfers:
 - Exploration and science missions to near-Earth objects, asteroids, comets, and planets
- Reboosting the International Space Station (ISS), which is currently accomplished by chemical propulsion

Commercial

- Orbiting spacecraft:
 - Orbit raising
 - Orbit circularization
 - Inclination changes
 - Station keeping
 - Repositioning
- High-power electric upper stage for a commercial launch vehicle

Phase II Objectives

- Design and build fully integrated high-power iodine thruster system consisting of a thruster, cathode, and propellant feed system
- Measure performance of integrated system
- Assess materials compatibility requirements and system issues
- Collect data to assess spacecraft interactions

Benefits

- High-purity iodine is available commercially in large quantities and at much lower cost than xenon.
- Iodine stores at two to three times greater density than xenon and at approximately one-thousandth of the pressure and may be stored in low-mass, low-cost propellant tanks.
- Passive, long-term storage of a fully fueled system is feasible, including storage in conformal tanks that may be used to shield internal components against some types of space radiation.

Firm Contact

Busek Company, Inc. James Szabo jszabo@busek.com 11 Tech Circle Natick, MA 01760–1023 Phone: 508–655–5565

Proposal Number: 11-2 X2.03-8838