AN UPDATED EXAMINATION OF AVIATION ACCIDENTS ASSOCIATED WITH TURBULENCE, WIND SHEAR AND THUNDERSTORM

Prepared by Joni K. Evans

December 1, 2014

AMA Report Number 1<mark>4-14</mark> (please contact Contracts: contracts@ama-inc.com) NASA Prime Contract No. BPA #NNL12AA09C Task Order 12.002.14.00.E403.B

Introduction

One of the technical challenges within the Atmospheric Environment Safety Technologies (AEST) Project of the Aviation Safety Program was to "improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena"¹. In 2012, the author performed an analysis comparing various characteristics of accidents associated with different types of atmospheric hazard environments². This document reports an update to that analysis which was done in preparation for presenting these findings at the 2015 annual meeting of the Transportation Research Board. Specifically, an additional three years of data were available, and a time-trend analysis was added.

This update maintains the taxonomy of atmospheric hazards that was developed for the original study, with the following categories:

- 1. Wake Turbulence (WAKE): Wake turbulence is a by-product of lift and is present behind every aircraft in flight. Once the aircraft is airborne, two counter rotating cylindrical vortices are created, which are hazardous to any trailing aircraft. This is particularly true during take-off, initial climb, final approach and landing, when the high angle of attack at which the aircraft operates maximizes the formation of strong vortices.
- 2. Mountain wave turbulence (MTN): Mountain wave turbulence occurs when air flows are forced to rise up the windward side of a mountain barrier, then as a result of certain atmospheric conditions, sink down the leeward side. This perturbation develops into a series of waves which may extend for hundreds of miles.
- 3. Clear air turbulence (CAT): Clear air turbulence typically occurs in cloud-free regions at higher altitude, widely separated from mountains, and often is associated with wind shear, particularly between the core of a jet stream and the surrounding air.
- 4. Cloud Turbulence (CLD): This turbulence phenomenon occurs in cloud covered regions without the requirements of convection or precipitation reaching the ground.
- 5. Convective turbulence (CONV): An air mass which absorbs heat from the earth's surface will rise. As the air rises, it cools, and eventually the cooler air mass descends. This cycle of rising and falling air is known as convection. Convective turbulence occurs within, or in close proximity to, convective storms, particularly thunderstorms, which result in strong updrafts and downdrafts.
- 6. Thunderstorm, with no turbulence (TRW): This hazard category is restricted to thunderstorms, with or without microbursts or wind shear, but with no mention of turbulence.

¹ Atmospheric Environment Safety Technologies (AEST) Project Plan. October 1, 2010 (Updated on October 21, 2011)

² An Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm. NASA CR-2013-217989; May 2013.

7. Low Altitude Wind Shear, Microburst or Turbulence (LWT): This category consists of wind shear, microbursts or turbulence occurring at low altitude, with no mention of thunderstorms.

This report examines the historical aviation accidents from 1987-2011, using the National Transportation Safety Board (NTSB) Aviation Accident and Incident Data System. All US-based accidents with a cause or factor of turbulence, thunderstorm, wind shear or microburst were assigned to only one of the seven categories defined above, and this report summarizes the differences between the categories in terms of factors such as flight operations category, aircraft engine type, the accident's geographic location and time of year, degree of injury to aircraft occupants, aircraft damage, age and certification of the pilot and the phase of flight at the time the flight encountered severe weather. All percentages shown in tables or charts are based on the totals for the particular category listed above. Sixteen accidents for which the accident report did not provide sufficient detail to classify the type of turbulence with confidence were eliminated from the analysis.

Methods

The National Transportation Safety Board is an independent Federal agency that investigates every civil aviation accident in the United States and significant accidents in the other modes of transportation, conducts special investigations and safety studies, and issues safety recommendations to prevent future accidents. The information the NTSB investigators collect during their investigations of these aviation events resides in the NTSB Aviation Accident and Incident Data System. A copy of this database in Microsoft Access format was obtained from the Aviation Safety Information Analysis and Sharing (ASIAS) department of the FAA's Office of Aviation Safety³ in September 2014. At that point in time, the NTSB investigation was not complete for a substantial number of 2013 accidents, particularly those which occurred toward the end of the year. For this reason, all work on the database was restricted to 1987-2012, which was primarily an update of two years beyond the previous working version of the data. In addition, many of the 2012 accidents affected by turbulence and other types of weather did not have final reports, so this update was restricted to 1987-2011.

The NTSB database includes events involving a wide variety of aircraft (airplanes, helicopters, hot air balloons, gliders, ultralight, etc.) with operations conducted under various Federal Aviation Regulations (Part 91: General Aviation, Part 121: Commercial Air Carriers, Part 129: Foreign Air Carriers, Part 135: Commuters and On-Demand Air Taxis, Part 137: Agricultural Operations, etc.).

³ http://www.asias.faa.gov/portal/page/portal/asias_pages/asias_home/

The NTSB considers each event to be either an accident or an incident, under the following definitions:⁴

- Accident an occurrence associated with the operation of an aircraft, which takes place between the time any person boards the aircraft with the intention of flight and all such persons have disembarked, and in which any person suffers death or serious injury, or in which the aircraft receives substantial damage
- Incident an occurrence other than an accident, associated with the operation of an aircraft, which affects or could affect the safety of operations

Any injury or aircraft damage which occurs when there was no intent for flight (high speed taxi tests, movement of the aircraft around the airfield, maintenance run-ups, etc) is, by definition, an incident.

All recorded accidents involving commercially built fixed-wing airplanes operating under FAR Part 121, Part 135 or Part 91 were included in these working datasets, regardless of whether the investigation is in a preliminary stage or finalized, and whether or not the event occurred within the United States. Amateur built or experimental aircraft were excluded, as were helicopters, ultra light aircraft, gliders and balloons.

For every accident, the NTSB records a series of occurrence codes (e.g., In Flight Encounter with Weather, Loss of Control – In Flight, Hard Landing, etc.) and the associated phase of flight. They also record causes, factors and findings associated with each occurrence. Causes are actions or events that lead directly to the accident, while factors are actions or events that contributed to the accident. Each accident can have multiple causes and multiple factors⁵. Findings are actions or events that occurred in conjunction with the accident, but no determination was made that they contributed to the accident. For example, the aircraft might have flown in the area of a thunderstorm with lightning, but the lightning had no impact on the flight or the accident, so lightning is recorded as a finding. Similarly, the pre-flight weather briefing might have included turbulence, icing and low ceiling, but if there was no indication that the flight actually encountered turbulence, it would be considered only a finding.

Accidents were selected for inclusion in this study if turbulence, thunderstorm, wind shear or microburst was considered either a cause or a factor (but not a finding) in the accident report. The main interest in this analysis with regards to thunderstorms is the effect of turbulence and other types of wind. Eight accidents in which the primary occurrence was a lightning strike or hail damage were excluded, despite the obvious connection to thunderstorm activity. These would be considered part of a separate category, based on the taxonomy described above. Similarly, accidents resulting from jet blast and propeller/rotor wash have been excluded, despite being included in the definition for wake turbulence from the Aeronautical Information Manual (AIM)⁶: "A phenomena resulting from the passage of an aircraft through the atmosphere. The term includes vortices, thrust stream turbulence, jet blast, jet wash, propeller wash, and rotor

⁴ National Transportation Safety Board, "Government Information Locator Service (GILS): Aviation Accident Synopses" <u>http://ntsb.gov/Info/gils/gilssyn.htm</u>

⁵ https://asafe.larc.nasa.gov/DOC/definitions.html

⁶ <u>http://www.faa.gov/air_traffic/publications/ATpubs/AIM/aim.pdf;</u> page PCG-W1.

wash both on the ground and in the air." This study is interested in the more focused definition of "off the ground" wake turbulence that was provided in the introduction.

In order to describe the types of aircraft which were involved in these accidents, the specific aircraft make and model (and in many cases, aircraft series) was determined for each accident. For the vast majority of events, this information could be easily found in the data record. For some events it was necessary to consult the FAA's aircraft registry database, and to assume that the correct aircraft registration number was recorded in the data system. All aircraft in the data system for the chosen time period (1987-2011) were divided into groups based on some combination of engine type, aircraft use, aircraft size and aircraft complexity. The aircraft categories are as follows, and a list of the particular aircraft models (sometimes including series information) within each category can be found in Appendix A.

- Wide Body Jet Airliners
- Narrow Body Jet Airliners
- Regional Jets
- Medium Sized Business Jets
- Small Business Jets (maximum takeoff weight <= 12,500 lbs)
- Large Turbo-props (maximum takeoff weight $\geq 32,000$ lbs and more than 30 seats)
- Medium Turbo-props (12,500< maximum takeoff weight <32,000 lbs or 15-30 seats)
- Small Turbo-props (maximum takeoff weight <12,500 lbs and less than 15 seats)
- Heavier multiple reciprocating engines (maximum takeoff weight >15,000 lbs)
- Lighter multiple reciprocating engines (maximum takeoff weight < 15,000 lbs)
- Single reciprocating engine, retractable landing gear
- Single reciprocating engine, fixed landing gear
- Light Sport Aircraft (Rotax Engines)

Results and Discussion

Nine hundred ninety accidents were considered in this analysis; these were all affected by some sort of turbulence, thunderstorm, wind shear or microburst, or a combination thereof. In this report, these weather conditions will be referred to collectively as "Atmospheric Hazards." Each accident was assigned to only one hazard category. Figure 1 shows the distribution of these hazards. Seventy of these flights (7.1%) encountered wake turbulence, eighty-one (8.2%) were affected by mountain wave turbulence, one hundred twenty-eight (12.9%) encountered clear air turbulence, one hundred (10.1%) were classified as turbulence in clouds, one hundred eighty-six (18.8%) were affected by convective turbulence, one hundred forty (24.2%) were affected by low altitude wind shear, turbulence or microburst with no mention of thunderstorm.

Figure 1. Distribution of Atmospheric Hazard Categories.

Flight Operations Category

Table 1 and Figure 2 show how these events were distributed among flight operations. Although wake turbulence is caused primarily by large jets⁷, its effects are felt most among Part 91 flights (84%). Similarly, Part 91 flights account for nearly all accidents attributed to mountain wave turbulence (90%), thunderstorms with no turbulence (91%) and low altitude wind shear,

⁷ Nelson, R.C., "The Trailing Vortex Wake Hazard: Beyond the Takeoff and Landing Corridors." American Institute of Aeronautics and Astronautics. 2004-5171.

turbulence or microburst (93%). Clear air turbulence primarily affects Part 121 (75%), while both cloud and convective turbulence are split more evenly between Part 121 and Part 91. Part 135 accidents accounted for between two and nine percent of the atmospheric hazards which were examined here (5% overall), and roughly five percent of all accidents in this time frame.

Atmospheric Hazard	Part 121	Part 135	Part 91	Total
Wake Turbulence	5(7.1%)	6(8.6%)	59 (84.3%)	70 (100%)
Mountain Wave Turbulence	5 (6.2%)	3 (3.7%)	73 (90.1%)	81 (100%)
Clear Air Turbulence	97 (75.8%)	5 (3.9%)	26 (20.3%)	128 (100%)
Cloud Turbulence	43 (43.0%)	6(6.0%)	51 (51.0%)	100 (100%)
Convective Turbulence	78 (41.9%)	3 (1.6%)	105 (56.5%)	186 (100%)
Thunderstorm (no turbulence)	7 (3.8%)	10 (5.4%)	168 (90.8%)	185 (100%)
Low Altitude Wind Shear, Microburst or Turbulence	3(1.3%)	15 (6.3%)	222 (92.5%)	240 (100%)

Table 1. Flight operations among each type of atmospheric hazard (1987-2011)

Figure 2. Flight operations among each type of atmospheric hazard (1987-2011).

Yearly Trends

Figures 3 and 4 show the trend in the number of accidents affected by each these atmospheric hazards across time. In order to adjust the annual counts for the change in flight hours from year to year, a weighting factor was created by dividing the average total flight hours (see Appendix B) by the total flight hours for each year. That weighting factor was then multiplied by the number of accidents in that year to create an adjusted count. These are denoted in Figures 3 and 4 by circles of different colors. Due to the often large variation in the number of accidents from one year to the next, a three-year moving average was calculated, and these numbers are represented by the solid line. A simple linear regression was also fit to the adjusted counts in order to assess whether each type of hazard is increasing/decreasing or stable.

The number of accidents affected by wake turbulence (p=0.0015), thunderstorm (p=0.003) and low altitude wind shear, microburst or turbulence (p=0.005) has, in general, decreased over these 25 years, while the number of mountain wave accidents has been stable.

Figure 3. Adjusted number of specific atmospheric hazard accidents by year (1987-2011).

The number of accidents affected by clear air turbulence, cloud turbulence and convective turbulence has changed substantially from year to year, but these data show no definitive trend (p>0.09).

Figure 4. Adjusted number of specific atmospheric hazard accidents by year (1987-2011).

Figure 5 shows similar data, but by FAR Part. Here all of the accidents selected for this report were combined, and the adjustments to yearly counts were made using the average flight hours within each FAR Part. The total adjusted counts were created by adding the individual flight operation adjusted counts, and the moving average was calculated using these totals. The number of accidents (adjusted) both overall and within Part 91 have decreased significantly (p<0.0001 from a simple linear regression). Part 121 (p=0.79) and Part 135 (p=0.066) atmospheric hazard accidents (adjusted) have neither increased nor decreased.

Figure 5. Adjusted number of all atmospheric hazard accidents by year and FAR Part (1987-2011).

Time of Year

Figure 6 shows the monthly trend for each type of atmospheric hazard. Thunderstorms and convective turbulence follow the same general pattern, peaking in July. Turbulence in clouds shows a lack of pattern, with peaks in April, July and September. Mountain wave turbulence peaks in December, January, and May. Wake turbulence has a substantial peak in September and a big dip in April. Clear air turbulence peaks in April, and is lowest in August. Low altitude wind shear, microburst and turbulence tends to follow a similar pattern to thunderstorm, but the difference between the low months (December and January) and high months (May and July) is not as great.

Figure 6. Month of Accident among each type of atmospheric hazard (1987-2011).

<u>Pilot Certification</u>

Table 2 and Figure 7 show the distribution of pilot certification among each atmospheric hazard category. Eighty-seven percent of those accidents which encountered clear air turbulence had an airline transport certificated pilot at the helm, along with fifty-four percent of the accidents affected by turbulence in clouds. Sixty-three percent of the pilots encountering thunderstorms had only a private license. Fourteen of the wake turbulence accidents had a student pilot in the aircraft. Ten of the remaining "Other/Unknown" certifications were also student pilots, and two pilots had no license.

Atmospheric Hazard	Air Transport	Commercial	Private	Other / Unknown	Total
Wake Turbulence	18 (25.7%)	18 (25.7%)	20 (28.6%)	14 (20.0%)	70 (100%)
Mountain Wave Turbulence	19 (23.5%)	22 (27.2%)	38 (46.9%)	2(2.5%)	81 (100%)
Clear Air Turbulence	111 (86.7%)	6(4.7%)	11 (8.6%)	0(0.0%)	128 (100%)
Cloud Turbulence	54 (54.0%)	19 (19.0%)	27 (27.0%)	0(0.0%)	100 (100%)
Convective Turbulence	86 (46.2%)	35 (18.8%)	63 (33.9%)	2(1.1%)	186 (100%)
Thunderstorm (no turbulence)	25 (13.5%)	41 (22.2%)	117 (63.2%)	2(1.1%)	185 (100%)
Low Altitude Wind Shear, Microburst or Turbulence	36 (15.0%)	92 (38.3%)	106 (44.2%)	6(2.5%)	240 (100%)

Table 2	Dilot	artification	omongo	ach turna	ofotmos	nharia	hazard (1007 2011	1
1 aute 2.	1 HOL	certification	among c	achtype	or aumos	phene	nazaru (1907-2011)

Figure 7. Pilot Certification among each type of atmospheric hazard (1987-2011).

Pilot Age

Figure 8 shows the percentage of accidents in each hazard category for ten groupings of pilot age. Not surprisingly, most of the pilots in accidents encountering clear air turbulence, turbulence in clouds and convective turbulence tend to be between forty-five and sixty years. According to the FAA, most active pilots are between the ages of 40 and 60. For every weather category except thunderstorm and low altitude wind shear, microburst or turbulence, the top three age groups were somewhere between forty and sixty years. However, fifteen percent of the accidents encountering thunderstorms were piloted by someone aged sixty-five or older; this was the largest percentage associated with any age grouping for that hazard. The age distribution among low altitude wind shear, microburst or turbulence was nearly uniform (with every age grouping representing 7-12%).

Figure 8. Pilot Age among each type of atmospheric hazard (1987-2011).

Aircraft Engine Type and Size

Aircraft engine types correlate strongly (although not perfectly) with flight operations categories, so it is not surprising that the distribution of atmospheric hazard by engine type (Table 3 and Figure 9) is very similar to that observed in Table 1 and Figure 2.

Atmospheric Hazard	Jet	Turbo-Prop Recipro		Total
Wake Turbulence	7 (10.0%)	2 (2.9%)	61 (87.1%)	70 (100%)
Mountain Wave Turbulence	6(7.4%)	5 (6.2%)	70 (86.4%)	81 (100%)
Clear Air Turbulence	93 (72.7%)	12 (9.4%)	23 (18.0%)	128 (100%)
Cloud Turbulence	40 (40.0%)	12 (12.0%)	48 (48.0%)	100 (100%)
Convective Turbulence	75 (40.3%)	18 (9.7%)	93 (50.0%)	186 (100%)
Thunderstorm (no turbulence)	8 (4.3%)	9(4.9%)	168 (90.8%)	185 (100%)
Low Altitude Wind Shear, Microburst or Turbulence	10(4.2%)	9(3.8%)	221 (92.1%)	240 (100%)

Toble 2 Engine typ	a among agah	type of atmos	phorie hozord	$(1097 \ 2011)$
1 auto J. Engine typ	e among each		SUNCTIC Hazaru	(190/-2011)
				(·)

Figure 9. Engine type among each type of atmospheric hazard (1987-2011).

Among jet aircraft (Table 4), eighty percent of the low altitude events involved business jets. In all other categories of atmospheric hazard accidents, between fifty-three and sixty-eight percent of the jet aircraft were narrow-body jets.

Atmospheric Hazard	Wide-Body	Narrow-Body	Regional	Business	Total
Wake Turbulence	0(0.0%)	4 (57.1%)	0(0.0%)	3 (42.9%)	7 (100%)
Mountain Wave Turbulence	0(0.0%)	4 (67.7%)	0(0.0%)	2 (33.3%)	6 (100%)
Clear Air Turbulence	31 (33.3%)	50 (53.8%)	9 (9.7%)	3 (3.2%)	93 (100%)
Cloud Turbulence	9 (22.5%)	25 (62.5%)	4 (10.0%)	2 (5.0%)	40 (100%)
Convective Turbulence	17 (22.7%)	48 (64.0%)	7 (9.3%)	3 (4.0%)	75 (100%)
Thunderstorm (no turbulence)	2 (25.0%)	5 (62.5%)	0(0.0%)	1 (12.5%)	8 (100%)
Low Altitude Wind Shear, Microburst or Turbulence	0(0.0%)	2 (20.0%)	0(0.0%)	8 (80.0%)	10 (100%)

Table 4. Aircraft Size (jet engines) among each type of atmospheric hazard (1987-2011)

Among turbo-props (Table 5), fifty percent of the CAT accidents were in large aircraft (maximum takeoff weight >= 32,000 lbs and more than 30 seats). For every other category of atmospheric hazard, at least half of the turbo-prop accidents involved small aircraft (maximum takeoff weight <12,500 lbs and less than 15 seats).

Single-engine, retractable gear aircraft comprise the largest percentage (43%-46%) of pistonengine aircraft in clear air, cloud and convective turbulence (Table 6). In all other categories, the largest group was single-engine fixed gear aircraft.

Atmospheric Hazard	Large Medium		Small	Total
Wake Turbulence	1 (50.0%)	0(0.0%)	1 (50.0%)	2 (100%)
Mountain Wave Turbulence	1 (20.0%)	1 (20.0%)	3 (60.0%)	5 (100%)
Clear Air Turbulence	6 (50.0%)	3 (25.0%)	3 (25.0%)	12 (100%)
Cloud Turbulence	5 (41.7%)	0(0.0%)	7 (58.3%)	12 (100%)
Convective Turbulence	4 (22.2%)	5 (27.8%)	9 (50.0%)	18 (100%)
Thunderstorm (no turbulence)	0(0.0%)	2 (22.2%)	7 (77.8%)	9 (100%)
Low Altitude Wind Shear, Microburst or Turbulence	0(0.0%)	3 (33.3%)	6 (66.7%)	9 (100%)

Table 5. Aircraft Size (turbo-prop engines) among each type of atmospheric hazard(1987-2011)

Table 6. Aircraft Size (reciprocating engines) among each type of atmospheric hazard(1987-2011)

Atmospheric Hazard	Single Engine, Fixed Gear	Single Engine, Retractable Gear	Multiple Engine	Total
Wake Turbulence	44 (72.1%)	7 (11.5%)	10 (16.4%)	61 (100%)
Mountain Wave Turbulence	34 (48.6%)	25 (35.7%)	11 (15.7%)	70 (100%)
Clear Air Turbulence	9 (39.1%)	10 (43.5%)	4 (17.4%)	23 (100%)
Cloud Turbulence	15 (31.3%)	22 (45.8%)	11 (22.9%)	48 (100%)
Convective Turbulence	33 (35.5%)	42 (45.2%)	18 (19.4%)	93 (100%)
Thunderstorm (no turbulence)	70 (41.7%)	55 (32.7%)	43 (25.6%)	168 (100%)
Low Altitude Wind Shear, Microburst or Turbulence	147 (66.5%)	56 (25.3%)	18(8.1%)	221 (100%)

Figure 10. Aircraft engine/size grouping for each type of atmospheric hazard (1987-2011).

Phase of Flight

Figure 11 shows the phase of flight at the time the aircraft encountered each type of atmospheric hazard. All types except wake turbulence and low altitude wind shear, turbulence or microburst are most likely to occur during cruise flight. Wake turbulence is most likely during approach or landing, and by definition, low altitude wind shear, turbulence or microburst is most likely during approach, landing or takeoff.

Figure 11. Phase of flight at time of each type of atmospheric hazard (1987-2011).

Degree of Injury

Table 7 describes the highest level of injury sustained among the accidents in each category. Seventy-four percent of accidents in which thunderstorms were a factor included at least one fatality. Sixty-three percent of accidents in which the flight was caught in mountain wave activity were fatal, compared with only six percent of accidents encountering clear air turbulence. However, roughly eighty-five percent of the clear air, cloud and convective turbulence categories included either a fatal or serious injury (78% for mountain wave, 76% for thunderstorm). Surprisingly, forty-one percent of the accidents affected by wake turbulence and fifty-three percent of those affected by low altitude wind shear, microburst or turbulence resulted in no injuries whatsoever.

Atmospheric Hazard	Fatal	Serious	Minor	None	Total
Wake Turbulence	12 (17.1%)	15 (21.4%)	14 (20.0%)	29 (41.4%)	70 (100%)
Mountain Wave Turbulence	51 (63.0%)	12 (14.8%)	8 (9.9%)	10 (12.3%)	81 (100%)
Clear Air Turbulence	8 (6.3%)	102 (79.7%)	1(0.8%)	17 (13.3%)	128 (100%)
Cloud Turbulence	40 (40.0%)	48 (48.0%)	5 (5.0%)	7 (7.0%)	100 (100%)
Convective Turbulence	72 (38.7%)	82 (44.1%)	8 (4.3%)	24 (12.9%)	186 (100%)
Thunderstorm (no turbulence)	136 (73.5%)	5 (2.7%)	10(5.4%)	34 (18.4%)	185 (100%)
Low Altitude Wind Shear, Microburst or Turbulence	31 (12.9%)	37 (15.4%)	46 (19.2%)	126 (52.5%)	240 (100%)

Table 7.	Degree of	f iniurv	among	each type	of atmos	pheric	hazard (1987-2011)
1 uoie /.	Degree 0	I III July	unions	each type	or atmos	phone	mazara (1707 2011	• /

Degree of Aircraft Damage

As shown in Table 8, nearly seventy-three percent of accidents encountering clear air turbulence suffered no damage to the aircraft. In more than ninety-two percent of accidents affected by wake turbulence, mountain wave turbulence, thunderstorm, or low altitude wind shear, microburst or turbulence, the aircraft was either destroyed or suffered substantial damage. In the categories of turbulence in clouds and convective turbulence, nearly equal numbers of aircraft suffered no damage as were destroyed.

Atmospheric Hazard	Destroyed	Substantial Damage	Minor Damage	No Damage	Total
Wake Turbulence	20 (28.6%)	46 (65.7%)	1 (1.4%)	3 (4.3%)	70 (100%)
Mountain Wave Turbulence	51 (63.0%)	24 (29.6%)	0(0.0%)	6(7.4%)	81 (100%)
Clear Air Turbulence	8 (6.3%)	18 (14.1%)	9(7.0%)	93 (72.7%)	128 (100%)
Cloud Turbulence	39 (39.0%)	15 (15.0%)	1(1.0%)	45 (45.0%)	100 (100%)
Convective Turbulence	70 (37.6%)	38 (20.4%)	7 (3.8%)	71 (38.2%)	186 (100%)
Thunderstorm (no turbulence)	124 (67.0%)	60 (32.4%)	0(0.0%)	1 (0.5%)	185 (100%)
Low Altitude Wind Shear, Microburst or Turbulence	45 (18.8%)	195 (81.3%)	0(0.0%)	0(0.0%)	240 (100%)

Table 8. Aircraft damage among each type of atmospheric hazard (1987-2011)

Geographic Location

In order to examine the areas of the country more prone to specific types of atmospheric hazards, the author created regions based on the location of the aircraft at the time of the accident. These regions were defined as follows:

- Northeast: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia
- Southeast: North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, Tennessee, Kentucky, Virginia and West Virginia
- Great Lakes: Ohio, Indiana, Illinois, Michigan, Wisconsin and Minnesota
- Plains: Iowa, Missouri, Arkansas, Oklahoma, Kansas, Nebraska, South Dakota and North Dakota
- Northwest: Montana, Wyoming, Idaho, Oregon and Washington
- Southwest: California, Utah, Nevada, Arizona, Colorado, New Mexico and Texas
- Alaska: Alaska

• Pacific Ocean: Generally flights to or from the US, Asia, Australia and New Zealand, including Guam and Hawaii

• Other: Generally flights in or near South America, the Caribbean and Europe

Figure 12. Geographic region at time of each type of atmospheric hazard (1987-2011).

Thunderstorms, convective turbulence and turbulence in clouds most often occur in the southeast United States (US), followed by the southwest US (see Figure 12). All other types of atmospheric hazards, particularly mountain wave activity, are most likely to occur in the southwest US. Mountain wave activity is rarely involved in accidents outside of Alaska and the western US. Low altitude wind shear, microburst or turbulence occurs most often in the southwest, but is nearly as likely in the northeast or great lakes regions as in Alaska. Thunderstorms and convective turbulence are least often involved in accidents in the northwest

US, Alaska and the Pacific Ocean. Forty percent of wake turbulence occurs in the southwest, compared with less than 20% in the southeast.

In order to further examine the location of accidents with a cause or factor of some type of atmospheric hazard, Figure 13 shows the percentage of each type of atmospheric hazard in the states which were defined as part of the southwest and southeast regions. In general, the states with the most events are California, Colorado, Texas and Florida. The most wake turbulence is in California, the most mountain wave activity is in California, Colorado and New Mexico, and the most low altitude wind shear, microburst or turbulence is in California and Colorado. Clear air turbulence was felt most often in Colorado, California and Florida, turbulence in clouds was most often encountered in Florida and California, convective turbulence in Florida and thunderstorms in Florida and Texas.

Figure 13. State nearest occurrence of each type of atmospheric hazard (1987-2011).

Summary

The purpose of this analysis was to compare the characteristics of accidents associated with seven categories of atmospheric hazard (mostly turbulence, thunderstorm and wind shear). Nine hundred ninety accidents from 1987-2011 were selected from the NTSB accident database. All are considered US-based accidents, and were operating under FAR Part 121, 135 or 91 flight rules at the time.

Wake turbulence accounted for seven percent of the accidents selected, and the number of wake turbulence accidents has declined over the study period. Although most wake turbulence is initiated by large jet aircraft, the resulting accidents are suffered mostly by single-engine, fixed gear aircraft (63%) operating under FAR Part 91 (87%). The pilots' certifications vary widely, with twenty-eight percent airline transport rated pilots, twenty-six percent commercial, twenty-nine percent private and twenty percent student pilots. The pilot ages also vary, with twenty-four percent over 55. Forty-three percent of wake turbulence occurred in July, September or November, and all other months accounted for between three and nine percent of the events. Seventy-three percent of wake turbulence accidents result in no injury, even though ninety-four percent result in at least substantial damage to the aircraft. Twenty-six percent of wake turbulence accidents happen in California, and seven percent each in Colorado and Florida.

Fifty-nine percent of accidents related to mountain wave turbulence occurred in California (33%), Colorado or New Mexico. Thirty-five percent of the accidents occurred during December, January or May. Seventy-three percent of these accidents involved single piston-engine aircraft and ninety percent of the aircraft were operating under Part 91 rules. Forty-seven percent of the pilots had only a private license, and fifty-seven percent of the pilots were between the ages of 40 and 60. Sixty-nine percent of the accidents occurred during either cruise or maneuvering flight. Sixty-three percent of the mountain wave accidents resulted in a fatality and sixty-three percent resulted in destruction of the aircraft. Eight percent of the accidents selected for this report were affected by mountain wave turbulence.

Clear air turbulence represented thirteen percent of the atmospheric hazards in this analysis. Seventy-six percent of these flights were Part 121 flights, eighty-seven percent of the pilots were licensed for airline transport flight, and seventy-three percent of the aircraft were jets (mostly narrow-body airliners). Seventy-two percent of the pilots were between 40 and 60 years of age. Fourteen percent of the accidents took place in April, and all other months accounted for between five and eleven percent of the accidents. Eighty-four percent of the encounters occurred during cruise or descent. Eighty-six percent of the accidents resulted in at least a serious injury but in seventy-three percent of the accidents there was no damage to the aircraft. Thirty-one percent of these accidents encountered clear air turbulence in the southwest US and another twenty-one percent in the southeast US.

Ten percent of the selected accidents involved turbulence in clouds. Forty-eight percent of that turbulence was encountered in the southwest or southeast United States. Twelve percent of the flights were in the northeast US, which was the highest percentage in that region of any type of

atmospheric hazard. Fifty-one percent of the flights were Part 91 and forty-eight percent of the aircraft had reciprocating engines. Forty-five percent of the aircraft received no damage, but either a serious or fatal injury was recorded in eighty-eight percent of the accidents. Fifty-four percent of the pilots had airline transport licenses, and sixty-five percent of them were between 40 and 60 years of age. Seventy-six percent of the turbulence encounters were during cruise or descent. Only two percent of these accidents occurred in December, with fifteen percent in April and fourteen percent in September.

One hundred eighty-six accidents (19%) were caused in part by convective turbulence. Nearly fifty-seven percent of those flights were operating under Part 91 regulations and forty-two percent of the aircraft had a single reciprocating engine. Thirty-eight percent of the aircraft were destroyed, and a serious or fatal injury occurred in eighty-three percent of the accidents. Forty-six percent of the pilots were rated for airline transport, and fifty-five percent were between 45 and 60 years old. Seventy-eight percent of the accidents occurred from April through September and seventy-seven percent occurred during cruise or descent. Thirty-seven percent of the convective turbulence was encountered in the southeast US, with thirteen percent in Florida.

Nineteen percent of the accidents selected for this analysis encountered a thunderstorm but no mention of turbulence was made in the accident report. The number of this type of accident declined significantly during the last twenty-five years. One might expect these accidents to be similar to those encountering convective turbulence, but the greatest similarities are in geography and time of the year. Thirty-six percent occurred in the southeast (13% in Florida) and only six percent of these accidents were outside the contiguous US, (similar to four percent of convective turbulence). Fifty-three percent of the accidents occurred in June through August, and fifty-five percent occurred during cruise flight. Ninety-one percent of these were in Part 91 flights (versus 56% for convective turbulence), and ninety-one percent (versus 50%) of the aircraft had reciprocating engines. Sixty-three percent of the pilots had only a private license, and one-third of them were aged 45-60. Seventy-four percent of the accidents included at least one fatality (versus 39%), and the aircraft was destroyed sixty-seven percent of the time (versus 38%).

The largest category of atmospheric hazards was low altitude wind shear, microburst or turbulence (with no mention of thunderstorm) at twenty-four percent of the total. The number of these accident also declined significantly during the study period. By a slight margin it had the largest percentage of Part 91 flights (93%) and of aircraft with reciprocating engines (92%). Fifty-three percent of these accidents resulted in no injury (the largest percentage of all types), but all resulted in at least substantial damage to the aircraft. Only fifteen percent of the pilots were rated for airline transport. This category also shows the most uniformity in the distribution of age (percentages in the ten groupings range from 7.1% to 11.8%). Twenty-eight percent of these accidents occurred in May or July, and nearly one-quarter (23%) occurred in either California or Colorado. Eighty-nine percent of the accidents occurred during takeoff, approach or landing.

Each of these seven categories of atmospheric hazards has some characteristics in common with other categories, and some characteristics that separate them. The category of atmospheric hazards with the largest number of accidents was low altitude wind shear, microburst or turbulence (with no mention of thunderstorm). Clear air turbulence is the most frequent category

among both Part 121 and jet aircraft, followed by cloud turbulence and convective turbulence. Flight into thunderstorms (no turbulence) is the category most likely to result in both fatalities and aircraft destruction, but 91% of those accidents were in Part 91 flights. Overall the number of accidents involving these atmospheric hazards has decreased significantly since 1987. This is due in large part to the number of Part 91 accidents, and the fact that accidents due to wake turbulence, thunderstorms and low altitude wind shear, microburst or turbulence, all of which are predominantly seen in Part 91, declined significantly over the study period. No decline or increase was seen in the Part 121 or Part 135 accidents involving these hazards.

Appendix A

List of Specific Aircraft Make and Model Within Each Aircraft Group

	Wide-Body Jet Airliner	Narrow Body Jet Airliner
A :	4200	4.210
Airbus	A300	A318
	A310	A319
	A330	A320
	A340	A321
Boeing	747	707
	767	717
	777	727
	787	737
		757
Lockheed		L-1011 TRISTAR
McDonnell-Douglas		DC-8
C		DC-9
		DC-10
		MD-11
		MD-80
		MD-90
British Aerospace		BAE-146
British Aircraft Corpo	oration	BAC One-Eleven

Regional Jet

Canadair-Bombardier	CRJ-100
	CRJ-200
	CRJ-700
	CRJ-900
	CRJ-5000
Embraer	ERJ-135
	ERJ-140
	ERJ-145
	ERJ-170
	ERJ-190
Fairchild	DO-328 (series 300)
Fokker	F-100
	F-28

Medium Business Jet

Aero Commander	Jet Commander 1121
Aerospatiale	Corvette
Bombardier	Challenger BD-100
Cessna	CE-560 Citation II Citation III Citation Sovereign Citation X
Dassault	Falcon 10-100 Falcon 20-200 Falcon 50 Falcon 900 Falcon 2000
Hamburger Flugzeugbau	320

Medium Business Jet (continued)

Gulfstream	GA-1159 Gulfstream II Gulfstream III Gulfstream IV Gulfstream V
Beech	Hawker-800
HS-BAE Systems	125-HAWKER
Raytheon	125-HAWKER BeechJet 400
Rockwell	Sabreliner
Israel Aircraft Industries	Astra Gulfstream G150 Gulfstream G200 Westwind
Learjet	24 25 31 35 36 45 55 60
Lockheed	Jetstar
Mitsubishi	300

Small Business Jet

Cessna	Citation I CitationJet Mustang T-37 (military)
Eclipse	500
Embraer	EMB-500
Learjet	23
Morane Saulnier	MS-760
Raytheon	390

Large Turbo-prop

ATR	42 72
Convair	CV-580 CV-600 CV-640
De Havilland	Dash 7 Dash 8
Fokker	F-27
HS-BAE Systems	BAE-ATP
Lockheed	L-188 L-382
NAMC	YS-11

Medium Turbo-prop

Aerospatiale	NORD-262
Air Tractor	602 802
Beech/Raytheon	BE-100 BE-200 BE-300 99 1900 2000
CASA	212
De Havilland	DHC-6
Douglas	DC-3 (Turbo conversion)
Embraer	EMB-110 EMB-120
Fairchild	DO-228 DO-328 (series 100)
Fairchild-Swearingen	SA-226 SA-227 Metro
GAF-ASTA	Nomad
Grumman	73-T
Gulfstream	Gulfstream I
Jetstream-BAE Systems	31 41
Rockwell	OV-10
Saab	340
Short Brothers	3-60 SC.7 Skyvan

Small Turbo-prop

Ayres	Turbo Thrush
Air Tractor	AT-400 AT-402 AT-503 AT-504
Beech/Raytheon	BE-18 (conversions) BE-36 (conversions) BE-45 (T-34C) BE-60-T BE-90
Cessna	CE-206 CE-207 CE-208 CE-210 CE-421 CE-425 CE-441
De Havilland	DHC-2-MKIII DHC-3T
Fairchild-Swearingen	SA-26
Grumman	G-164
Gulfstream	GA-164 GA-680 GA-681 GA-690 GA-695
McKinnon	G-21
Mitsubishi	MU-2B
Partenavia	AP-68-TP
Piaggio	P180
PZL-Mielec	M-18/T-45

Small Turbo-prop (continued)

Pilatus	PC-6 PC-7 PC-12
Piper	PA-31T PA-42 PA-46-310TP, PA-46-350TP, PA-46-500TP
Quest	Kodiak
Reims	F406
SIAI Marchetti	SF-260-TP
Socata	TBM-700

Heavier Multi-Engine (Reciprocating)

Boeing	B-17 B-307
Convair	CV-240 CV-340 CV-440
Curtiss	C-46
De Havilland	DHC-4
Douglas	DC-3 DC-4 DC-6 DC-7
Fairchild	C-119 C-123
Grumman	C-1 HU-16 S-2F
Lockheed	L-1049 L-1649 L-18 L-49 P-38
Martin	B26

Lighter Multi-Engine (Reciprocating)

Beagle	206
Beech	BE-18 BE-50, BE-55, BE-56, BE-58 BE-60, BE-65, BE-70, BE-76, BE-95
Beriev	BE-103
Britten-Norman	Islander Tri-Islander Defender
Stout Bushmaster	2000
Camair	480
Cessna	CE-303, CE-310, CE-320 CE-335, CE-336, CE-337, CE-340 CE-401, CE-402, CE-404 CE-411, CE-414, CE-421 T-50 (Military)
Champion	Lancer
De Havilland	DHC-90
Dornier	DO-28
Grumman	21, 44, 73
Gulfstream	GA-7, GA-500, GA-520, GA-560 GA-680, GA-685 GA-700, GA-720
Lockheed	L-12
Navion	D-16
Piper	PA-23 PA-30, PA-30A, PA-30B PA-31, PA-34, PA-39 PA-44, PA-60

Lighter Multi-Engine (Reciprocating) (continued)

Partenavia	P-68
STOL Aircraft Corp	UC-1
Tecnam	P2006T
Wing Aircraft	D-1

Single-Engine (Reciprocating) Retractable Gear

Beech	BE-17 BE-23 (series codes 24R, A24R, B24R, C24R) BE-33, BE-35, BE-36 BE-45 (except BE-45-T34C)
Bellanca	BL-14, BL-17, BL-260
Cavalier	Mustang
Cessna	CE-172-RG CE-177-RG CE-182-RG CE-182-TR CE-210
Colonial Aircraft	C-1, C-2
Columbia	XJL
Culver	LCA, LFA, V, TD-2, PQ-14
Curtiss-Wright	P-40
Diamond	DA-42
Globe	GC-1
Grob	G-115, G-120

Single-Engine (Reciprocating) Retractable Gear (continued)

Grumman	Avenger
Gulfstream	GA-112, GA-114
Lake	LA-4
Meyers	Aero Commander 200 MAC-145
Mooney	M-18, M-20, M-22
North American	AT-6 SNJ-2, SNJ-4, SNJ-5, SNJ-6 Harvard
Navion	NAV-1, NAV-4 NAV-A, NAV-B, NAV-D NAV-G, NAV-H, NAV-L
Piper	PA-24, PA-28R, PA-28RT PA-32S-300 PA-32R, PA-46
Raytheon	Commander 114
Reims	FR-182
SIAI Marchetti	S-205 SF-260 FN-333
Socata	TB-20
Spartan	7W
STOL Aircraft	RC-3
Thurston	Teal TSC-1A
Yakovlev	Yak-3

Single-Engine (Reciprocating) Fixed Gear

Aero Mercantil	Gavilan 358
Air Tractor	AT-301 AT-400, AT-401 AT-501, AT-502
AMD	Alarus-2000
American Legend	AL-11 AL-3
Avions Robin	R-2160
Arctic	S1A, S1B
Aeronca	AR-7, BL-7, AR-11, AR-15 AR-50, AR-65 AR-C3, AR-K, AR-L3 Bubeck-Irving
Aviat	A-1
Ayres	Thrush
Bellanca	BL-7, BL-8, BL-11 BL-DW1
Beech	BE-19, BE-23, BE-77
Boeing	B-75
Call Aircraft	A-2, A-3, A-9
Centaur	Longren
Cessna	CE-120, CE-140, CE-145, CE-150, CE-152 CE-165, CE-170, CE-172, CE-175, CE-177 CE-180, CE-182, CE-185, CE-188 CE-190, CE-195, CE-205, CE-206, CE-207, CE-305
Champion	Champ-7, Champ-8

Cirrus	SR-20, SR-22
Columbia	350
Commonwealth	Skyranger, Sportster
Convair – General Dynamics	BT-13, BT-15, CV-L13
Cub Crafters	CC-18
Culver	Dart-G
DeHavilland	DHC-1, DHC-2, DHC-3, DHC-60, DHC-82, U-6
Diamond	DA-20, DA-40
Dornier	DO-27
Eagle	DW-1
ERCO	Alon-415 Ercoupe-415 Forney-415
Emigh	Trojan
Extra	EA
Fairchild	F-24, M-62 PT-19, PT-23, PT-26
Fieseler	Fi-156
Fleet	Model 16
Found	FBA-2
Funk	Model B
Great Lakes	2T1
Grumman	G-164

Gulfstream	GA-AA, GA-AG	
Helio	H-250, H-295, H-391, H-395 H-700, H-800	
Helton	Lark-95	
Howard	DGA-15	
Lancair	LC-40, LC-41, LC-42	
Liberty	XL-2	
Lockheed	L-402	
Luscombe	LL-8, LL-11 Phantom	
Maule	M-4, M-5, M-6, M-7, M-8 MX-7, MT-7, MXT-7	
MBB	BO-209	
Meyers	OTW	
Monocoupe	D-145	
Morane-Saulnier	MS-880, MS-893, MS-894	
Mooney	M-10	
Moravan	Zlin-242	
Mudry	CAP-10	
Naval Aircraft Factory	N3N-3	
New Standard	D-25	
Noordyun	UC-64	
OMF	Symphony	

Pilatus	PC-6-350
Piper	L-21, L-4 PA-11, PA-12, PA-14, PA-15, PA-16 PA-17, PA-18, PA-19 PA-20, PA-22, PA-25, PA-28 PA-32, PA-36, PA-38 PA-J2, PA-J3, PA-J3C, PA-J3F, PA-J3L, PA-J4, PA-J5
Pitts	S-1, S-2
Porterfield	CP-35, CP-50, CP-55, CP-65, FP-65, LP-65
PZL-Mielec	M-18, M-104, M-150, M-160, AN-2
Quartz Mountain	11E
Rawdon	T-1
Rearwin	Cloudster
Reims	FA-150, FR-172
Rose	Parakeet
Ryan	ST-A, ST-3
Socata	TB-9, TB-10, TB-200, MS-Ralleye
Stinson	AT-19, SR-7, SR-8, SR-10, SR-V77, SR-JR, SR-L5, SR-108
Stampe	SV-4
Sukhoi	SU-26, SU-29
Taylorcraft	15A, 19, 20, 21, 22 BC, BF, BL DC, DF, DL
Tecnam	P-2002
Timm	N2T

Varga	2150A, 2180
Volaircraft	Aero Commander 100
WACO	AGC, AQC, ARE, ASO, ATO, AVN BSO, CRG, CUC, GXE, HRE, QCF RNF, SRE, UBF, UIC, UKC, UKS, UPF VKS, YKS, YMF, YPF, ZPF
Weatherly	201, 620
XtremeAir GMBH	Sbach-342
Zenair	CH-2000

Light Sport Aircraft

Aero Ltd.	AT-4
Aeropro	Eurofox
Aerosport	Ikarus
Aerospool	WT-9 (Dynamic)
AMD	CH-601 (Zodiac)
Arion	Lightning
Aveko	VL-3
B&F Technik	FK-9
Bush Caddy	LSA
Cessna	CE-162
Colyaer	Freedom
Cub Crafters	CC-11
Czech Aircraft Works	Mermaid Parrot Sport Cruiser PiperSport
Diamond	DV-20
Dova	DV-1
Evektor	Sportstar
Fantasy Air	Allegro 2000
Flight Design	СТ
FPNA	A-22
Gryf Aircraft	MD-3

Light Sport Aircraft (continued)

Higher Class Aviation	Sport Hornet		
Indus	Thorp T-211		
Iniziative	Sky Arrow 600		
Jabiru	J-170, J-230, J-250		
Jihlavan	KP-5		
M-Squared	Breese II		
Moravan/Zlin	Savage		
Paradise	P1		
Quicksilver	GT-500		
Rans	S-7LS		
Remos	G3, GX		
Skykits	Savannah		
SportAir	Stingsport Sting S-3		
Tecnam	P-92, P-2004		

Appendix B

Flight Hours per Year for Parts 121, 135 and 91

(Taken from https://www.ntsb.gov/data/aviation_stats.html)

	Part 121	Part 135	Part 91	Total
1987	10,620,750	4,603,000	26,972,000	42,195,750
1988	11,140,548	4,724,689	27,446,000	43,311,237
1989	11,274,543	5,260,555	27,920,000	44,455,098
1990	12,150,116	4,590,760	28,510,000	45,250,876
1991	11,780,610	4,532,581	27,678,000	43,991,191
1992	12,359,715	5,179,349	24,780,000	42,319,064
1993	12,706,206	4,962,347	22,796,000	40,464,553
1994	13,124,315	5,249,129	22,235,000	40,608,444
1995	13,505,257	5,113,866	24,906,000	43,525,123
1996	13,746,112	5,976,755	24,881,000	44,603,867
1997	15,838,109	4,080,764	25,591,000	45,509,873
1998	16,816,555	4,155,670	25,518,000	46,490,225
1999	17,555,208	3,546,731	29,246,000	50,347,939
2000	18,299,257	4,299,535	27,838,000	50,436,792
2001	17,814,191	3,297,432	25,431,000	46,542,623
2002	17,290,198	3,184,559	25,545,000	46,019,757
2003	17,467,700	3,246,206	25,998,000	46,711,906
2004	18,882,503	3,540,218	24,888,000	47,310,721
2005	19,390,029	4,114,775	23,168,000	46,672,804
2006	19,263,209	4,043,495	23,963,000	47,269,704
2007	19,637,322	4,324,701	23,819,000	47,781,023
2008	19,126,766	3,704,939	22,805,000	45,636,705
2009	17,626,832	3,373,545	20,862,000	41,862,377
2010	17,750,986	3,427,648	21,688,000	42,866,634
2011	17,962,965	3,659,432	21,424,600	43,046,997
Average	15,725,200	4,247,707	25,036,344	45,009,251