

April 2016

NASA/TM–2016-219174

Statistical Emulator for Expensive
Classification Simulators

Jerret Ross
Wichita State University, Wichita, Kansas

Jamshid A. Samareh
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NTRS Registered and its public interface, the

NASA Technical Reports Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in both

non-NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of

research that present the results of NASA

Programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counter-part of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

 TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or

co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI program,

see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at

757-864-9658

 Write to:

NASA STI Information Desk

Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

April 2016

NASA/TM–2016-219174

Statistical Emulator for Expensive
Classification Simulators

Jerret Ross

Wichita State University, Wichita, Kansas

Jamshid A. Samareh

Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an

official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and

Space Administration.

Contents

1 Introduction 1

2 Previous Work 2
2.1 Gaussian Processes . 3
2.2 Emulation . 4

2.2.1 Bayesian Methods . 5
2.2.2 The Emulator . 5
2.2.3 Building an Emulator . 6

2.3 Gaussian Process Emulators . 6
2.3.1 Overview . 6
2.3.2 Smoothness . 6
2.3.3 Higher Dimensions . 7
2.3.4 Design . 8
2.3.5 Approximate Analysis . 8
2.3.6 Bayesian Calibration . 8
2.3.7 Extensions and Challenges 8

2.4 Sampling Criteria . 9
2.4.1 When to Use an Emulator 10
2.4.2 Types of Inverse Problems 10
2.4.3 Calculations . 11
2.4.4 Sampling Criteria . 11
2.4.5 Computational Effort . 13

2.5 Bayesian Optimization . 13

3 Details 15
3.1 Algorithm . 15
3.2 Emulator . 16
3.3 Sampling Criteria . 16
3.4 Bayesian Optimization . 17

4 Experiments 17
4.1 Toy Problems . 17

4.1.1 Line . 18
4.1.2 Single Circle . 21
4.1.3 Disconnected Sets of Circles 24

4.2 Computational Fluid Dynamics 27

5 Discussion 29
5.1 When to Optimize . 29

5.1.1 Optimization Alternative 30
5.2 Kernel Function Selection . 31

A Code for Toy Experiments 34

B Code for FUN3D Experiment 48

iii

C FUN3D Images 63

iv

List of Figures

1 Box plot of accuracy of 200 experiments of a line model 19
2 Example of the development of the Emulator(left) and Entropy(right)

for point totals 3, 10, 20, 30 and 35, with optimization performed
at every third point. 20

3 Box plot of accuracy of 120 experiments of a single circle model . 22
4 Example of the development of the Emulator(left) and Entropy(right)

for point totals 3, 10, 20, 35 and 65 (top to bottom) with opti-
mization performed at every tenth point. 23

5 Box plot of accuracy of 50 disjointed circle model experiments . . 25
6 Example of the development of the Emulator(left) and Entropy(right)

for point totals 3, 10, 20, 55 and 125 (top to bottom) with opti-
mization performed at every fifteenth point. 26

7 FUN3D Plot with CFL set to 500 28
8 FUN3D Accuracy Plot per Point 29
9 Example of the development of the Emulator(left) and Entropy(right)

for point totals 10, 12, 14, 16 and 18 points with out optimization
performed on the FUN3D simulator. 64

10 Example of the development of the Emulator(left) and Entropy(right)
for point totals 20, 22, 24, 26 and 28 points with out optimization
performed on the FUN3D simulator. 65

11 Example of the development of the Emulator(left) and Entropy(right)
for point totals 30, 32, 34, 36 and 38 points with out optimization
performed on the FUN3D simulator. 66

12 Example of the development of the Emulator(left) and Entropy(right)
for point totals 40, 42, 44, 46 and 48 points with out optimization
performed on the FUN3D simulator. 67

13 Example of the development of the Emulator(left) and Entropy(right)
for point totals 50, 52, 54, 56 and 58 points with out optimization
performed on the FUN3D simulator. 68

14 Example of the development of the Emulator(left) and Entropy(right)
for point totals 60, 62, 64, 66 and 68 points with out optimization
performed on the FUN3D simulator. 69

15 Example of the development of the Emulator(left) and Entropy(right)
for point totals 70, 72, 74, 76 and 78 points with out optimization
performed on the FUN3D simulator. 70

16 Example of the development of the Emulator(left) and Entropy(right)
for point totals 80, 82, 84, 86 and 88 points with out optimization
performed on the FUN3D simulator. 71

17 Example of the development of the Emulator(left) and Entropy(right)
for point totals 90, 92, 94, 96 and 98 points with out optimization
performed on the FUN3D simulator. 72

18 Example of the development of the Emulator(left) and Entropy(right)
for point totals 100, 102, 1094, 106 and 108 points with out op-
timization performed on the FUN3D simulator. 73

v

19 Example of the development of the Emulator(left) and Entropy(right)
for point totals 110, 112, 114, 116 and 118 points with out opti-
mization performed on the FUN3D simulator. 74

20 Example of the development of the Emulator(left) and Entropy(right)
for point totals 120, 122, 124, 126 and 128 points with out opti-
mization performed on the FUN3D simulator. 75

21 Example of the development of the Emulator(left) and Entropy(right)
for point totals 130, 132, 134, 136 and 138 points with out opti-
mization performed on the FUN3D simulator. 76

22 Example of the development of the Emulator(left) and Entropy(right)
for point totals 140, 142, 144, 146 and 148 points with out opti-
mization performed on the FUN3D simulator. 77

23 Example of the development of the Emulator(left) and Entropy(right)
for point totals 150, 152, 154, 156 and 158 points with out opti-
mization performed on the FUN3D simulator. 78

24 Example of the development of the Emulator(left) and Entropy(right)
for point totals 160, 162, 164, 166 and 168 points with out opti-
mization performed on the FUN3D simulator. 79

25 Example of the development of the Emulator(left) and Entropy(right)
for point totals 170, 172, 174, 176 and 178 points with out opti-
mization performed on the FUN3D simulator. 80

26 Example of the development of the Emulator(left) and Entropy(right)
for point totals 180, 182, 184, 186 and 188 points with out opti-
mization performed on the FUN3D simulator. 81

27 Example of the development of the Emulator(left) and Entropy(right)
for point totals 190, 192, 194, 196 and 198 points with out opti-
mization performed on the FUN3D simulator. 82

28 Example of the development of the Emulator(left) and Entropy(right)
for point totals 200, 202, 204, 206 and 208 points with out opti-
mization performed on the FUN3D simulator. 83

vi

Abstract

Expensive simulators prevent any kind of meaningful analysis to be
performed on the phenomena they model. To get around this problem
the concept of using a statistical emulator as a surrogate representation
of the simulator was introduced in the 1980’s. Presently, simulators have
become more and more complex and as a result running a single example
on these simulators is very expensive and can take days to weeks or even
months. Many new techniques have been introduced, termed criteria,
which sequentially select the next best (most informative to the emulator)
point that should be run on the simulator. These criteria methods allow
for the creation of an emulator with only a small number of simulator
runs. We follow and extend this framework to expensive classification
simulators.

1 Introduction

This paper discusses the problem of how to speed up the evaluation of expensive
physical classification simulators. In this scenario a simulator is given an n-
dimensional input and outputs a binary classification. The interpretation of
the classification value depends on the simulator of interest. For example, the
Computation Fluid Dynamics simulator we used in section 4.2 of this paper will
output a 1 if the simulator converges to some desired value within a set amount
of iterations and a 0 otherwise.

A complex simulator is computationally expensive, and it is infeasible to per-
form any kind of Monte Carlo analysis (methods requiring hundreds of thou-
sands or millions of evaluations). Simulators that take days or hours fit into
this definitions. In addition, simulators that only take a few minutes to evalu-
ate could make Monte Carlo based analysis impractical. For example, a million
simulations would take approximately 694 days for a simulator that only takes
a single minute to evaluate.

There is ample research focusing on the problem of expensive simulators [1–5]
and the subject is still a field of active research [6–8]. Previous research has
focused on simulators with multidimensional real valued inputs [4] and single
real valued outputs as well as multidimensional real valued inputs and multi
dimensional real valued outputs [3]. However we have not come across any
research that evaluates simulators with multidimensional real valued inputs and
classification outputs. The lack of research focusing on expensive classification
simulators was overcome by looking at the framework developed for expensive
simulators with multi-dimensional inputs and real-valued outputs and making
some modifications.

The framework for expensive simulators with multi-dimensional inputs and
real-valued outputs is as follows. A statistical emulator is used as a surrogate
function that represents the simulator, in other words we use the emulator as a
model of the simulator. Next, in a point by point manor, a function called the
Sampling Criteria [5,9] is optimized and returns the next candidate point to be
evaluated on the simulator. The point that was just evaluated is added to the

1

emulator, points that have actually been evaluated on the simulator are known
as design points. This process is repeated until the budget for the evaluations
of the simulator has been exhausted. See algorithm 2 for the pseudo-code.

In this paragraph we discuss the handling of expensive simulators as devel-
oped in previous works. First a Gaussian Process Regression model is used as
the emulator due to desirable properties [4] inherent in the model that other
methods, such as neural networks, do not posses. Next a Sampling Criteria
needs to be chosen. This is not a simple task due to the many Sampling Cri-
teria functions that have been developed. Each Sampling Criteria is designed
to balance the trade off between exploration versus exploitation. Selection of
Sampling Criteria is a problem which depends on each specific use case. Lastly
the Sampling Criteria must be optimized to pick the next best point. While
optimization is a difficult problem, a Sampling Criteria usually takes less time
to optimize than it does to evaluate a point on the simulator. The method dis-
cussed in this paper is not well-suited for simulators that take less time to run
than the time taken to optimize the Sampling Criteria function and updating
the Emulator.

An overview of the modifications we made to the above mentioned frame-
work are as follows. For the Emulator we use a Gaussian Process Classifier.
This introduces computational complexity not experienced with the Gaussian
Process Regression model for reasons that will be discussed in section 2. We
use a Sampling Criteria named the Expected Average Entropy [5, 9] which has
been used as a Sampling Criteria in the case of simulators with real valued
outputs. Again difficulties are introduced due to the modifications we make to
the framework with respect to how the Expected Average Entropy Sampling
Criteria behaves. Finally we use Bayesian optimization [10] as an optimizer to
our Sampling Criteria of choice.

The paper is arranged as follows. In section 2 we discuss a brief history of
statistical emulators as well as detail the topic of Sampling Criteria and the
optimization required to get the next best point from the sampling criteria. In
section 3 we discuss our extension to these methods as well as giving implemen-
tation details. In section 4 we present a demonstration of our methods on a few
simple examples and a two-dimensional computational fluid dynamics simula-
tor. In section 5 we discuss problems we experienced when using our method
as well as some possible alternative details to overcome those problems.

2 Previous Work

In this section we discuss the fundamental pieces that we incorporated in our
solution. We review these subjects individually and direct the interested readers
to relevant previous research pertaining to each concept.

2

2.1 Gaussian Processes

The Gaussian process is fundamental to our solution implementation. We use a
total of three Gaussian processes: two of them we use directly and the other we
use indirectly. We use a Gaussian Process Classification model as our Emulator
and a Gaussian Process Regression model to model the entropy of our emulator.
We then use the entropy model to calculate the average entropy required by our
Sampling Criteria method. Lastly we use Bayesian Optimization to find the
maximum of our Sampling Criteria. A Gaussian Process regression model is used
in Bayesian optimization to model the Sampling Criteria, and then the optimum
of the Gaussian Process model is found with an acquisition function. While the
optimization process is performed in a python package, GPyOpt [11], we still
appreciate the fact that a Gaussian Process is fundamental to the solution that
gives us the motivation to briefly discuss Gaussian Processes.

In this section we discuss the Gaussian Process. Since the Gaussian Process
is a fundamental model in our work we believe that giving a brief overview of
the subject is prudent.

A Gaussian Process is a generalization of the Gaussian probability distribu-
tion. While a probability distribution describes random variables which can be
scalars or vectors, a process describes properties of functions. Thus a Gaussian
process is a distribution over functions instead of individual points or vectors.

A Gaussian process is a Bayesian model that is composed of several parts.
First an assumption is made on what form the input data will take. This
assumption is referred to as the prior and takes the form of a covariance function.
Several covariance functions exist and allow for data assumptions ranging from
very smooth and continuous data to periodic and non-stationary data. The
next Element is the likelihood probability. For a Gaussian process, a regression
likelihood model takes the form of a Gaussian distribution. A third element,
the marginal likelihood, takes the form of the integral over the product of the
likelihood and prior. Usually this integral is intractable but in the above case it
turns out that the computation can be made analytically and thus tractability.
The reason for the tractability of the product of the Gaussian distribution and
Gaussian process is due to the fact that a Gaussian Process is a conjugate prior
of a Gaussian distribution. This means the product of a Gaussian distribution
and a Gaussian Process is in fact a Gaussian Process itself. The above can be
seen in Bays Rule.

p(y|x) =
p(x|y)p(y)∫
p(x|y)p(y)dy

(1)

p(x|y) is the likelihood, p(y) is the prior, p(y|x) is the posterior probability, and
finally

∫
p(x|y)p(y)dy is the marginal likelihood.

While the solution for regression using Gaussian Processes is analytical and
exact, difficulty arises in the classification case. We discuss these difficulties
because our problem is fundamentally a classification problem and we use Gaus-
sian Process Classification. In the classification scenario the likelihood function
takes the form of a Bernoulli distribution. This requires an integration (or

3

sum in the discrete case) over the product of a Gaussian Process and Bernoulli
distribution. Unfortunately a Gaussian process is not a conjugate prior of the
Bernoulli distribution; the product of the two creates an intractable distribution
that is approximated using a Gaussian Processes. There are several iterative
algorithms that exist to calculate this approximation. The most well known
algorithm is the Laplace Approximation. We do not use this algorithm due to
the algorithms poor accuracy performance [12]. The next most popular algo-
rithm is the Expectation Propagation algorithm, which we choose to use and is
widely considered to have good performance. The details of this algorithm are
extensive and can be found in the classification chapter of [12].

We have barely touched the topic of Gaussian processes but the interested
reader can find information on Gaussian Process regression, Gaussian Process
Classification, Covariance functions and many other topics in [12].

2.2 Emulation

The ideas in this section where taken from [4]. While [4] is not necessarily
the origin of these ideas, it presents them in an easily understandable way and
should be a first stop for anybody interested in Bayesian statistical emulation.

The main idea of [4] is to use Bayesian statistics to create a statistical emu-
lator of a simulation model. The term given to this method is Bayesian Analysis
of Computer Code Outputs (BACCO) and consists of a methodology to employ
emulators to address a wide range of practical questions of complex model be-
havior. The complex models we are interested in, and focused on in [4], come in
the form of simulators. Simulators are used to model the behavior of real world
systems and are utilized in almost all fields of science and technology. Simula-
tors can be deterministic or stochastic. In our case we focus on deterministic
simulators although work has been done in the domain of stochastic simulators
with regard to the BACCO method. We can regard our deterministic simulator
as a function f(·) which takes a vector x and produces an output y = f(x).

It is important to remember that y is a prediction of a real-world phenomena
that is being simulated by a model of said phenomena. The consequence of this
is that the prediction will probably be imperfect and there will be uncertainty
about how close the prediction is to the true real-world quantities. While we
did not take this into consideration one can refer to [1] for a complete taxonomy
of the uncertainties involved in using simulators.

In the majority of cases the output, y, is real valued. In our case the output
of our simulator is binary. Extending the BACCO framework for a binary
simulator is actually one of the original contributions of our work and will
be discussed else where in the paper. We decided to express the ideas in [4]
unaltered, dealing with real valued output, in the hopes that others will find
the ideas useful for their own endeavors.

4

2.2.1 Bayesian Methods

This section discusses what Bayesian statistical methods are and how they com-
pare to frequentist methods for our problem of interest.

Frequentist statistics is a method for interpreting the probability of an event
as the number of times that event occurs approaches infinity. This limits the use-
fulness of frequentist method to events that are repeatable an indefinite number
of times. Uncertainty of repeatable events is referred to as aleatory uncertainty.
Since simulators are an approximation of a physical phenomena the uncertainty
is due to a lack of knowledge about the particular phenomena. The type of
uncertainty that is due to a lack of knowledge is call epistemic uncertainty. It
is true that Almost all uncertainties in the analysis of simulator outputs are
epistemic. For further discussion of how the distinction between aleatory and
epistemic uncertainty is fundamental between frequentist and Bayesian stat-
ics [13] page 3.

Bayesian statistics is based on a much broader definition of probability. All
techniques described in this paper are based in the Bayesian framework and will
be discussed in detail as concepts are introduced.

2.2.2 The Emulator

While not of interest to our work many find it necessary to perform sensitivity
analyses as well as uncertainty analyses on their simulators for model devel-
opment as well as model use. These analysis tools require a large number of
simulation runs which quickly becomes intractable. For example if a simula-
tor takes just one second to run it would take 11.6 days of continuous CPU
time to perform a comprehensive variance-based sensitivity analysis due to the
need to run millions of model runs to achieve a desired accuracy. A more effi-
cient method is needed and Bayesian methods are more efficient when used for
emulation.

An emulator is a statistical approximation of the simulator. Because we have
designated our simulator to be a function f(·) such that given x we can find a
mapping to the output y = f(x). It is instructive to think of an approximate

function f̂(·) of the simulator f(·) for use in such tasks as sensitivity or uncer-
tainty analysis. While we do not consider using such an approximate function
for these analysis tasks, it is easy to see that we could benefit from the efficiency
of the approximate function due to the large expense incurred with each run or
our simulator. If the approximation can be good enough then analysis, such as
sensitivity and uncertainty, will be close enough to any analysis performed on
the simulator itself but with much less time needed.

It should be noted that f̂(·) is a statistical approximation and thus provides
an entire probability distribution for f(x). The mean of f(x) can be inter-

preted as the approximation f̂(·). Importantly an extra source of information
comes from the use of statistical approximations. This information comes in
the form of a interval around the mean which represents the uncertainty of the
approximation of the simulator f(x). In fact the emulator gives a probability

5

distribution across the entire function f(·).

2.2.3 Building an Emulator

An emulator is a statistical approximation to the simulator as well as the fact
that it is used to estimate f(·) given a set of data in the form of training runs
yi = f(xi) for i = 1, · · · , n.

When building a simulator the following two criteria should be satisfied.

1. At a design point xi, the emulator should reflect the fact that we know
the true value of the simulator output, so it should return f̂(xi) = yi with
no uncertainty.

2. At other points, the distribution for f(x) should give a mean value f̂(x)
that represents a plausible interpolation or extrapolation of the train-
ing data, and the probability distribution around this mean should be
a realistic expression of the uncertainty about how the simulator might
interpolate/extrapolate.

While criterion 1 is easily checked criterion 2 requires simulator runs for
verification. If the simulator under investigation is very expensive then verifi-
cation of criterion 2 is not feasible. Two methods mentioned that fail criterion
2 are regressions methods and neural networks. The methods that does meet
both criteria are Gaussian processes. For regression, Gaussian processes are
analytically very tractable while for classification approximation methods must
be performed but are still very efficient.

A concept termed code uncertainty refers to the discrepancy created by per-
forming statistical analysis of a simulator on the emulator. Since this concept
does not pertain much to our work we omit further discussion and refer the
readers interested in a comparison of BACCO and Monte Carlo methods to [4].

2.3 Gaussian Process Emulators

2.3.1 Overview

A Gaussian process is an extension of the normal distribution. While a multi-
variate normal distribution is a distribution for several variables, each having a
marginally normal distribution, a Gaussian Process is a distribution over func-
tions. One can think of a point f(x) of a Gaussian Process as having a normal
distribution itself. The mean of this distribution serves as the estimate of the
function being approximated while the variance, or spread, of the distribution
at that point serves as the uncertainty. The higher the variance at that point
the larger the uncertainty there is at that point.

2.3.2 Smoothness

Gaussian Processes assume a certain level of smoothness to the function f(·)
that is being approximated. This smoothness can range a priori with the choose

6

of covariance function as well as with the use of smoothness hyperparameters.
See [12] for more details on both.

The concept of smoothness gives Gaussian processes a major advantage over
Monte Carlo methods with respect to computation. If it is known that f(x) = 1
for x = 3 then, due to the smoothness assumption of Gaussian processes, it is
known that all values near f(x = 3) will be close to one. This is why there is less
uncertainty as we evaluate near a known point. The smoothness assumption also
accounts for the decrease in uncertainty as the number of design points increases
simply due to the decrease of the distance of two points.

The inability of Monte Carlo methods to utilize the distance between two
points accounts for the greater efficiency of using a Gaussian Process as an
approximation of a function.

Degree of smoothness is also an important part of BACCO emulation. The
reason is that the smoother a function is the more efficient the BACCO method
is. Degree of smoothness can be thought of as how rapidly a function varies. A
non-smooth function is more sensitive to small changes in the input space and
many more data points are needed to emulate a non-smooth function accurately.

Selecting smoothness hyperparameters can be tricky. If a smoothness pa-
rameter is too high then the emulator will make over confident predications
with respect to the uncertainty. If the smoothness parameter is too low then
the emulator with predict values with overstated uncertainty.

2.3.3 Higher Dimensions

All properties described thus far still hold for higher dimensions. The certainty
near an actual data point increases as we approach the data point, and the
uncertainty increases rapidly as we get further from any data point. As more
points are added, the overall uncertainty is reduced and the approximation
adapts itself to the shape of the true function. Smoothness hyperparameters
are used for each dimension. Again the values of the parameters are crucial for
an accurate and robust emulator.

An important question to ask is how much does the computational cost in-
crease with the increase of dimensionality? How does the number of training
points needed to approximate the true function grow with the number of di-
mensions in the input? In practice models never respond strongly to all of their
inputs. This means a high level of smoothness is seen in all but a few dimen-
sions. Remembering from earlier that the smoother a function or dimension is,
the fewer number of training points are needed to approximate it. For example
if there are only 200 test points and 25 five dimension then the amount of space
covered by those test points is very sparse. However if only 5 of those dimen-
sions influence the output greatly, then it might be possible to approximate
that function fairly well using a Gaussian Process emulator. This reflects recent
work in Deep Learning, which states that the curse of dimensionality might be
an illusion and the actual problem is the amount of variance in a function.

7

2.3.4 Design

A design is a set of input points x1, . . . ,xN at which the simulator is evaluated
to get training data. The objective is to learn about the true function f(·) and
the question is how do we select the best design to do that. In our case, we
want the size of the design to be as small as possible. To learn the space with
the smallest number of design points requires a fairly advanced method that we
will discuss later in this paper. For applications with less stringent design size,
it is possible to use a set of N Latin Hypercube samples. There are many other
types of methods for determining the design set. Some designs are selected
sequentially, point by point, while others are decided before a model is even
created. Design selection is a current hot topic of research and has been for
at least a decade. The interested reader should see [14] page 10 for a starting
point.

2.3.5 Approximate Analysis

The reader interested in a comparison of the BACCO and Monte Carlo methods
with regards to approximate uncertainty analysis and sensitivity analysis of a
simulator should see [4]. We do not discuss them here because they do not
pertain to our work.

2.3.6 Bayesian Calibration

Another interesting idea that we did not work with but has shown to be needed
in other groups is Bayesian Calibration. Bayesian Calibration deals with the
problem of the discrepancy between a simulators output and real-world obser-
vation that the simulator represents approximately. More specifically it is the
process of finding the subset of model inputs that best reflect real-world obser-
vation. Conventional calibration usually attempts to find this subset via trial
and error while holding many input variables fixed and not considering any un-
certainty measure. As an alternative to the trial and error method there are
Bayesian methods for calibration.

Bayesian Calibration uses a second Gaussian Process to model the discrep-
ancy between the simulator and the real-world observations. We use a method
similar to this by using a second Gaussian process. Our method differs in that
the second Gaussian process is used to model the Shannon entropy of the emula-
tor. We then calculate the the expected average entropy of the second Gaussian
process in order to choose the next best point in our design. For more details
on Bayesian calibration see [1, 15].

2.3.7 Extensions and Challenges

There are several open questions presented in the BACCO paper [4]. Since
this paper was written in 2004 there has been advancements in many of the
challenges but we will discuss them shortly here for the interested readers.

8

• Computation Prediction in Gaussian Processes requires a matrix inversion,
which has a run time of O(n3). This does not scale well, and Sparse Gaus-
sian Process methods have been created to reduce this runtime [16, 17].
Also experimentation with GPU’s has taken place in an attempt to over-
come the inversion bottleneck [18].

• Smoothness Work is being done that allows for uncertainty in smooth-
ness parameters with increased computational complexity. Choosing the
proper smoothness parameters is vital to the creation of a good emulator,
and work on choosing better smoothness parameters is needed. As far as
we know, very little research on the subject has been published (see 5.1.1
for further details).

• Multiple outputs Building separate emulators for each output is a potential
solution to this problem but any correlation between the outputs is lost.
Newer methods such as [3] and Gaussian Process Latent Variable models
(GP-LVM) [19] might be a solution to this problem. We are aware that
work has been done in this domain but we are unaware of the details.

• Discontinuities Many simulators do not respond smoothly to all of their
inputs. One problem with using Gaussian processes as emulators is that
they will potentially smooth these discontinuities that give rise to local
inaccuracies. General research is being done to address this problem [20]
and Chapter 4 of [12].

• Validation is defined in the BACCO framework as an estimate of real be-
havior with uncertainty around the estimate such that comparison with
observational data suggests the expressed uncertainty is neither too large
nor too small [7, 8].

• Software At the time of the writing of [4] in 2004, statistical software for
non-specialist statisticians was hard to acquire. Since then packages such
as R, GPy [21], GPyOpt [11], kriegInv [9] and many others have become
available and most are open source.

2.4 Sampling Criteria

In this section we follow the details presented in [9], which discusses an R package
name KrigInv and explains many theoretical properties that we use in our work.
We have found that many concepts that we use were originally intended for
other uses and also concepts can have several different names. Due to the lack
of consistent naming, we have used the terminologies expressed in this paper
that reflect how we use them.

9

Reference [9] discusses a set of methods termed sampling criteria that allow
for estimating contour lines and excursions sets. These terms will be defined
further down in this section.

Sampling criteria play an important role in our work. We will discuss these
criteria as well as the sampling criteria examples discussed in [9]. Some of the
advanced techniques that we do not use in our work will be discussed in this
section with the intention that discussion of the techniques will be useful to
others in the future.

2.4.1 When to Use an Emulator

Emulators are considered to be a potential replacement for simulators, if the
following criteria are met:

• No closed-form expression is available for a simulator (f(·)). This suggest
no information outside of y = f(x) can be obtained, such as gradients.

• The dimension of the input domain X ⊂ Rd is moderate with d of the
order of 20 or less.

• The evaluation budget is small. Evaluating the simulator f(·) at any point
is assumed to be slow or expensive so the problem needs to be solved in
at most a few hundred evaluations.

• f can be evaluated sequentially. In some cases a small fraction of the
evaluation budget is dedicated to the initial design (some small number
of points chosen by an algorithm such as Latin hypercube.) The remain-
ing points are evaluated sequentially (one point at a time) at well-chosen
points. The next point to evaluate is chosen by optimizing a given Sam-
pling criteria.

• Simulators are noisy. Methods for handling a simulator that returns y =
f(x) + ε exist. In our work we only consider deterministic simulators.

2.4.2 Types of Inverse Problems

Sequential sampling strategies aiming at solving the following inverse problems
are as follows.

• Estimating the excursion set Γ∗ = {x ∈ X : f(x) ≥ T}, where T is a fixed
threshold.

• Estimating the volume of excursion: α∗ := PX(Γ∗), also known as the
probability of failure estimation.

• Estimating the contour line C∗ := {x ∈ X : f(x) = T}. We are interested
in learning the decision boundary of our simulator. Our decision boundary
takes the form of the contour line when we set T = 1

2 .

All the above problems are similar and fall under the term of inversion.

10

2.4.3 Calculations

The calculation of all the estimations above is dependent on the calculation
of the excursion probability pn(x). To find the excursion probability we must
acquire three items. The mean mn(x), the standard deviation sn(x), and the
threshold T . With these items we can then calculate the excursion probability

Φ(mn(x)−T
sn(x)

), where Φ(·) is the c.d.f. of the standard Gaussian distribution. For

a more thorough derivation of the excursion probability see page 4 of [9].
With these elements it is now possible to show how the excursion probability

is used to calculate the three previous estimations.
Γ̂ = {x ∈ X : pn(x) ≥ 1/2}, α̂ =

∫
X pn(x)dx, and Ĉ = {x ∈ X : pn(x = 1/2)} =

{x ∈ X : mn(x) = T} are estimators for the excursion set Γ∗, excursion volume
α∗, and contour line C∗. For a detailed derivation of these estimators see [22].
In our work we are only interested in estimating the contour line. We add the
other estimators for the interested reader.

With these tools it is possible to classify the users model into two classes:
those classes could be concepts such as convergence/divergence or inputs that
create a simulation close to real world observation/inputs that create unusable
simulation.

2.4.4 Sampling Criteria

The aim of a sampling criterion is to give, at each iteration, a point or a set of
points for evaluation. In our work we focus on individual points. The following
algorithm details the steps we followed to implement our solution that fits into
our work.

1. Evaluate f at an initial set of design points {x1, . . . ,xn},

2. Build an emulator based on {f(x1), . . . , f(xn)}

3. While the evaluation budge is not exhausted:

• choose the next design point xn+1 by maximizing a given sampling
criterion over Xr,

• evaluate f(xn+1)

• update the emulator

There are many types of sampling criteria that have been developed while many
others are currently under development. Sampling Criteria can be broken into
two separate categories. We discuss the differences between these categories of
sampling criteria for completeness and in the hopes that the information will be
helpful to others interested in sampling criteria. The two categories of Sampling
Criteria are pointwise criteria and integral criteria. Pointwise criteria method
deals with finding a single next point xn+1 while integral criteria method is best
suited for finding a batch of new points. We discuss the characteristic of a small
set of Sampling Criteria in to demonstrate the differences between the two types
of Sampling Criteria.

11

Pointwise sampling criterion Three criteria discussed are ranjan, bi-
chon, and tmse. The main objective of these criteria is to find a point xn+1 ∈ X
such that the excursion probability is close to 1/2 and the variance sn

2(xn+1) is
high. We will omit a technical discussion of each criteria and focus our attention
on the properties of each criteria. For a more thorough discussion see page 6
of [9].

• tmse criterion This criterion aims to decrease the Mean Square Error
(the variance) at points where the mean mn is close to the threshold T . A
built in parameter ε can be modified to adjust the amount of exploration
that is done or the amount of exploitation that takes place.

• ranjan and bichon criteria These two criteria are very similar and share
a common general expression. They only differ in the default value of a
hyper parameter δ. In theory the higher the δ value the more exploration
the criteria will attempt. However in practice these two criteria have very
similar behavior. These two methods also attempt to find the points with
means closest to the threshold and a high variance. The main distinction
between these two criterion and the tmse is that the expression to be
maximized is an expectation of the difference between two values. The
maximization of the expectation of a function is the method that we have
chosen for our work.

Integral sampling criteria Integral criteria refer to sampling criteria in-
volving numerical integration over the design space X. Three integral criteria
are discussed below. All three of the following criteria rely on the concept of
Stepwise Uncertainty Reduction (SUR) [22]. The basic idea of SUR consists in
defining an arbitrary measure of uncertainty given n observations An and at-
tempts to find the next point xn+1 that reduces (in expectation) the uncertainty
the most. It can be seen that the term uncertainty can have different definitions
and thus lead to different sample criteria.

• timse criterion Targeted Integrated Mean Square Error Criterion. Orig-
inally designed for contour line estimation timse can be used for estima-
tion the excursion set as well as its volume. Uncertainty is defined as
Uncertaintytimse :=

∫
X tmse(x)PX(dx). Where tmse(x) is the same func-

tion from the pointwise criteria. The timse attempts to find the point in
an interesting region with mean close to the threshold T and high variance.

• SUR criterion: Uncertainty is defined as Uncertaintysur :=
∫
X pn(x)(1−

pn(x))PX(dx) where pn(x) is the probability. For a closed form example
of the expectation of the uncertainty see [9].

• jn criterion: Is used to estimate the excursion volume. Uncertainty is
defined as Uncertaintyjn := V arn(α) where α is the set of the random
excursion set. jn require an integral over X×X which is computationally
more expensive than all other criteria. jn tends to fill space better than

12

the other criteria methods and performs well when the excursion set has a
complicated shape or is not connected. jn tends to evaluate points which
are not too close to the boundary of the excursion set.

2.4.5 Computational Effort

As the dimension d increases so does the computational effort to perform the
tasks discussed above. Below are some explanations as to what elements increase
the computational complexity as the dimensions increase.

• The number of observations n grows as the number of dimensions grows
in order to insure proper space filling. In order to calculate the mean
and variance of the model, an inversion of an n × n matrix is required.
This operation has a run time of 0(n3) and becomes a large problem as n
approaches 1000. There are sparse methods that reduce the runtime down
to approximately O(n2) that might relive this problem. At the same time
if the simulator in question is very expensive then 1000 evaluations could
be intractable in the first place.

• Optimization of the sampling criteria gets more difficult and requires eval-
uation at more locations as d grows.

• If an integration criterion is used then the number of integration points
needed to maintain a high accuracy increases with the value of d.

As long as the computation time is much less than the computational time for
the simulator to complete then these methods are still viable.

Optimization Two major sub-problems discussed above require optimiza-
tion. First, the sampling strategies require that the sampling criterion be opti-
mized at each iteration. Second, for criteria involving numerical integration the
question arises as how do we actually perform the integration.

Sampling criterion optimization Optimizing the sample criterion can
be broken into discrete optimization and continuous optimization. In our work
we use Bayesian optimization.

2.5 Bayesian Optimization

The majority of the information in this section are taken from [10,23]. Bayesian
optimization is used when considering the problem of finding a global maxima
(or minima) of some unknown objective function f . The problem can be written
as x∗ = arg max

x∈X
f(x) where X is some design space of interest. Commonly X is

a compact subset of Rd but can be categorical or combinatorial as well as other
types of spaces which are handled by the Bayesian optimization framework. The
assumption that the function f is a black-box function with no simple closed

13

form but can be evaluated at any arbitrary query point x in the domain is
fundamental to Bayesian Optimization. Finally y = f(x) where y ∈ R can
be deterministic or stochastic. If the output of f is noise-corrupted such that
E [y|f(x)] = f(x) The Bayesian optimization framework can still be used.

In general Bayesian optimization is used in a sequential search setting such
that at iteration n, the point xn+1 is chosen and f is evaluated at that point to
give observation yn+1. The algorithm is given a budget of N iterations and once
the budget is exhausted a final recommendation x̄N is chosen as the algorithms
best estimate.

Bayesian optimization is very data efficient and thus it is found to be useful
in situations where the evaluation of the function f is costly, non-convex and/or
multi-modal. When this is the case Bayesian optimization is able to take ad-
vantage of the information provided by the history of the optimization making
the search efficient.

From an abstract view Bayesian optimization has two main components.
The first component is a probabilistic surrogate model of the objective function
being optimized. This surrogate model is composed of a prior distribution that
capturers our assumptions of how the objective function will behave as well as
an observation model that describes the data generating mechanism. This sta-
tistical model can take many forms and each form depends on the type of prob-
lem being optimized. The second component is a loss function which describes
how optimal a sequence of queries are. The idea is to minimize the expected
loss which is typically computationally intractable. Because of this intractabil-
ity heuristics have been introduced which are termed acquisition functions.The
general algorithm followed in Bayesian Optimization can be found in Algorithm
1.

Acquisition functions trade off exploration and exploitation. The optima of
the acquisition function is located where the uncertainty of the probabilistic sur-
rogate model is large and/or where the prediction of the model is high. The next
point of the Bayesian optimization method is chosen by finding the maximum of
the acquisition function. To make the use of acquisition functions feasible they
must be easier to maximize and evaluate than the black-box function f . Since
acquisitions functions have analytical forms they fulfill the requirement stated
above so we can use them and not have to worry about introducing too much
computational overhead to the problem of interest.

Algorithm 1 Bayesian optimization

1: for n = 1, 2, . . . do
2: select new xn+1 by optimizing acquisition
3: function α
4: xn+1 = arg max

x
α (x;Dn)

5: query objective function to obtain yn+1

6: augment data Dn+1 = Dn, (xn+1, yn+1)
7: update statistical model

14

The probabilistic surrogate model can be parametric or non-parametric. As
an example, if the objective function of interest produces a binary output, a
Beta-Bernoulli model can be used as the surrogate. Beta, an example of a
parametric model, is a conjugate prior to the Bernoulli distribution. This means
that the product of the Beta and the Bernoulli distribution is a Beta distribution.
In the non parametric case where the objective function has a real valued output,
Gaussian process are used as the surrogate model. For a more detailed discussion
of the surrogate model where such topics as computation cost as well as how to
handle very large data sets is discussed see [10].

The last subject of discussion is the acquisition function. The acquisition
function is the policy used for selecting the sequence of query points x1:n. The
useful acquisition function will be able to choose a sequence of points that
returns a point, xn+1 which is closer to the optimum of the objective function
than a random selection of points.

Acquisition functions can be broken into three different categories. These
categories are Improvement-based policies, Optimistic policies, and Information-
based policies. These details are beyond the scoop of our work since we used
default values for our acquisition function of choice that came from the python
package GPyOpt [11]. For a deeper discussion on the types of acquisition func-
tions as well as other practical issues such as handling hyper-parameters, Opti-
mizing acquisition functions and penalization see [10] as a good starting place.

3 Details

In this section we discuss the code Packages we used as well as implementation
details for each building block of our solution. The hope is that the interested
reader will be able to implement a solution of their own using this document
as a guideline. All of our code was written using Python 2.7 as well as all the
packages we used that are not in the standard Python distribution and were
found on GitHub.

3.1 Algorithm

The basic algorithm we follow is found in algorithm 2. The name was given to
the algorithm by our collaborators at the University of Sheffield and is the name
of the original regression version of this algorithm that they created. In fact
this algorithm is unaltered from their version. Differences are not seen until
we actually get into implementation details such as choosing a classification
emulator as well as the form the Sampling Criteria function takes.

Remember that a Design Point is a point that has actually been evaluated
on the simulator and plays the roll of a ground truth point.

15

Algorithm 2 Entropic Approximate Bayesian Computation

1: Acquire n points from a space filling algorithm
2: Evaluate the n points on simulator
3: Store Design Points Dn = (x1:n, y1:n)
4: Create Emulator with Design Points
5: while Budget Not Exhausted do
6: Select new xn+1 by optimizing sampling criteria
7: Evaluate xn+1 on simulator to obtain yn+1

8: Augment data Dn+1 = Dn, (xn+1, yn+1)
9: Update Emulator

3.2 Emulator

For our Emulator we used a Gaussian Process Classification model. We used
the python package GPy [21] from the university of Sheffield as we found it to
be the most robust package that we could find. When using the GPy package
to create a Gaussian Process Classification model, the user must specify two
things: the Covariance (or Kernel) function as well as the Marginal Likelihood
approximation algorithm. For the Kernel function we choose the Matern Kernel
function provided by the package. We chose to use the Expectation Propaga-
tion (EP) algorithm to approximate the Marginal Likelihood. One of the main
reason we choose this algorithm over the more popular Laplace Approximation
algorithm is that [12] states that the Laplace Approximation performs poorly
with respect to accuracy. Also the EP algorithm is the default approximation
algorithm for Gaussian Process Classification in the GPy package.

3.3 Sampling Criteria

The Sampling Criteria we chose is based on the Expected Average Entropy
Sampling Criteria found in [5,9]. In a regression scenario the Expected average
Entropy requires an integral be taken over all of space. This integral is ap-
proximated using a Hermite-Gauss Quadrature. The calculation of this integral
becomes unnecessary in the case of classification. The formula for the Expected
Average Entropy for classification is:

p× aveH + (1− p)× aveH (2)

Where p is defined as the probability returned by the Emulator that the point
of interest (xn+1) will be labeled as 1. The calculations for aveH, the average
Entropy, can be found in algorithm 3.

The idea is to find the point xn+1 that reduces the Average Entropy the most
on Expectation. To find this point we need to use an optimization technique
to minimize our Sampling Criteria, the Expected Average Entropy. We use
the python package GPyOpt [11] which performs Bayesian Optimization on our
Sampling criteria function over a number of predefined iterations and returns
the point that reduces the Expected Average Entropy the most.

16

Algorithm 3 Calculate Average Entropy

1: function aveH(nextPoint, label, model)
2: dummyModel = deepCopy(model)

3: dummyModel.addPoint(nextPoint, label)

4: points = spaceFilling(size(10000))

5: probs = dummyModel.predict(points)

6: for points in probs do
7: Entropy.append(points× log (points))

return Entropy.mean()

3.4 Bayesian Optimization

When we combine our Sampling Criteria with Bayesian Optimization we get
the next point selection function from line 6 of algorithm 2. In practice we have
to do very little other than selecting some hyper parameters as well as select
which acquisition function we want to choose and the GPyOpt package does
the rest. We select these hyper parameters and pass in our Sampling Criteria
function and then the package iterates over our Sampling Criteria a predefined
number of times and returns the next point to be evaluated on the simulator.
The hyper parameters we choose were as follows.

• Acquisition Function: Expected Improvement

• Acquisition Parameter: .001

• Normalize: True

• Optimization restarts: 1

• Model Optimize interval: 30

• Fixed Likelihood Variance at: 10−6

• Max iterations: 150

For a detailed explanation of each hyper parameter see the [11] Github page.

4 Experiments

4.1 Toy Problems

We initially test our method on three well defined simple (toy) problems. These
problems are a line, a circle and two disjointed circles. For each toy experiment
we test our method several times to evaluate how the variance of the accuracy
behaves as the number of evaluation points increases. For the line experiment
we run a total of 200 experiments with each experiment being evaluated at 35
points. We run a total of 120 experiments on the circle with a total of 65 points

17

for each. Lastly we run 50 experiments on the two disjointed circle scenario
with 125 point evaluations for each run.

All experiments start with three points that have been selected through a
space filling algorithm and are then evaluated on the toy experiment. These
points are then used to create a starting emulator. All experiments use opti-
mization on the hyper-parameters of the emulator. The implementation of op-
timization was different for each experiment and these differences are addressed
in the following sections.

We use the Shannon Entropy measure which is a measure of uncertainty.
The closer the entropy is to zero the less uncertainty in the model prediction.
The closer the entropy gets to .7, the entropy max, the less certain the prediction
of the model is.

4.1.1 Line

Our first and simplest experiment is a line defined by the two dimensional
formula:

f(x0, x1) =

{
0 if 3× x1 − (2 + x0) < 0

1 if 3× x1 − (2 + x0) ≥ 0

Where the x0 ∈ [−2, 2] and x1 ∈ [−2, 2] define the square where we limit our
interrogation of our method. As the number of evaluated points increases the
better our method models the line.

We ran our method on the line experiment around 200 times with each
iteration evaluating the experiment up to 35 points. It can be seen in the box
plot from figure 1 that as the number of evaluation points increases the accuracy
of our emulator approaches 1 (100% accurate) and the variance with respect to
the accuracy of all 200 experiments decreases substantially. We optimize our
emulator after every third point.

18

Figure 1: Box plot of accuracy of 200 experiments of a line model

Incremental results are shown as snap shots of the emulator and the entropy
field (Fig. 2), where the colors range from white (zero entropy) to purple (.7
value for the entropy). It is apparent that there are many outliers that hover
between 70% and 65% accuracy. The reason for this behavior is a problem
we faced in many of the experiments. The behavior is from over fitting of
the Gaussian Process Classifier when we optimized the model with either few
examples of one label and many of the other or no examples of some labels. This
brings up the question of how many point evaluations should we wait before we
optimize our emulator. For simpler models we can optimize our emulator every
few points. As the simulators grow in complexity we must wait longer and
longer before we optimize. The problem with this realization is that the object
is to use our method on a simulator of unknown complexity. This raises the
question of how to handle optimization, should we omit optimizing our model
or are there other methods we can implement to overcome this optimization
problem?

Figure 2 shows six snap shots of our emulator (seen on the left) and the
entropy of our emulator (on the right). As the number of points increases it is
easy to see that our emulator does a better and better job and approximating
the line. It is also shown that the overall entropy reduces and begins to focus
on the decision boundary of the line as more points are evaluated.

19

Figure 2: Example of the development of the Emulator(left) and Entropy(right)
for point totals 3, 10, 20, 30 and 35, with optimization performed at every third
point.

20

4.1.2 Single Circle

Next we experiment on a single circle defined by the two dimensional formula
below and with a center at (1, 0).

f(x0, x1) =

{
1 if

√
(x0 − 1)2 + x21 > 1

0 Otherwise

Where the x0 ∈ [−2, 2] and x1 ∈ [−2, 2] define the square where we limit our
interrogation of our method. As the number of evaluated points increases the
better our method models the circle.

We ran our method on the single circle experiment around 120 times with
each iteration evaluating the experiment on 65 points. It can be seen in the box
plot from figure 3 that as the number of evaluation points increases the accuracy
of our emulator approaches 1 and the variance with respect to accuracy of all
120 experiments decreases substantially. We optimized our emulator after each
tenth point.

21

Figure 3: Box plot of accuracy of 120 experiments of a single circle model

We again see the problem of outliers with flat accuracy from the emulator
over-fitting when optimization takes place when the number of points from one
class far outnumbers the number of points from the other class.

To see how our emulator models the single circle refer to figure 4. We show
six snap shots of our emulator (seen on the left) and the entropy of our emulator
(on the right). As the number of points increases it is easy to see that our
emulator does a better job of approximating the single circle. It is also shown
that the overall entropy reduces and begins to focus on the decision boundary
of the circle as more points are evaluated.

22

Figure 4: Example of the development of the Emulator(left) and Entropy(right)
for point totals 3, 10, 20, 35 and 65 (top to bottom) with optimization performed
at every tenth point.

23

4.1.3 Disconnected Sets of Circles

Next we experiment with two disconnected circles defined by the two dimen-
sional formula below. The Center of the circles lies at (−1,−1) and (1, 1).

f(x0, x1) =


1 if

√
(x0 − 1)2 + (x1 − 1)2 > 1

1 if
√

(x0 + 1)2 + (x1 + 1)2 > 1

0 Otherwise

Where the x0 ∈ [−2, 2] and x1 ∈ [−2, 2] define the square where we limit our
interrogation of our method.

We ran our method on the two circle experiment around 50 times with each
iteration evaluating the experiment on 125 points. It can be seen in the box plot
from figure 5 that as the number of evaluation points increases the accuracy of
our emulator approaches 1 and the variance of the accuracy of all 50 experiments
decreases substantially.

24

Figure 5: Box plot of accuracy of 50 disjointed circle model experiments

In this experiment we saw no outliers with flat accuracy from the emulator
over-fitting. We optimized every 15 points and from observation this seems to
be a good number to choose.

To see how our emulator models the two circles refer to figure 6. We show six
snap shots of our emulator (seen on the left) and the entropy of our emulator
(on the right). As the number of points increases it is easy to see that our
emulator does a better job of approximating the two circles. It is also shown
that the overall entropy reduces and begins to focus on the decision boundary
of the two circle as more points are evaluated.

25

Figure 6: Example of the development of the Emulator(left) and Entropy(right)
for point totals 3, 10, 20, 55 and 125 (top to bottom) with optimization per-
formed at every fifteenth point.

26

4.2 Computational Fluid Dynamics

In this section we evaluate our emulator on a computational fluid dynamics
simulator termed FUN3D. Our experiment on the FUN3D simulator was per-
formed in a two dimensional setting with the dimensions of interest being the
Mach number ranging from .5−2.35 and the angle of attack ranging from 0−30
degrees. The FUN3D simulator results are shown in Fig. 7. The successful sim-
ulations are in blue and failed simulations are in red.

We found that optimization did not improve results thus we omitted opti-
mization of our emulator. We were only able to run one complete experiment
using the FUN3D simulator. Figure 8 shows that accuracy of our method peaks
at around 83 percent and gets to that point after roughly 65 evaluations of the
simulator. It took the experiment about 2000 minutes to evaluate 200 points.

We plotted our emulator and its entropy for each point evaluated by the
simulator. It is much more difficult to recognize progress that is being made
by our method than in the previous toy examples. Because of this we post all
images with even number of points of the experiment in appendix C in the hopes
that showing the images will visually aid the readers understanding of what our
emulator learned.

27

Figure 7: FUN3D Plot with CFL set to 500
28

Figure 8: FUN3D Accuracy Plot per Point

5 Discussion

5.1 When to Optimize

We saw in our work that deciding when to optimize our emulator is an important
question. If done right, optimization can lead to a more accurate emulator,
otherwise the optimization can lead to an emulator that over-fits and performs
very poorly.

Unfortunately the question of when to optimize is unique to each simulator.
We chose to optimize after every three points when trying to create an emulator
for the line found in 4.1.1. We increased the interval of optimization to 10
points when we tried to create an emulator for the single circle 4.1.2, and we
choose to optimize every 15 points with the two disjointed circles 4.1.3. When it
came to the FUN3D simulator we could not find a good interval to optimize our
emulator and just ran the experiment with no optimization. A possible insight
into why optimization of the FUN3D simulator showed no benefit are discussed
in the next section (5.2).

29

5.1.1 Optimization Alternative

As an alternative to optimization, that we were not able to evaluate, we create
an emulator that is composed of an ensemble of Gaussian Process Classifiers
rather than a single Gaussian Process classifier. Creation of this new emulator
can be seen in algorithm 4. For clarity the length scale and variance fields are
hyper parameters of the Gaussian Process Classifier.

Algorithm 4 Ensemble Emulator

1: for length in lengthScaleList do
2: for var in varianceList do
3: model = New GP Classification Model
4: model.lengthscale = length

5: model.variance = var

6: modelList.append(model)
return modelList

The arrays defined by lengthScaleList as well as varianceList need to be
well chosen. What well chosen means is again another area of future research
but as a starting point we set lengthScaleList = [.1, .5, 1, 1.5, 2.5, 10] and
varianceList = [.1, 1, 5].

With this new ensemble emulator we need to define a method to calculate
the probability of a point. This method is defined in algorithm 5

Algorithm 5 Ensemble Emulator Probability

1: function predictProbEnsemble(emulator, nextPoint)
2: weight = 0
3: weights = 0
4: probabilities = 0
5: weightProbs = 0
6: for model in emulator do
7: weight += model.logLikelihood()

8: for model in emulator do
9: weights += model.logLikelihood()/weight

10: for model in emulator do
11: probabilities.append(model.predictProb(nextPoint))

12: for probs in probabilities do
13: for weight in weights do
14: weightProbs += weight× probs

return weightProbs

This new ensemble emulator also means that modifications to algorithm 3
must also be made. These modifications are rather obvious with algorithms 4
and 5 defined so we will omit the details to the modification of algorithm 3.

The motivation behind this method is to reduce our methods possibility of

30

over fitting on the data and giving incorrect predictions in regions near points
that have been evaluated on the simulator. We were unable to evaluate this
algorithm, but it is a good topic of future research for improvement.

5.2 Kernel Function Selection

We observed from our experiments that the choice of the Matern kernel was
good for all of our toy examples. On the other hand we have an intuition
that a better choice of kernel function could be used in the case of the FUN3D
simulator. This intuition comes from the properties of the Matern Kernel and
the behavior we see of the FUN3D simulator. To clarify, the Matern kernel
assumes a stationary somewhat smooth data set. By ’somewhat smooth’ we
refer to the fact that some stationary kernel functions are infinity differentiable,
such as the squared exponential kernel, while the Matern Kernel is only three
times differentiable. This property means that the Matern kernel is good for
modelling data that can be very ’wiggly’ but still smooth. By ’wiggly’ we mean
that there are a large, non-infinite, number of points where the derivative, which
is defined, changes from positive to negative or vice versa.

It can be seen in figure 7 that the FUN3D simulator is more discontinuous
than the Matern Kernel can handle. This observation means that we need
to investigate further if alternative kernel functions would be a better fit for
creating a classification emulator that would better approximate the FUN3D
simulator. Some alternative kernel properties that might be beneficial, thus
worth looking into, are kernels that are non-stationary as well as kernels that
are able to model highly non-smooth data. This is another good topic for future
work. More detailed information on Kernel functions can be seen at chapter 4
of [12].

31

References

[1] M. C. Kennedy and A. O’Hagan, “Bayesian calibration of computer mod-
els,” Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), vol. 63, no. 3, pp. 425–464, 2001.

[2] A. O. Marc Kennedy, Clive Anderson, M. Lomas, I. Woodward, J. P.
Gosling, and A. Heinemeyer, “Quantifying uncertainty in the biospheric
carbon flux for england and wales,” Journal of the Royal Statistical Soci-
ety. Series A (Statistics in Society), vol. 171, no. 1, pp. 109–135, 2008.

[3] S. Conti and A. OHagan, “Bayesian emulation of complex multi-output and
dynamic computer models,” Journal of Statistical Planning and Inference,
vol. 140, no. 3, pp. 640 – 651, 2010.

[4] A. OHagan, “Bayesian analysis of computer code outputs: A tutorial,” Re-
liability Engineering and System Safety, vol. 91, no. 1011, pp. 1290 – 1300,
2006. The Fourth International Conference on Sensitivity Analysis of Model
Output (SAMO 2004)SAMO 2004The Fourth International Conference on
Sensitivity Analysis of Model Output (SAMO 2004).

[5] C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, and
Y. Richet, “Fast parallel kriging-based stepwise uncertainty reduction with
application to the identification of an excursion set,” Technometrics, vol. 56,
no. 4, pp. 455–465, 2014.

[6] N. Bounceur, M. Crucifix, and R. Wilkinson, “Global sensitivity analysis of
the climate–vegetation system to astronomical forcing: an emulator-based
approach,” Earth System Dynamics, vol. 6, pp. 205–224, 2015.

[7] P. B. Holden, N. R. Edwards, P. H. Garthwaite, and R. D. Wilkinson,
“Emulation and interpretation of high-dimensional climate model outputs,”
Journal of Applied Statistics, pp. 1–18, 2015.

[8] P. B. Holden, N. R. Edwards, J. Hensman, and R. D. Wilkinson,
“Abc for climate: dealing with expensive simulators,” arXiv preprint
arXiv:1511.03475, 2015.

[9] C. Chevalier, V. Picheny, and D. Ginsbourger, “Kriginv: An efficient and
user-friendly implementation of batch-sequential inversion strategies based
on kriging,” Computational Statistics and Data Analysis, vol. 71, pp. 1021
– 1034, 2014.

[10] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking
the human out of the loop: A review of bayesian optimization,” tech. rep.,
Universities of Harvard, Oxford, Toronto, and Google DeepMind, 2015.

[11] T. G. authors, “Gpyopt: A bayesian optimization framework in python.”
urlhttp://github.com/SheffieldML/GPyOpt, 2015.

32

[12] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press,
2005.

[13] J. E. Oakley and A. O’Hagan, “Probabilistic sensitivity analysis of complex
models: a bayesian approach,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 66, no. 3, pp. 751–769, 2004.

[14] T. J. Santner, W. B., and N. W., The Design and Analysis of Computer
Experiments. Springer-Verlag, 2003.

[15] M. Kennedy, A. OHagan, and N. Higgins, “Bayesian analysis of computer
code outputs,” in Quantitative Methods for Current Environmental Issues
(C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, eds.), pp. 227–
243, Springer London, 2002.

[16] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-
inputs,” in ADVANCES IN NEURAL INFORMATION PROCESSING
SYSTEMS, pp. 1257–1264, MIT press, 2006.

[17] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big
data,” in Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, UAI 2013, Bellevue, WA, USA, August 11-15, 2013,
2013.

[18] Z. Dai, A. C. Damianou, J. Hensman, and N. D. Lawrence, “Gaus-
sian process models with parallelization and GPU acceleration,” CoRR,
vol. abs/1410.4984, 2014.

[19] N. D. Lawrence, “Gaussian process latent variable models for visualisation
of high dimensional data,” in Advances in Neural Information Processing
Systems 16 [Neural Information Processing Systems, NIPS 2003, December
8-13, 2003, Vancouver and Whistler, British Columbia, Canada], pp. 329–
336, 2003.

[20] C. Paciorek and M. Schervish, “Nonstationary covariance functions for
gaussian process regression,” Advances in neural information processing
systems, vol. 16, pp. 273–280, 2004.

[21] The GPy authors, “GPy: A gaussian process framework in python.” url-
http://github.com/SheffieldML/GPy, 2012–2015.

[22] J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, “Sequential de-
sign of computer experiments for the estimation of a probability of failure,”
Statistics and Computing, vol. 22, no. 3, pp. 773–793, 2012.

[23] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian optimiza-
tion of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning,” CoRR, vol. abs/1012.2599, 2010.

33

A Code for Toy Experiments

This code can run all toy experiments listed in the paper. The user only needs to modify the function f(X) to change
which experiment is evaluated. The code to run the FUN3D experiment is very similar to this. The only difference
is, again, the form of the function f(X). To run this code you must use the python Packages GPy, GPyOpt, Numpy,
SciPy and PyDOE. All packages can be found on GitHub.

c o d i n g : u t f −8

#U s e t h e EntABC c l a s s t o d o e n t r o p i c ABC

I n [5] :

import numpy as np
import time
import GPy
from multiprocessing import Pool
#f r o m e n t r o p i c A B C i m p o r t EntABC
g e t i p y t h o n () . m a g i c (u ’ m a t p l o t l i b i n l i n e ’)
from matplotlib import pyplot as plt
import matplotlib
matplotlib.use(’Agg’)

matplotlib.rcParams[’figure.figsize’] = (18, 5)
np . r a n d o m . s e e d (5 5) # s e t t h e s e e d
import numpy as np
import GPy
import sys
sys.path.append(’~/SheffieldML’)
import GPyOpt
import sys
sys.path.append(’/xlogx/npufunc directory/’)
import npufunc as util
import copy
#f r o m m a t p l o t l i b i m p o r t p y p l o t a s p l t
import json

class EntABC(object):

def init (self, bounds, model,
data lower=−np.inf, data upper=.5,
gridtype=’fixed’, gridres=100,
GH points=10):

self.bounds = bounds

34

self.model = model
assert not np.all(np.isinf(

[data lower , data upper])), "you must specify
at least one−sided ovbervation bound!"

self.data lower , self.data upper = data lower , .5

GH s e t u p
#self . g h x , self . g h w = np . p o l y n o m i a l . h e r m i t e . h e r m g a u s s (

G H p o i n t s)#

g r i d s e t u p
self.gridtype, self.gridres = gridtype, gridres
if gridtype is ’fixed’:

self.Xgrid = GPyOpt.util.general.multigrid(
self.bounds, self.gridres)

def select next point(self, max iter=150, ∗∗ options):
” ” ”
c o m p u t e t h e o p t i m a l n e x t p o i n t u s i n g B a y e s i a n O p t i m i z a t i o n .

m a x i t e r i s t h e n u m b e r o f BO i t e r a t i o n s t h a t we ’ l l u s e .

o p t i o n s a r e k e y w o r d a r g u m e n t s t h a t w i l l b e p a s s e d t o t h e
B a y e s i a n

O p t i m i z e r . By d e f a u l t we u s e :

a c q u i s i t i o n = ’ EI ’ ,
a c q u i s i t i o n p a r = 0 . 0 0 1 ,
n o r m a l i z e =True ,
m o d e l o p t i m i z e r e s t a r t s =1 ,
m o d e l o p t i m i z e i n t e r v a l = 3 0 ,
v e r b o s i t y =0

S e e GPyOpt . B a y e s i a n O p t i m i z a t i o n f o r a f u l l l i s t .

R e t u r n s
−−
Xnew , t h e n e x t p o i n t t o s a m p l e
m , t h e GPyOpt m o d e l w h i c h d i d t h e o p t i m i z i n g
” ” ”
default options = dict(acquisition=’EI’,

acquisition par=0.001,
normalize=True,
model optimize restarts=1,
model optimize interval=30,

35

verbosity=0)
s e t t h e d e f a u l t o p t i o n s i n t h e d i c t i o n a r y o n l y i f t h e y ’ r e n o t

s e t .
for k, a in default options.iteritems():

if not k in options:
options[k] = a

m = GPyOpt.methods.BayesianOptimization(
self.objective , self.bounds, ∗∗ options)

m.model.likelihood.variance.fix(1e−6)
m.run optimization(max iter=max iter)
i = np.argmin(m.Y)
Xnew = m.X[i]

return Xnew, m

def select next point grid(self, search res=5):
” ” ”
S e l e c t t h e n e x t p o i n t b y b r u t e − f o r c e s e a r c h i n g on a g r i d .
” ” ”

search grid = GPyOpt.util.general.multigrid(self.bounds,
search res)

print search grid.shape
E entropies = self.objective(search grid)

p r i n t E e n t r o p i e s
print ’min entropies’
print np.min(E entropies), np.max(E entropies), E entropies.
shape

i = np.argmin(E entropies)
print ’grid info’
print i, search grid[i], search grid[i].shape
return search grid[i]

def objective(self, Xtrial):
” ” ”
The o b j e c t i v e f u n c t i o n f o r s e l e c t i n g t h e n e x t p o i n t a t t h e

p o i n t X
” ” ”

h a n d l e a l l p o i n t s o n e a t a t i m e . F o r m u l t i p l e p o i n t s o f
X t r i a l ,

r e c u r s e .
if len(Xtrial.shape) == 1:

Xtrial = Xtrial.reshape(1, −1)

36

if Xtrial.shape[0] > 1:
return np.array([self.objective(x) for x in Xtrial]).
reshape(−1, 1)

w o r k o u t i f we n e e d a d y n a m i c g r i d
if self.gridtype is ’dynamic’:

Xgrid = self.dynamic grid(Xtrial)
else:

Xgrid = self.Xgrid

return self.E AveH classification(Xtrial, Xgrid)

def dynamic grid(self, X):
” ” ”
C o m p u t e a g r i d w h i c h i s t w o l e n g t h s c a l e s a r o u n d X , b u t s t i l l

w i t h i n self . b o u n d s
” ” ”
X = X.squeeze
assert len(X.shape) == 1, "dynamic grids are around one point
only"

lower = np.fmin([d[0] for d in self.bounds],
X − self.model.kern.lengthscale)

upper = np.fmax([d[1] for d in self.bounds],
X + self.model.kern.lengthscale)

return GPyOpt.util.general.multigrid(zip(lower, upper), self.
gridres)

def aveH classification(self, Xtrial, Xgrid, label):
Xnext = np.vstack((self.model.X, Xtrial))
Y label = np.vstack((self.model.Y, label))

m o d e l c o p y = GPy . m o d e l s . G P C l a s s i f i c a t i o n (X n e x t , Y l a b e l , k e r n e l
=GPy . k e r n . M a t e r n 5 2 (2 , 1 , 1 .))
model copy = copy.deepcopy(self.model)
worked = True
try:

model copy.set XY(Xnext, Y label)
except:

print ’we had an error somewhere!!!!!!!!!!!!’
worked = False

p label , = np.asarray(model copy.predict(Xgrid))
del model copy
return util.entropy(p label).mean()

def E AveH classification(self, Xtrial, Xgrid):
if len(Xtrial.shape) == 1:

37

Xtrial = Xtrial.reshape(1, −1)
if Xtrial.shape[0] > 1:

return np.array([self.E AveH classification(x, Xgrid) for x
in Xtrial])

p o o l = P o o l (p r o c e s s e s =2)
g l o b a l X t r a i l
3 g l o b a l X g r i d
g l o b a l self . m o d e l
px, = np.asarray(self.model.predict(Xtrial))

r e s u l t s = p o o l . map (a v e H c l a s s i f i c a t i o n , [(self , X t r i a l , 0) , (self ,
X t r i a l , 1)])

p o o l . c l o s e ()
t t e s t , = np . a s a r r a y (self . m o d e l . p r e d i c t (self . m o d e l . X))

X n e x t = np . v s t a c k ((self . m o d e l . X , X t r i a l))
Y z e r o = np . v s t a c k ((self . m o d e l . Y , np . a r r a y ([0])))
Y o n e = np . v s t a c k ((self . m o d e l . Y , np . a r r a y ([1])))
p r i n t self . m o d e l . X
m o d e l z e r o = c o p y . d e e p c o p y (self . m o d e l)
m o d e l z e r o . s e t X Y (X n e x t , Y z e r o)

m o d e l o n e = c o p y . d e e p c o p y (self . m o d e l)
m o d e l o n e . s e t X Y (X n e x t , Y o n e)

t t e s t , = np . a s a r r a y (m o d e l z e r o . p r e d i c t (self . m o d e l . X))
p r i n t t t e s t
p z e r o , = np . a s a r r a y (m o d e l z e r o . p r e d i c t (X g r i d))
p o n e , = np . a s a r r a y (m o d e l o n e . p r e d i c t (X g r i d))

p r i n t t y p e (m o d e l o n e)
p r i n t ’ m i n s a n d max ’
p r i n t min (p z e r o) , max (p z e r o) , min (p o n e) , max (p o n e)

A v e H z e r o = u t i l . e n t r o p y (p z e r o) . mean ()
A v e H o n e = u t i l . e n t r o p y (p o n e) . mean ()

p r i n t t y p e (A v e H z e r o) , t y p e (p x)
d e l m o d e l o n e
d e l m o d e l z e r o

p r i n t A v e H o n e , A v e H z e r o
p r i n t p x ∗ A v e H o n e + (1− p x) ∗ A v e H z e r o
return px ∗ self.aveH classification(Xtrial, Xgrid, np.array
([1])) + (1 − px) ∗ self.aveH classification(Xtrial, Xgrid,
np.array([0]))

def plot(self, iteration):
if len(self.bounds) == 1:

38

self.plot 1d
elif len(self.bounds) == 2:

self.plot 2d(iteration)
else:

raise NotImplementedError , "what should we plot in high
dimensions?"

def plot 1d(self):
pass

def plot 2d(self, iteration , show objective=False, resolution=1000,
show variance=False, highlight latest=True, show entropy=True):

num plots = 1
if show objective:

num plots += 1
if show variance:

num plots += 1
if show entropy:

num plots += 1
fig, ax = plt.subplots(1, num plots , sharex=True,

sharey=True, figsize=(4 ∗ 5, 5))
ax = np.atleast 1d(ax)
assert ax.size == num plots

Xplot = GPyOpt.util.general.multigrid(self.bounds, resolution)
xx, yy = [x.reshape(resolution , resolution) for x in Xplot.T]

p, = self.model.predict(Xplot)
mu, var = self.model. raw predict(Xplot)
std = np.sqrt(np.clip(var, 0, np.inf))
vmin, vmax = self.model.Y.min(), self.model.Y.max()

p r i n t ’ x x y y ’
p r i n t x x . s h a p e , y y . s h a p e
CS = ax[0].contour(xx, yy, p.reshape(∗xx.shape),

vmin=vmin, vmax=vmax, cmap=plt.cm.jet)
plt.clabel(CS, inline=1, fontsize=10)
if highlight latest:

ax[0].plot(self.model.X[−1, 0], self.model.X[−1, 1], ’ro’,
ms=16)

ax[0].scatter(self.model.X[:, 0], self.model.X[:, 1], 40, self.
model.Y[:, 0],

linewidth=1.2, vmin=vmin, vmax=vmax, cmap=plt.cm.
jet, zorder=10)

p = u t i l . n o r m c d f ((mu) / np . s q r t (1+ np . c l i p (v a r , 0 , np . i n f)))# −

39

u t i l . n o r m c d f ((self . d a t a l o w e r −mu) / s t d)
H = util.entropy(p)
p r i n t ’ p r o b a b i l i t y ’

p r i n t np . min (p) , np . max (p)
p r i n t ’ E n t r o p y ’
p r i n t np . min (H) , np . max (H)
ax[0].imshow(1 − p.reshape(∗xx.shape).T, cmap=plt.cm.gray,
interpolation=’bilinear’,

origin=’lower’, extent=np.hstack(self.bounds),
aspect=’auto’)

ax count = 1
i f s h o w v a r i a n c e :
a x [a x c o u n t] . c o n t o u r f (x x , yy , s t d . r e s h a p e (∗ x x . s h a p e) , cmap

= p l t . cm . B l u e s)
a x c o u n t += 1
if show entropy:

foo = ax[ax count].contourf(xx, yy, H.reshape(
∗xx.shape), cmap=plt.cm.Blues, vmin=0, vmax=util.
entropy(0.5))

plt.colorbar(foo)
ax count += 1

if show objective:
foo = ax[ax count].contourf(xx, yy, self.objective(

Xplot).reshape(resolution , resolution), cmap=plt.cm.jet
)

plt.colorbar(foo)
fig.savefig(’/scratch/two circle image’ + str(iteration) + ’.
png’)

return fig, ax

def aveH classification(args):
Xnext = np.vstack((args[0].X, args[1]))
Y label = np.vstack((args[0].Y, args[3]))

model copy = copy.deepcopy(args[0])
model copy.set XY(Xnext, Y label)
p label , = np.asarray(model copy.predict(args[2]))
del model copy
return util.entropy(p label).mean()

def calculate accuracy(model, bound, resolution):

40

Xplot = GPyOpt.util.general.multigrid(bound, resolution)
model output , = model.predict(Xplot)
p r i n t t y p e (m o d e l o u t p u t)
p r i n t l e n (m o d e l o u t p u t)

model truth = np.array(
([1 if i > .5 else 0 for i in model output])).reshape(−1, 1)

f truth = f(Xplot)
p r i n t l e n (f t r u t h)
p r i n t f t r u t h . s h a p e , m o d e l t r u t h . s h a p e
m o d e l
p r i n t np . sum (m o d e l t r u t h == f t r u t h)

f o r i i n m o d e l t r u t h : p r i n t i
return float(np.sum(model truth == f truth)) / f truth.size

def f(X):
if len(X.shape) == 1:

X = X.reshape(1, −1) # p r i n t X
r e t u r n (mTrue . p r e d i c t (X) [0])

p r i n t np . a r r a y (np . s i g n ([− 1 ∗ j [0] + 3 ∗ j [1] − 2 f o r j i n X p o i n t s])) .
r e s h a p e (− 1 , 1) . s i z e

r e t u r n np . a r r a y (([1 i f −1∗ j [0] + 3 ∗ j [1] − 2 >= 0 e l s e 0 f o r j i n
X])) . r e s h a p e (− 1 , 1)
ypoints = []
for i in X:

if (i[0] − 1) ∗∗2 + (i[1] − 1) ∗∗2 <= 1:
ypoints.append(1)

elif (i[0] + 1) ∗∗2 + (i[1] + 1) ∗∗2 <= 1:
ypoints.append(1)

else:
ypoints.append(0)
p r i n t y p o i n t s ’ ’ ’

return np.array(ypoints).reshape(−1, 1)
r e t u r n np . a r r a y ([1 i f np . s q r t ((j [0] − 1) ∗∗2+ j [1] ∗ ∗ 2) >1 e l s e 0 f o r j

i n
X]) . r e s h a p e (− 1 , 1)

I n [6] :
def first step(main iteration):

d e f i n e t h e p r o b l e m : b o u n d s , d a t a l i m i t s , f u n c t i o n a n d g r i d f o r
e v a l u a t i n g

e n t r o p y .
x = 2

41

bounds = [[−x, x], [−x, x]]
data lower , data upper = .5, .5

d r a w f r o m t a GP f o r g r o u n d t r u t h .
x x , y y = np . m g r i d [b o u n d s [0] [0] : b o u n d s [0] [1] : 1 0 j , b o u n d s [1] [0] :

b o u n d s [1] [1] : 1 0 j]
p r i n t x x . f l a t t e n ()
p r i n t y y . f l a t t e n ()
X p o i n t s = np . v s t a c k ((x x . f l a t t e n () , y y . f l a t t e n ())) . T
p r i n t X p o i n t s
K=GPy . k e r n . RBF (i n p u t d i m =2 , v a r i a n c e = 1 0 , l e n g t h s c a l e =2) . K (X p o i n t s

)
y p o i n t s = np . a r r a y ([1 i f −1∗ j [0] + 3 ∗ j [1] − 2 >=0 e l s e 0 f o r j i n

X p o i n t s]) . r e s h a p e (− 1 , 1)
y p o i n t s = np . a r r a y ([1 i f np . s q r t ((j [0] − 1) ∗∗2+ j [1] ∗ ∗ 2) >2 e l s e 0

f o r j i n X p o i n t s]) . r e s h a p e (− 1 , 1)
’ ’ ’ y p o i n t s = []

f o r i i n X p o i n t s :
i f (i [0] − 2) ∗ ∗2 + (i [1] − 2) ∗ ∗ 2 <= 4 :

y p o i n t s . a p p e n d (1)
e l i f (i [0] + 2) ∗ ∗2 + (i [1] + 2) ∗ ∗ 2 <= 4 :

y p o i n t s . a p p e n d (1)
e l s e :

y p o i n t s . a p p e n d (0)
p r i n t y p o i n t s ’ ’ ’

d e f f (X) :
i f l e n (X . s h a p e) ==1:
X = X . r e s h a p e (1 , − 1) # p r i n t X

r e t u r n (mTrue . p r e d i c t (X) [0])
p r i n t np . a r r a y (np . s i g n ([− 1 ∗ j [0] + 3 ∗ j [1] − 2 f o r j i n X p o i n t s])) .

r e s h a p e (− 1 , 1) . s i z e
r e t u r n np . a r r a y (([1 i f −1∗ j [0] + 3 ∗ j [1] − 2 >= 0 e l s e 0 f o r j i n X

])) . r e s h a p e (− 1 , 1)
r e t u r n np . a r r a y ([1 i f np . s q r t ((j [0] − 1) ∗∗2+ j [1] ∗ ∗ 2) >2 e l s e 0 f o r

j i n
X]) . r e s h a p e (− 1 , 1)

#x x , y y = np . m g r i d [b o u n d s [0] [0] : b o u n d s [0] [1] : 5 0 j , b o u n d s [1] [0] :
b o u n d s [1] [1] : 5 0 j]

X g r i d = np . v s t a c k ((x x . f l a t t e n () , y y . f l a t t e n ())) . T

I n [7] :

f i r s t f e w e v a l u a t i o n s a t r a n d o m p o i n t s a n d c o n s t r u c t i o n o f GP
m o d e l

42

from pyDOE import lhs
initial points = 3
X = lhs(2, initial points , criterion="maximin", iterations=1000)
X = X ∗ np.array([bounds[0][1] − bounds[0][0], bounds[1][1] −

bounds[1][0]]) + np.array([bounds[0][0], bounds
[1][0]])

p r i n t X
Y = f(X)
p r i n t (Y . s h a p e == Y . s h a p e)
p r i n t Y
m = GPy.models.GPClassification(X, Y, kernel=GPy.kern.Matern52(2,
1, 1.))

m . G a u s s i a n n o i s e . f i x (1 e −8)
m . p l o t ()
total accuracy = [[]]

I n [] :

I n [8] :

start = time.time()
iteration = 125
accuracy list = []
for it in range(iteration):

start loop = time.time()
o p t i m i z e now a n d t h e n .
if it % 15 == 0 and it != 0: # a n d i t >1:

i f i t == 1 :
p a s s
e l s e :
p a s s
m.optimize()

h e r e ’ s t h e EntABC i n s t a n c e
mABC = EntABC(bounds, m, data lower , data upper)

c h o o s e t h e b e s t p o i n t s e e n b y t h e O p t i m i z a t i o n m o d e l
Xnew, mBO = mABC.select next point()

p l o t
mABC.plot(it)
mBO . p l o t c o n v e r g e n c e ()

a c t u a l l y s e t t h e i n t e n d e d o b s e r v a
Ynew = f(Xnew)

43

p r i n t t y p e (Ynew) , t y p e (Xnew)
setX = np.vstack((m.X, Xnew))
setY = np.vstack((m.Y, Ynew))

dummy = calculate accuracy(m, bounds, 100)
accuracy list.append(dummy)
print ’Accuracy is ’ + str(dummy)
m.set XY(setX, setY)

print ’Iteration Number ’ + str(it + 1)
print ’Iteration Time was ’ + str(((time.time() − start loop) /

60.0)) + ’ minutes’
p r i n t c a l c u l a t e a c c u r a c y ()
try:

with open("single two circle results " + str(main iteration
) + ".txt", "w") as myfile:
json.dump(accuracy list , myfile)

except:
print "some where io error"

print ’Final Iteration’
end = time.time()

print ’Total time was ’ + str((end − start) / 60.0) + ’ Minutes’
return accuracy list

def dummy function():

I n [] :

p l o t t h e t r u t h
fig, ax = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(18,

6))
ff = f(Xgrid).reshape(∗xx.shape)
CS = ax[0].contour(xx, yy, ff.reshape(

∗xx.shape), np.arange(−6, 6, 2), vmin=ff.min(), vmax=ff.max(),
cmap=plt.cm.jet)

plt.clabel(CS, inline=1, fontsize=10)
ptrue = (ff < data upper) ∗ 1.
ax[0].imshow(1 − ptrue.reshape(∗xx.shape).T, cmap=plt.cm.gray,

interpolation=’nearest’, origin=’lower’, extent=np.
hstack(bounds))

ax[0].set title(’ground truth’)

44

s p a c e f i l l e r
from pyDOE import lhs
Xfill = lhs(2, samples=m.Y.size, criterion="maximin", iterations
=1000)

Xfill = Xfill ∗ np.array([bounds[0][1] − bounds[0][0], bounds[1]
[1] − bounds[1][0]]) + np.array([bounds
[0][0], bounds[1][0]])

Yfill = f(Xfill)
mfill = GPy.models.GPRegression(

Xfill, Yfill, kernel=GPy.kern.Matern52(2, 1, 1.))
mfill.Gaussian noise.fix(1e−6)
mfill.optimize restarts(3)
mfill mu , mfill var = mfill.predict(Xgrid)
CS = ax[1].contour(xx, yy, mfill mu.reshape(

∗xx.shape), np.arange(−6, 6, 2), vmin=ff.min(), vmax=ff.max(),
cmap=plt.cm.jet)

plt.clabel(CS, inline=1, fontsize=10)

from scipy import stats

def probabilities(mu, var):
− s t a t s . norm . c d f (−(mu − d a t a l o w e r) / np . s q r t (v a r))
return stats.norm.cdf((mu) / np.sqrt(var))

ax[1].imshow(1 − probabilities(mfill mu , mfill var).reshape(∗xx.
shape).T,

cmap=plt.cm.gray, interpolation=’bilinear’, origin=’
lower’, extent=np.hstack(bounds))

ax[1].plot(Xfill[:, 0], Xfill[:, 1], ’ro’)
ax[1].set title(’space filling’)

m ent mu , m ent var = m. raw predict(Xgrid)
ax[2].imshow(1 − probabilities(m ent mu , m ent var).reshape(∗xx.
shape).T,

cmap=plt.cm.gray, interpolation=’bilinear’, origin=’
lower’, extent=np.hstack(bounds))

ax[2].plot(m.X[:, 0], m.X[:, 1], ’ro’)
CS = ax[2].contour(xx, yy, m ent mu.reshape(

∗xx.shape), np.arange(−6, 6, 2), vmin=ff.min(), vmax=ff.max(),
cmap=plt.cm.jet)

plt.clabel(CS, inline=1, fontsize=10)
ax[2].set title(’Entropic search’)
ax[2].set ylim(yy.min(), yy.max())

ptrue = ptrue.flatten()

45

g e t t h e p r o b a b i l i t i e s f o r t h e s p a c e − f i l l i n g d e s i g n
mu, var = mfill. raw predict(Xgrid)
pfill = probabilities(mu, var).flatten()
pfill = np.where(ptrue == 1, pfill, 1 − pfill)
print ’fill:’, np.mean(np.log(pfill)), np.mean(ptrue == (pfill >
0.5))

g e t t h e p r o b a b i l i t i e s f o r t h e e n t r o p y s e a r c h
p, = m.predict(Xgrid)
#p = p r o b a b i l i t i e s (mu , v a r) . f l a t t e n ()
p = np.where(ptrue == 1, p, 1 − p)
print ’ES:’, np.mean(np.log(p)), np.mean(ptrue == (p > 0.5))

I n [] :

x range = range(initial points , iteration + initial points)

mfill

I n [] :

m.plot()
plt.figure(0)
plt.plot(x range , accuracy list)
plt.ylabel(’Accuracy %’)
plt.xlabel(’Total Number of Evaluations’)
plt.plot()

I n [] :

m.pickle(’example model.pickle’)

I n [] :

print m.Y, m.Y.size

I n [] :

plt.plot(np.random.randn(10))

I n [] :

def main():
results = []

46

try:
accuracy = first step(1)
results.append(accuracy)

p r i n t ” E p o c h n u m b e r ”+ s t r (i +1) +” o u t o f 2 5 ”
except Exception as e:

print str(e) + ’we are going to try again’
w i t h o p e n (’ l o n g c i r c l e a c c u r a c y . t x t ’ , ’ w ’) a s m y f i l e :
j s o n . dump (r e s u l t s , m y f i l e)

I n [] :

if name == " main ":
main()

47

B Code for FUN3D Experiment

c o d i n g : u t f −8

#U s e t h e EntABC c l a s s t o d o e n t r o p i c ABC

I n [5] :
import codecs
import subprocess
import numpy as np
import time
import GPy
from multiprocessing import Pool
#f r o m e n t r o p i c A B C i m p o r t EntABC
g e t i p y t h o n () . m a g i c (u ’ m a t p l o t l i b i n l i n e ’)
from matplotlib import pyplot as plt
import matplotlib
matplotlib.use(’Agg’)

matplotlib.rcParams[’figure.figsize’]=(18,5)
#np . r a n d o m . s e e d (5 5) # s e t t h e s e e d
import numpy as np
import GPy
import sys; sys.path.append(’~/SheffieldML’)
import GPyOpt
import sys
sys.path.append(’/xlogx/npufunc directory/’)
import npufunc as util
import copy
#f r o m m a t p l o t l i b i m p o r t p y p l o t a s p l t
import json
class EntABC(object):

def init (self, bounds, model,
data lower=−np.inf, data upper=.5,
gridtype=’fixed’, gridres=100,
GH points=10):

self.bounds = bounds
self.model = model
assert not np.all(np.isinf([data lower , data upper])),

"you must specify at least one−sided
ovbervation bound!"

self.data lower , self.data upper = data lower , .5

#GH s e t u p

48

#self . g h x , self . g h w = np . p o l y n o m i a l . h e r m i t e . h e r m g a u s s (
G H p o i n t s)#

g r i d s e t u p
self.gridtype, self.gridres = gridtype, gridres
if gridtype is ’fixed’:

self.Xgrid = GPyOpt.util.general.multigrid(self.bounds,
self.gridres)

def select next point(self, max iter=150, ∗∗ options):
” ” ”
c o m p u t e t h e o p t i m a l n e x t p o i n t u s i n g B a y e s i a n O p t i m i z a t i o n .

m a x i t e r i s t h e n u m b e r o f BO i t e r a t i o n s t h a t we ’ l l u s e .

o p t i o n s a r e k e y w o r d a r g u m e n t s t h a t w i l l b e p a s s e d t o t h e
B a y e s i a n

O p t i m i z e r . By d e f a u l t we u s e :

a c q u i s i t i o n = ’ EI ’ ,
a c q u i s i t i o n p a r = 0 . 0 0 1 ,
n o r m a l i z e =True ,
m o d e l o p t i m i z e r e s t a r t s =1 ,
m o d e l o p t i m i z e i n t e r v a l = 3 0 ,
v e r b o s i t y =0

S e e GPyOpt . B a y e s i a n O p t i m i z a t i o n f o r a f u l l l i s t .

R e t u r n s
−−
Xnew , t h e n e x t p o i n t t o s a m p l e
m , t h e GPyOpt m o d e l w h i c h d i d t h e o p t i m i z i n g
” ” ”
default options = dict(acquisition=’EI’,

acquisition par=0.001,
normalize=True,
model optimize restarts=1,
model optimize interval=30,
verbosity=0)

s e t t h e d e f a u l t o p t i o n s i n t h e d i c t i o n a r y o n l y i f t h e y ’ r e n o t
s e t .

for k,a in default options.iteritems():
if not k in options:

options[k] = a

49

m = GPyOpt.methods.BayesianOptimization(self.objective , self.
bounds ,∗∗ options)

m.model.likelihood.variance.fix(1e−6)
m.run optimization(max iter=max iter)
i = np.argmin(m.Y)
Xnew = m.X[i]

return Xnew, m

def select next point grid(self, search res=5):
” ” ”
S e l e c t t h e n e x t p o i n t b y b r u t e − f o r c e s e a r c h i n g on a g r i d .
” ” ”

search grid = GPyOpt.util.general.multigrid(self.bounds,
search res)

print search grid.shape
E entropies = self.objective(search grid)

p r i n t E e n t r o p i e s
print ’min entropies’
print np.min(E entropies), np.max(E entropies), E entropies.
shape

i = np.argmin(E entropies)
print ’grid info’
print i, search grid[i], search grid[i].shape
return search grid[i]

def objective(self, Xtrial):
” ” ”
The o b j e c t i v e f u n c t i o n f o r s e l e c t i n g t h e n e x t p o i n t a t t h e

p o i n t X
” ” ”

h a n d l e a l l p o i n t s o n e a t a t i m e . F o r m u l t i p l e p o i n t s o f X t r i a l
, r e c u r s e .

if len(Xtrial.shape)==1:
Xtrial = Xtrial.reshape(1,−1)

if Xtrial.shape[0]>1:
return np.array([self.objective(x) for x in Xtrial]).
reshape(−1,1)

#w o r k o u t i f we n e e d a d y n a m i c g r i d
if self.gridtype is ’dynamic’:

Xgrid = self.dynamic grid(Xtrial)

50

else:
Xgrid = self.Xgrid

return self.E AveH classification(Xtrial, Xgrid)

def dynamic grid(self, X):
” ” ”
C o m p u t e a g r i d w h i c h i s t w o l e n g t h s c a l e s a r o u n d X , b u t s t i l l

w i t h i n self . b o u n d s
” ” ”
X = X.squeeze
assert len(X.shape)==1, "dynamic grids are around one point
only"

lower = np.fmin([d[0] for d in self.bounds], X − self.model.
kern.lengthscale)

upper = np.fmax([d[1] for d in self.bounds], X + self.model.
kern.lengthscale)

return GPyOpt.util.general.multigrid(zip(lower, upper), self.
gridres)

def aveH classification(self, Xtrial, Xgrid, label):
Xnext = np.vstack((self.model.X, Xtrial))
Y label = np.vstack((self.model.Y, label))

m o d e l c o p y = GPy . m o d e l s . G P C l a s s i f i c a t i o n (X n e x t , Y l a b e l , k e r n e l
=GPy . k e r n . M a t e r n 5 2 (2 , 1 , 1 .))
model copy = copy.deepcopy(self.model)
worked = True
try:

model copy.set XY(Xnext, Y label)
except:

print ’we had an error somewhere!!!!!!!!!!!!’
worked = False

p label , = np.asarray(model copy.predict(Xgrid))
del model copy
return util.entropy(p label).mean()

def E AveH classification(self, Xtrial, Xgrid):
if len(Xtrial.shape)==1:

Xtrial = Xtrial.reshape(1,−1)
if Xtrial.shape[0]>1:

return np.array([self.E AveH classification(x, Xgrid) for x
in Xtrial])

p o o l = P o o l (p r o c e s s e s =2)
g l o b a l X t r a i l
#3 g l o b a l X g r i d
g l o b a l self . m o d e l

51

px, = np.asarray(self.model.predict(Xtrial))

r e s u l t s = p o o l . map (a v e H c l a s s i f i c a t i o n , [(self , X t r i a l , 0) , (self ,
X t r i a l , 1)])

p o o l . c l o s e ()
t t e s t , = np . a s a r r a y (self . m o d e l . p r e d i c t (self . m o d e l . X))

X n e x t = np . v s t a c k ((self . m o d e l . X , X t r i a l))
Y z e r o = np . v s t a c k ((self . m o d e l . Y , np . a r r a y ([0])))
Y o n e = np . v s t a c k ((self . m o d e l . Y , np . a r r a y ([1])))
p r i n t self . m o d e l . X
m o d e l z e r o = c o p y . d e e p c o p y (self . m o d e l)
m o d e l z e r o . s e t X Y (X n e x t , Y z e r o)

m o d e l o n e = c o p y . d e e p c o p y (self . m o d e l)
m o d e l o n e . s e t X Y (X n e x t , Y o n e)

t t e s t , = np . a s a r r a y (m o d e l z e r o . p r e d i c t (self . m o d e l . X))
p r i n t t t e s t
p z e r o , = np . a s a r r a y (m o d e l z e r o . p r e d i c t (X g r i d))
p o n e , = np . a s a r r a y (m o d e l o n e . p r e d i c t (X g r i d))

p r i n t t y p e (m o d e l o n e)
p r i n t ’ m i n s a n d max ’
p r i n t min (p z e r o) , max (p z e r o) , min (p o n e) , max (p o n e)

A v e H z e r o = u t i l . e n t r o p y (p z e r o) . mean ()
A v e H o n e = u t i l . e n t r o p y (p o n e) . mean ()

p r i n t t y p e (A v e H z e r o) , t y p e (p x)
d e l m o d e l o n e
d e l m o d e l z e r o

p r i n t A v e H o n e , A v e H z e r o
p r i n t p x ∗ A v e H o n e + (1− p x) ∗ A v e H z e r o
return px ∗self.aveH classification(Xtrial, Xgrid, np.array([1])
) + (1−px) ∗self.aveH classification(Xtrial,
Xgrid, np.array([0]))

def plot(self, iteration):
if len(self.bounds)==1:

self.plot 1d
elif len(self.bounds)==2:

self.plot 2d(iteration)
else:

raise NotImplementedError , "what should we plot in high
dimensions?"

def plot 1d(self):

52

pass
def plot 2d(self, iteration , show objective=False, resolution=1000,

show variance=False, highlight latest=True, show entropy=True):

num plots = 1
if show objective: num plots += 1
if show variance: num plots += 1
if show entropy: num plots += 1
fig, ax = plt.subplots(1,num plots , sharex=True, sharey=True,
figsize=(4∗5,5))

ax = np.atleast 1d(ax)
assert ax.size==num plots

Xplot = GPyOpt.util.general.multigrid(self.bounds, resolution)
xx, yy = [x.reshape(resolution ,resolution) for x in Xplot.T]

p, = self.model.predict(Xplot)
mu, var = self.model. raw predict(Xplot)
std = np.sqrt(np.clip(var,0,np.inf))
vmin, vmax = self.model.Y.min(), self.model.Y.max()

p r i n t ’ x x y y ’
p r i n t x x . s h a p e , y y . s h a p e
CS = ax[0].contour(xx, yy, p.reshape(∗xx.shape), vmin=vmin,
vmax=vmax, cmap=plt.cm.jet)

plt.clabel(CS, inline=1, fontsize=10)
if highlight latest:ax[0].plot(self.model.X[−1,0], self.model.X
[−1,1], ’ro’, ms=16)

ax[0].scatter(self.model.X[:,0], self.model.X[:,1], 40, self.
model.Y[:,0],

linewidth=1.2, vmin=vmin, vmax=vmax, cmap=plt.cm.jet,
zorder=10)

#p = u t i l . n o r m c d f ((mu) / np . s q r t (1+ np . c l i p (v a r , 0 , np . i n f)))# −
u t i l . n o r m c d f ((self . d a t a l o w e r −mu) / s t d)

H = util.entropy(p)
p r i n t ’ p r o b a b i l i t y ’

p r i n t np . min (p) , np . max (p)
p r i n t ’ E n t r o p y ’
p r i n t np . min (H) , np . max (H)
ax[0].imshow(1−p.reshape(∗xx.shape).T, cmap=plt.cm.gray,
interpolation=’bilinear’,

origin=’lower’, extent=np.hstack(self.bounds), aspect=’
auto’)

ax count = 1

53

i f s h o w v a r i a n c e :
a x [a x c o u n t] . c o n t o u r f (x x , yy , s t d . r e s h a p e (∗ x x . s h a p e) , cmap

= p l t . cm . B l u e s)
a x c o u n t += 1
if show entropy:

foo = ax[ax count].contourf(xx,yy, H.reshape(∗xx.shape),
cmap=plt.cm.Blues, vmin=0, vmax=util.entropy(0.5))

plt.colorbar(foo)
ax count += 1

if show objective:
foo = ax[ax count].contourf(xx, yy, self.objective(Xplot).
reshape(resolution , resolution), cmap=plt.cm.jet)

plt.colorbar(foo)
fig.savefig(’/scratch/fun3d image’+str(iteration)+’.png’)
return fig, ax

def aveH classification(args):
Xnext = np.vstack((args[0].X, args[1]))
Y label = np.vstack((args[0].Y, args[3]))

model copy = copy.deepcopy(args[0])
model copy.set XY(Xnext, Y label)
p label , = np.asarray(model copy.predict(args[2]))
del model copy
return util.entropy(p label).mean()

def calculate accuracy(model, bound, resolution , Xplot, f truth):
model output , = model.predict(Xplot)
p r i n t t y p e (m o d e l o u t p u t)
p r i n t l e n (m o d e l o u t p u t)

model truth = np.array(([1 if i > .5 else 0 for i in model output])
).reshape(−1,1)

p r i n t l e n (f t r u t h)
p r i n t f t r u t h . s h a p e , m o d e l t r u t h . s h a p e
m o d e l
p r i n t np . sum (m o d e l t r u t h == f t r u t h)

f o r i i n m o d e l t r u t h : p r i n t
print "ruth size?"
print type(f truth)
print model truth.shape, f truth.shape
print model truth.size, f truth.size, np.sum(model truth == f truth
)

54

return float(np.sum(model truth == f truth))/f truth.size

def get data(file name):
print file name
X = []
epsilon = []
data =[]
f = codecs.open(file name , "r", "utf−8")
data = f.readlines()
for line in data:

dummy = line.split()
X.append([float(dummy[0]), float(dummy[2])])
epsilon.append(calculate label(float(dummy[4])))

f.close()
return np.array(X), np.array(epsilon).reshape(−1,1)

def f(X):
if len(X.shape)==1:

X = X.reshape(1,−1) # p r i n t X
classification = []
for point in X:

f1 = open(’fun3d template.txt’, ’r’)
f2 = open(’fun3d.nml’, ’w’)
for line in f1:

f2.write(line.replace(’$MACH$’, ’%5.5f’%point[0]).replace
(’CFL’, ’%5.5f’%500).replace(’$ANGLE$’, ’%5.5f’%
point[1]))

f1.close()
f2.close()

subprocess.call("mpirun −np 7 ./nodet mpi", shell=True)

with open(’om6inviscid hist.dat’, ’rb’) as fh:
fh.seek(−1024, 2)
last = fh.readlines()[−1].decode()

f = open(’workfile’, ’a’)
f.write(’%5.5f’%point[0])
f.write(’\t’)
f.write(’%5.5f’%500)
f.write(’\t’)

55

f.write(’%5.5f’%point[1])
f.write(’\t’)
f.write(last);
f . w r i t e (’ \ n ’) ;
f.close();

classification.append(calculate label(last))

return np.array(classification).reshape(−1,1)

def calculate label(line):
epsilon = 0
if type(line) == type(32.2):

epsilon = line
else:

epsilon = float(line.split()[1])

if epsilon <= float(u’10E−15’):
return 1

else:
return 0

def first step(main iteration):
d e f i n e t h e p r o b l e m : b o u n d s , d a t a l i m i t s , f u n c t i o n a n d g r i d f o r

e v a l u a t i n g e n t r o p y .
bounds = [[0.5,2.3],[0,30]]
data lower , data upper = .5, .5

file name = ’/home/io/jross10/experiments/fun3d/dummyworkfile’
Xplot, f truth = get data(file name)
print Xplot.shape, f truth.shape
#d r a w f r o m t a GP f o r g r o u n d t r u t h .

x x , y y = np . m g r i d [b o u n d s [0] [0] : b o u n d s [0] [1] : 1 0 j , b o u n d s [1] [0] :
b o u n d s [1] [1] : 1 0 j]

p r i n t x x . f l a t t e n ()
p r i n t y y . f l a t t e n ()

X p o i n t s = np . v s t a c k ((x x . f l a t t e n () , y y . f l a t t e n ())) . T
p r i n t X p o i n t s

K=GPy . k e r n . RBF (i n p u t d i m =2 , v a r i a n c e = 1 0 , l e n g t h s c a l e =2) . K (X p o i n t s
)

y p o i n t s = np . a r r a y ([1 i f −1∗ j [0] + 3 ∗ j [1] − 2 >=0 e l s e 0 f o r j i n
X p o i n t s]) . r e s h a p e (− 1 , 1)

y p o i n t s = np . a r r a y ([1 i f np . s q r t ((j [0] − 1) ∗∗2+ j [1] ∗ ∗ 2) >2 e l s e 0
f o r j i n X p o i n t s]) . r e s h a p e (− 1 , 1)

’ ’ ’ y p o i n t s = []

56

f o r i i n X p o i n t s :
i f (i [0] − 2) ∗ ∗2 + (i [1] − 2) ∗ ∗ 2 <= 4 :

y p o i n t s . a p p e n d (1)
e l i f (i [0] + 2) ∗ ∗2 + (i [1] + 2) ∗ ∗ 2 <= 4 :

y p o i n t s . a p p e n d (1)
e l s e :

y p o i n t s . a p p e n d (0)
p r i n t y p o i n t s ’ ’ ’

d e f f (X) :
i f l e n (X . s h a p e) ==1:
X = X . r e s h a p e (1 , − 1) # p r i n t X

r e t u r n (mTrue . p r e d i c t (X) [0])
p r i n t np . a r r a y (np . s i g n ([− 1 ∗ j [0] + 3 ∗ j [1] − 2 f o r j i n X p o i n t s])) .

r e s h a p e (− 1 , 1) . s i z e
r e t u r n np . a r r a y (([1 i f −1∗ j [0] + 3 ∗ j [1] − 2 >= 0 e l s e 0 f o r j i n X

])) . r e s h a p e (− 1 , 1)
r e t u r n np . a r r a y ([1 i f np . s q r t ((j [0] − 1) ∗∗2+ j [1] ∗ ∗ 2) >2 e l s e 0

f o r j i n X]) . r e s h a p e (− 1 , 1)

#x x , y y = np . m g r i d [b o u n d s [0] [0] : b o u n d s [0] [1] : 5 0 j , b o u n d s [1] [0] :
b o u n d s [1] [1] : 5 0 j]

X g r i d = np . v s t a c k ((x x . f l a t t e n () , y y . f l a t t e n ())) . T

I n [7] :

f i r s t f e w e v a l u a t i o n s a t r a n d o m p o i n t s a n d c o n s t r u c t i o n o f GP
m o d e l

from pyDOE import lhs
initial points = 10
X = lhs(2, initial points , criterion="maximin", iterations=1000)
X = X ∗np.array([bounds[0][1]−bounds[0][0], bounds[1][1]−bounds
[1][0]]) + np.array([bounds[0][0], bounds[1][0]])

p r i n t X
Y = f(X)
print (Y.shape == Y.shape)
p r i n t Y
m = GPy.models.GPClassification(X,Y, kernel=GPy.kern.Matern52(2,
1, 1.))

#m . G a u s s i a n n o i s e . f i x (1 e −8)
m . p l o t ()
total accuracy = [[]]

57

I n [] :

I n [8] :

start = time.time()
iteration = 200
accuracy list = []
for it in range(iteration):

start loop = time.time()
o p t i m i z e now a n d t h e n .

i f i t %25 == 0 a n d i t != 0 : # a n d i t >1:
i f i t == 1 :
p a s s
e l s e :

p a s s
m . o p t i m i z e (’ b f g s ’)

h e r e ’ s t h e EntABC i n s t a n c e
mABC = EntABC(bounds, m, data lower , data upper)

c h o o s e t h e b e s t p o i n t s e e n b y t h e O p t i m i z a t i o n m o d e l
Xnew, mBO = mABC.select next point()

p l o t
mABC.plot(it)

mBO . p l o t c o n v e r g e n c e ()

a c t u a l l y s e t t h e i n t e n d e d o b s e r v a
Ynew = f(Xnew)
p r i n t t y p e (Ynew) , t y p e (Xnew)
setX = np.vstack((m.X, Xnew))
setY = np.vstack((m.Y, Ynew))

dummy = calculate accuracy(m, bounds, 100, Xplot, f truth)
accuracy list.append(dummy)
print ’Accuracy is ’+str(dummy)
m.set XY(setX, setY)

print ’Iteration Number ’+str(it+1)
print ’Iteration Time was ’+str(((time.time()−start loop)
/60.0))+’ minutes’

58

p r i n t c a l c u l a t e a c c u r a c y ()
try:

with open("fun3d results "+str(main iteration)+".txt", "w
") as myfile:
json.dump(accuracy list , myfile)

except:
print "some where io error"

print ’Final Iteration’
end = time.time()

print ’Total time was ’+str((end−start)/60.0)+’ Minutes’
return accuracy list

def dummy function():

I n [] :

p l o t t h e t r u t h
fig,ax = plt.subplots(1,3, sharex=True, sharey=True, figsize
=(18,6))

ff = f(Xgrid).reshape(∗xx.shape)
CS = ax[0].contour(xx, yy, ff.reshape(∗xx.shape),np.arange(−6,6,2)
, vmin=ff.min(), vmax=ff.max(), cmap=plt.cm.jet)

plt.clabel(CS, inline=1, fontsize=10)
ptrue = (ff<data upper)∗1.
ax[0].imshow(1−ptrue.reshape(∗xx.shape).T, cmap=plt.cm.gray,
interpolation=’nearest’, origin=’lower’, extent=np.hstack(
bounds))

ax[0].set title(’ground truth’)

s p a c e f i l l e r
from pyDOE import lhs
Xfill = lhs(2, samples=m.Y.size, criterion="maximin", iterations
=1000)

Xfill = Xfill ∗np.array([bounds[0][1]−bounds[0][0], bounds[1][1]−
bounds[1][0]]) + np.array([bounds[0][0], bounds[1][0]])

Yfill = f(Xfill)
mfill = GPy.models.GPRegression(Xfill,Yfill, kernel=GPy.kern.
Matern52(2, 1, 1.))

mfill.Gaussian noise.fix(1e−6)
mfill.optimize restarts(3)
mfill mu , mfill var = mfill.predict(Xgrid)

59

CS = ax[1].contour(xx, yy, mfill mu.reshape(∗xx.shape),np.arange
(−6,6,2), vmin=ff.min(), vmax=ff.max(), cmap=plt.cm.jet)

plt.clabel(CS, inline=1, fontsize=10)

from scipy import stats
def probabilities(mu, var):

return stats.norm.cdf((mu)/np.sqrt(var)) #− s t a t s . norm . c d f (−(
mu − d a t a l o w e r) / np . s q r t (v a r))

ax[1].imshow(1−probabilities(mfill mu , mfill var).reshape(∗xx.
shape).T, cmap=plt.cm.gray, interpolation=’bilinear’, origin=’
lower’, extent=np.hstack(bounds))

ax[1].plot(Xfill[:,0], Xfill[:,1], ’ro’)
ax[1].set title(’space filling’)

m ent mu , m ent var = m. raw predict(Xgrid)
ax[2].imshow(1−probabilities(m ent mu , m ent var).reshape(∗xx.
shape).T, cmap=plt.cm.gray, interpolation=’bilinear’, origin=’
lower’, extent=np.hstack(bounds))

ax[2].plot(m.X[:,0], m.X[:,1], ’ro’)
CS = ax[2].contour(xx, yy, m ent mu.reshape(∗xx.shape),np.arange
(−6,6,2), vmin=ff.min(), vmax=ff.max(), cmap=plt.cm.jet)

plt.clabel(CS, inline=1, fontsize=10)
ax[2].set title(’Entropic search’)
ax[2].set ylim(yy.min(),yy.max())

ptrue = ptrue.flatten()
g e t t h e p r o b a b i l i t i e s f o r t h e s p a c e − f i l l i n g d e s i g n
mu, var = mfill. raw predict(Xgrid)
pfill = probabilities(mu, var).flatten()
pfill = np.where(ptrue==1,pfill, 1−pfill)
print ’fill:’, np.mean(np.log(pfill)), np.mean(ptrue==(pfill>0.5)
)

g e t t h e p r o b a b i l i t i e s f o r t h e e n t r o p y s e a r c h
p, = m.predict(Xgrid)
#p = p r o b a b i l i t i e s (mu , v a r) . f l a t t e n ()
p = np.where(ptrue==1,p, 1−p)
print ’ES:’, np.mean(np.log(p)), np.mean(ptrue==(p>0.5))

I n [] :

x range = range(initial points , iteration+initial points)

60

mfill

I n [] :

m.plot()
plt.figure(0)
plt.plot(x range , accuracy list)
plt.ylabel(’Accuracy %’)
plt.xlabel(’Total Number of Evaluations’)
plt.plot()

I n [] :

m.pickle(’example model.pickle’)

I n [] :

print m.Y, m.Y.size

I n [] :

plt.plot(np.random.randn(10))

I n [] :
def main():

results = []
t r y :
accuracy = first step(1)
results.append(accuracy)
p r i n t ” E p o c h n u m b e r ”+ s t r (i +1) +” o u t o f 2 5 ”
e x c e p t E x c e p t i o n a s e :

p r i n t s t r (e) + ’ we a r e g o i n g t o t r y a g a i n ’
w i t h o p e n (’ l o n g c i r c l e a c c u r a c y . t x t ’ , ’ w ’) a s m y f i l e :
j s o n . dump (r e s u l t s , m y f i l e)

I n [] :

61

if name ==" main ":
main()

62

C FUN3D Images

This section we show all FUN3D images with even number points starting with
10 that have been evaluated on the FUN3D simulator.

63

Figure 9: Example of the development of the Emulator(left) and Entropy(right)
for point totals 10, 12, 14, 16 and 18 points with out optimization performed
on the FUN3D simulator.

64

Figure 10: Example of the development of the Emulator(left) and Entropy(right)
for point totals 20, 22, 24, 26 and 28 points with out optimization performed
on the FUN3D simulator.

65

Figure 11: Example of the development of the Emulator(left) and Entropy(right)
for point totals 30, 32, 34, 36 and 38 points with out optimization performed
on the FUN3D simulator.

66

Figure 12: Example of the development of the Emulator(left) and Entropy(right)
for point totals 40, 42, 44, 46 and 48 points with out optimization performed
on the FUN3D simulator.

67

Figure 13: Example of the development of the Emulator(left) and Entropy(right)
for point totals 50, 52, 54, 56 and 58 points with out optimization performed
on the FUN3D simulator.

68

Figure 14: Example of the development of the Emulator(left) and Entropy(right)
for point totals 60, 62, 64, 66 and 68 points with out optimization performed
on the FUN3D simulator.

69

Figure 15: Example of the development of the Emulator(left) and Entropy(right)
for point totals 70, 72, 74, 76 and 78 points with out optimization performed
on the FUN3D simulator.

70

Figure 16: Example of the development of the Emulator(left) and Entropy(right)
for point totals 80, 82, 84, 86 and 88 points with out optimization performed
on the FUN3D simulator.

71

Figure 17: Example of the development of the Emulator(left) and Entropy(right)
for point totals 90, 92, 94, 96 and 98 points with out optimization performed
on the FUN3D simulator.

72

Figure 18: Example of the development of the Emulator(left) and Entropy(right)
for point totals 100, 102, 1094, 106 and 108 points with out optimization per-
formed on the FUN3D simulator.

73

Figure 19: Example of the development of the Emulator(left) and Entropy(right)
for point totals 110, 112, 114, 116 and 118 points with out optimization per-
formed on the FUN3D simulator.

74

Figure 20: Example of the development of the Emulator(left) and Entropy(right)
for point totals 120, 122, 124, 126 and 128 points with out optimization per-
formed on the FUN3D simulator.

75

Figure 21: Example of the development of the Emulator(left) and Entropy(right)
for point totals 130, 132, 134, 136 and 138 points with out optimization per-
formed on the FUN3D simulator.

76

Figure 22: Example of the development of the Emulator(left) and Entropy(right)
for point totals 140, 142, 144, 146 and 148 points with out optimization per-
formed on the FUN3D simulator.

77

Figure 23: Example of the development of the Emulator(left) and Entropy(right)
for point totals 150, 152, 154, 156 and 158 points with out optimization per-
formed on the FUN3D simulator.

78

Figure 24: Example of the development of the Emulator(left) and Entropy(right)
for point totals 160, 162, 164, 166 and 168 points with out optimization per-
formed on the FUN3D simulator.

79

Figure 25: Example of the development of the Emulator(left) and Entropy(right)
for point totals 170, 172, 174, 176 and 178 points with out optimization per-
formed on the FUN3D simulator.

80

Figure 26: Example of the development of the Emulator(left) and Entropy(right)
for point totals 180, 182, 184, 186 and 188 points with out optimization per-
formed on the FUN3D simulator.

81

Figure 27: Example of the development of the Emulator(left) and Entropy(right)
for point totals 190, 192, 194, 196 and 198 points with out optimization per-
formed on the FUN3D simulator.

82

Figure 28: Example of the development of the Emulator(left) and Entropy(right)
for point totals 200, 202, 204, 206 and 208 points with out optimization per-
formed on the FUN3D simulator.

83

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

Statistical Emulator for Expensive Classification Simulators

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Ross, Jerret; Samareh, Jamshid A.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20675

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 61
Availability: NASA STI Program (757) 864-9658

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

Expensive simulators prevent any kind of meaningful analysis to be performed on the phenomena they model. To get around
this problem the concept of using a statistical emulator as a surrogate representation of the simulator was introduced in the
1980's. Presently, simulators have become more and more complex and as a result running a single example on these
simulators is very expensive and can take days to weeks or even months. Many new techniques have been introduced, termed
criteria, which sequentially select the next best (most informative to the emulator) point that should be run on the simulator.
These criteria methods allow for the creation of an emulator with only a small number of simulator runs. We follow and
extend this framework to expensive classification simulators.

15. SUBJECT TERMS

Big data; Gaussian process; Machine learning

18. NUMBER
 OF
 PAGES

92
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 388496.04.01.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA-TM-2016-219174

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

04 - 201601-

