Effects of atomic-scale structure on the fracture properties of amorphous carbon – carbon nanotube composites

Benjamin D. Jensen, Kristopher E. Wise

NASA Langley Research Center

Gregory M. Odegard

Michigan Technological University

13th U.S. National Congress on Computational Mechanics July 26-30, 2015

Overview

Motivation

- Carbon nanotubes (CNTs) have high specific stiffness and strength
- Composite design with CNTs will be different than for carbon fibers
- New reactive force field ReaxFF can be applied to model fracture

Objectives

- 1. Estimate maximum CNT composite mechanical properties
- 2. Compare composite mechanical properties with:
 - a. Singlewall vs multiwall CNTs
 - b. Dispersed vs bundled CNT arrangements
 - c. CNT-matrix crosslinking

Bond breaking with ReaxFF

Molecular dynamics using ReaxFF:

- Allows bond breaking and formation to be modeled
- Multibody interactions via bond order function

Modeling Fracture with ReaxFF

New $ReaxFF_{C-2013}$ parameterization fitted to:

- Diamond strained in the bulk and <001> direction
- Graphene strained in the bulk and axial directions

In-house analysis of ReaxFF_{C-2013}^{*} mechanical properties of diamond, graphene, amorphous carbon, and CNTs:^{**}

- Improved Poisson contraction response
- Elastic and fracture properties improved over previous ReaxFF_{CHO} parameterization

*Goverapet Srinivasan, S.; van Duin, A. C. T.; Ganesh, P., *J. Phys. Chem. A* 2015, 119 (4), 571-580. **Jensen, B.D.; Wise, K.; Odegard, G.M., *Submitted to J. Phys. Chem A*

Simulation Setup

SWNT Array

SWNT Bundle

MWNT Array

NAS

Simulation Setup

- 1. Continuous/straight CNTs
- 2. Amorphous carbon (AC) matrix:
 - Relative simplicity
 - High mechanical properties
- 3. Three CNT arrangements:
 SWNT array, MWNT array, SWNT bundle
- 4. Five crosslinking fractions for each system:
 0%, 5%, 10%, 15%, 20%

Equilibration Procedure

Structuring of amorphous carbon at the CNT interface

Nanotube-centered cylindrical distribution functions, zeroed at the exterior nanotube wall

- Templating of the matrix substantially increases the axial modulus
- Dispersion of crosslink sites does not strongly influence axial modulus

- Templating of the matrix substantially increases the axial modulus
- Dispersion of crosslink sites does not strongly influence axial modulus

- Multiwalled CNT resists CNT flattening, increasing the transverse modulus
- Lack of crosslinks within the bundle limits effectiveness of crosslinking for transverse stiffness

- SWNT bundle system has lowest specific shear moduli in both directions
- Inner MWNT walls reinforce circular shape resulting in higher out-of-plane specific shear modulus

- Major Poisson's ratio largest around 7% crosslinking
- MWNT array resists deformation of the circular cross-section resulting in lower minor ratios

SWNT array axial fracture (9% crosslinked)

MWNT array axial fracture (9% crosslinked)

SWNT bundle axial fracture (9% crosslinked)

- Axial specific strength maximized around 4% crosslinking
- Transverse strength continually improved through crosslinking

Conclusions

Summary

NASA

SWNT vs MWNT

- Interface templating has a substantial impact on the matrix properties, and SWNTs maximize the surface area per CNT mass
- Inner MWNT walls reinforce the circular cross section

Arrays vs bundle

 Very weak bonding within bundle reduces the properties that require transferring load through the bundle

Crosslinking

- Crosslinks decrease axial specific modulus, increase transverse modulus
- Axial specific ultimate strength is maximized around 4% crosslinking
- Transverse specific ultimate strength is continually increased with crosslinking
- Crosslinking may inhibit void nucleation at the CNT/matrix interface

Acknowledgements

NASA Langley Research Center

- Mia Siochi
- LaRC Nano Incubator Team

Michigan Technological University

- Matthew Radue
- S. Gowtham
- Cameron Hadden

Pennsylvania State University

- Adri van Duin (Penn. State)
- Sriram Srinivasan (Penn. State)

SUPERIOR, a high-performance computing cluster at Michigan Technological University, was used in obtaining some of results

NASA Langley Research Center

Funded in part by Revolutionary Technological Challenges Program (GRANT NNX09AM50A)

Questions

Supplemental Slides

Individual CNT stress-strain responses within the maximally crosslinked systems

 Exterior/functionalized CNTs fracture earlier than interior/unfunctionalized

Axial stress-strain response

Transverse specific stress-strain response

