
Safeguarding a Lunar Rover with Wald’s
Sequential Probability Ratio Test

P. Michael Furlong, Michael Dille, Uland Wong, Ara Nefian

Abstract— The virtual bumper is a safeguarding mechanism
for autonomous and remotely operated robots to conservatively
avoid collisions even in the face of sensor uncertainty. In this
paper we take a new approach to the virtual bumper system
by applying a powerful but rarely examined statistical test.
By using a modified version of Wald’s sequential probability
ratio test, we demonstrate that we can reduce the number of
false positives reported by the virtual bumper, thereby saving
valuable mission time. We further use the concept of sequential
probability ratio to control vehicle speed in the presence of
possible obstacles in order to increase certainty about whether
or not obstacles are present. With this principled obstacle
certainty measure, our new algorithm reduces the chances of
collision by approximately 98% relative to traditional virtual
bumper safeguarding without speed control.

I. INTRODUCTION

It is not uncommon for robots to employ a “virtual
bumper” as a safeguarding mechanism in a wide variety of
scenarios. [1]–[7] Fairly basic in concept, a virtual bumper
is a procedure that checks a range sensor and, according
to some decision rule, determines whether a collision is
imminent. If a collision is considered likely, the vehicle will
stop. Stopping the vehicle will likely trigger interventions by
remote operators to regain situational awareness.

Remote interventions consume execution time, the most
precious quantity in short lunar missions that are not de-
signed to survive lunar night. As observed by Shah et
al., [8] the mean time between interventions has a greater
impact on the time to complete a mission than the time
it takes complete an intervention. For that reason we have
developed an algorithm for increasing the mean time between
interventions when using a virtual bumper.

Constraints on hardware that may be used in space mis-
sions eliminate more reliable approaches to obstacle detec-
tion. LIDAR, while a preferred tool of many roboticists –
authors included – has not yet been deployed on a planetary
mission. The GESTALT obstacle avoidance system on MER
takes approximately 70 seconds to operate, [9] and while
this is acceptable on Mars, it does not enable the high-tempo
operations necessary for lunar operations constrained to one
lunar day. By necessity faster, and therefore less reliable,
obstacle detection must be used, motivating a principled
technique to reduce the number of false readings from the
virtual bumper.

A virtual bumper can be viewed as a classification of
terrain into the classes of “obstacle” and “clear.” Any clas-
sifier will have false positives and negatives which need
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to be removed – called denoising. Traditional approaches
to denoising a virtual bumper often include straightforward
temporal filtering such as averaging the last k reported
values. These do not take into account a characterization
of the virtual bumper’s false positive and false negative
rates. Probabilistic sensor models have been used to improve
readings from the underlying sensor, [10] and we propose a
similar approach to modelling the decision made with such
a sensor.

Fig. 1: NASA Ames’ autonomous wheeled rover, KRex2.

The readings from a virtual bumper can be viewed as
a series of sequential experiments attempting to confirm
one of two hypotheses, H0 – no obstacle is present – or
H1 – an obstacle is present. In this paper we describe
a modification to Wald’s sequential probability ratio test
(SPRT) that takes readings from the virtual bumper along
with a probabilistic characterization of the virtual bumper
and produces an estimate of hypothesis that is more credible.

Our approach to filtering the virtual bumper performs at
least as well as colloquial approaches, specifically averaging
the last k reported values, but has the added advantages of
being tunable for false positive rates. We have expanded
the algorithm to control vehicle speed in response to uncer-
tainty about the presence of an obstacle. We demonstrate a
substantial improvement in rover performance over window
averaging. By merely slowing down the vehicle instead of re-
questing a complete halt, we increase the mean time between
interventions and thereby increase mission effectiveness.

We test the denoising algorithm first on simulated data
drawn from the empirically-derived Shoemaker-Morris lunar
rock distribution. [11] Then, using a laser-based structured
light system installed on the NASA Ames Krex2 rover shown
in Figure 1 and under evaluation as a potential virtual bumper
for lunar exploration, we evaluate it on actual rover data
collected during live operation on outdoor terrain. Finally,
speed adaptation experiments were conducted in simulation



on obstacles drawn from this same realistic distribution.

II. BACKGROUND

Virtual bumpers are a mechanism of detecting nearby
navigation hazards faster than processing of other on-board
sensors or a remote operator can act. [2] They have been
deployed on robotic platforms as a mechanism of safeguard-
ing vehicles in the absence of full situational awareness. [5],
[12]

Wald in 1945 [13] produced a method to determine when
to stop collecting samples called the sequential probability
ratio test. The problem setup was to determine whether one
of two hypotheses were true, and the action the decision
maker can take is to either collect another sample or to stop
collecting samples altogether. With the tth sample that is
collected the experimenter computes

Λt =

t∑
i=1

log

(
f1 (xi)

f0 (xi)

)
, (1)

where f1 (x) is the probability density function given H1,
and f0 (x) is the probability density function given H0. If
Λt ≥ b then the experimenter accepts H1, and if Λt ≤ a
then the experimenter accepts H0, where a and b are pre-
selected to control for type I (false positive) and type II (false
negative) errors. The experimenter determines an acceptable
false positive and false negative rates, α and β, respectively,
a = log (β/ (1− α)) and b = log ((1− β) /α). While Λt

remains bounded by a and b, the experimenter continues
to collect samples. The Maximized Sequential Probability
Ratio Test (MaxSPRT) [14] is an improvement on Wald’s
SPRT in that it allows for composite alternative hypotheses.
In our setting the hypothesis is simple – obstacle or clear – so
the additional benefits of the MaxSPRT are not immediately
relevant.

Meanwhile, planetary exploration applications are ideal
scenarios for a virtual bumper. Great conservatism in opera-
tion is always desirable due to the easily-fatal and immensely
costly consequences of striking an obstacle with a vehicle
far from human assistance. Indeed, it is quite typical for
spacecraft in general to be designed to fall back into a so-
called quiescent “safe mode” in the presence of any possible
anomaly so that ground-based operators can study reported
telemetry before continuing the mission. [15] Planetary
rovers have been no exception, with stereo imagery [9] and
laser-based [16] virtual bumper systems used on previous
missions to safely halt an autonomously executed trajectory
and wait for operator direction should a potential obstacle be
encountered rather than risk a collision. As mentioned how-
ever, avoiding mission downtime during unnecessary remote
operator intervention inevitably reduces scarce science data
collection time, reduces overall traversal distances, and is
particularly incompatible with aggressively scheduled lunar
missions as here considered.

Forms of the sequential probability ratio test have even
seen limited use in non-terrestrial scenarios. Carpenter and

Fig. 2: The virtual bumper apparatus. The laser projector
is collinear with the camera. Two cameras are here shown
as the virtual bumper system is shared with a stereo-based
navigation system. Only one is used in these experiments,
as they are performed under varying lighting conditions in
which stereo reconstruction is not always possible.

Markley [17] employ a modification of the sequential prob-
ability ratio test to choose between actions in conducting
orbital manoeuvres. This approach plans uncertain trajecto-
ries in known environments, and because our environment is
not known ahead of time – lunar orbital imagery resolution
is too coarse – it is not applicable. Should a rover have an
on-board map and planner, then such an approach should be
considered.

III. METHOD

Test data was generated from KRex2’s virtual bumper
system, shown in Figure 2, which consists of a solid-
state laser emitting highly monochromatic light through a
diffraction grating to project a series of dots onto a scene,
examples of which may be found in Figure 3. Based on the
location of each dot in the image of an adjacent camera,
the 3D location of a point on the terrain may be determined
by triangulation, similarly to the system employed on Mars
Pathfinder. [16] As such, this may be thought of as form of
a sparse stereo reconstruction that is able to operate under
both sunlit (given sufficient laser power) and dark conditions
likely to be found in potential missions to the lunar poles.

Due to the difficulty of distinguishing projected dots from
nearby terrain under adverse conditions and the unfortunate
geometry resulting from attempting to detect obstacles along
a horizontal line in front of the vehicle, reliable sparse 3D
reconstruction is difficult when performed in the straightfor-
ward manner necessary on an extremely low-speed radiation-
tolerant processor. Instead, for the purposes of evaluating
operation of the proposed method on a primitive candidate
obstacle detector, the overall motion of the projected dots
is considered. The geometry of virtual bumper apparatus
guarantees that the laser dots will always be in the same
image row, and by tracking the lateral motion of the dots,
obstacles can be detected. Because the focus of this paper is
not on the virtual bumper algorithm itself, but to explicate



(a) Laser dots on benign
terrain.

(b) Laser dots on an obsta-
cle.

Fig. 3: The view from the virtual bumper when the scene
is clear (3a) and when an obstacle is laterally displacing
the laser dots (3b). The laser dots moved to the right
when incident on an obstacle that threatens the vehicle
with collision. By detecting deviations from the expected
projection, the virtual bumper can detect obstacles.

the denoising and speed control processes, we employ this
simple detection algorithm merely as an illustrative example.

Pathologically thin obstacles, ones that are narrow in the
coronal plane of the rover, can avoid the virtual bumper
by lying between the projected laser dots. However, for
our analysis we will ignore those obstacles and are highly
unlikely to encounter them in physical terrain. We consider
that the visibility of obstacles depends purely on their height
and their depth (extent in rover sagittal plane).

From one trial run of the KRex2 robot we collected
a number of images that represent “clear” and “obstacle”
scenes. We then computed two images from ten arbitrarily
chosen clear and obstacle images. From these two sets of ten
images we computed two pixel-wise mean images, µc and
µo, respectively. For a candidate image we compute the L2

error between the candidate image and the two mean images,
δx = ||img − µx||2 x ∈ {c, o}. An image is classified as
clear if δc < δo otherwise it is considered an obstacle. It
is important to stress that this particular algorithm is not
necessarily the best one for detecting obstacles with this
particular setup, but it is an exemplar for illustrating the role
of the Wald test in denoising a sensor. Any algorithm could
be used in place of detector in Algorithm 1.

The image label, obstacle or clear, is passed to the Wald
test (see Algorithm 2) as part of a window of previous image
classifications. The standard Wald test is conducted on all
collected samples. We modified the test to prevent spatially
distant readings from having an effect on currently sensed
terrain. Using a limited window size allows the algorithm
to be more responsive to changes in terrain as the vehicle
moves.

The Wald test has two regimes, one where H0 (clear) is
definitely accepted and another regime where H1 (obstacle)
is definitively accepted. In between these two regimes the
experimenter should continue to collect samples. If H0 is
accepted then the rover should continue collecting samples,
i.e. driving. Likewise, when the choice between the two
hypothesis is still being resolved, a < Λt < b, the rover
will also continue to drive in order to collect more samples.
If Λt ≥ b, the rover will stop driving.

Algorithm 1
function VIRTUALBUMPER(windowSize, InputImages)

window ← Queue (∅)
for all img ∈ InputImages do

obstacleDetected← 0
detectorV alue← detector(img)
if detectorV alue < obstacleThreshold then

obstacleDetected← 1
end if
window.push front(obstacleDetected)
if window.size() > windowSize then

window.pop back()
end if
requestStop← waldTest (window, a, b)
if requestStop = 1 then

return requestStop
end if

end for
end function

Algorithm 2 The modified Wald test tests the window
previously reported by the virtual bumper. Since the reaction
to being certain that there is no obstacle present (Λ < a) is
to continue driving, that half of the Wald test is ignored.

function WALDTEST(window, a, b)
Λ =

∑
z∈window log

(
P(Z=z|X=0)
P(Z=z|X=1)

)
return Λ > b

end function

A. Modifying Vehicle Speed to Increase Safety

Initially we assume the rover moved at a fixed speed,
0.1m/s, with the virtual bumper operating with a fixed frame
rate of 2 frames per second (fps). Because the current value
of the probability test, Λt, and the threshold that triggers a
stop request, b, are known, it is possible to adjust the speed
of the vehicle depending on the difference b− Λt.

We construct a simple recurrence relationship to determine
the expected number of frames necessary to wait until the
agent has become certain that there is an obstacle present. We
choose to slow down when Λt > (a+b)/2, above the halfway

Algorithm 3 The Wald test is used to adjust vehicle speed
such that the expected number of frames to be certain
of H1 in the presence of an obstacle is obtained. The
function returns a new speed that should make sure that
extraFrames many frames are collected before the vehicle
reaches the limits of what the virtual bumper can see.

function ADAPTSPEED(Λt, a, f1 (·) , f0 (·))
E[Λ1] = f1(1) log

(
f1(1)
f0(1)

)
+ f1(0) log

(
f1(0)
f0(0)

)
extraFrames← d(b− Λt)/E[Λ1]e
distance← speed/fps
time← (windowSize+ extraFrames) /fps
newSpeed← distance/time
return newSpeed

end function



point to confirming H1. If α = β, then (a+ b)/2 = 0.

f0(z) = P (Z = z|X = 0)

f1(z) = P (Z = z|X = 1)

=⇒ 1 = fx(0) + fx(1) x ∈ {0, 1}

E[Λ1] = f1(1) log

(
f1(1)

f0(1)

)
+ f1(0) log

(
f1(0)

f0(0)

)
E[Λt] = f1(1)

(
log

(
f1(1)

f0(1)

)
+ E[Λt−1]

)
+ f1(0)

(
log

(
f1(0)

f0(0)

)
+ E[Λt−1]

)
E[Λt] = E[Λt−1]

+ f1(1) log

(
f1(1)

f0(1)

)
+ f1(0) log

(
f1(0)

f0(0)

)
E[Λt] = E[Λt−1] + E[Λ1]

=⇒ E[Λt] = tE[Λ1]

where t ∈ N+, t > 1

where E[Λ1] is the expected change in the sequential log
probability ratio sum, Λt, due to sensing in the presence of
an obstacle. In order to become certain that an obstacle is
present in the scene the rover needs to collect on average
d(b− Λt) /E[Λ1]e more frames.

With a specified frame rate and the expected number of
frames the appropriate speed of the vehicle is trivial to
compute, and given in Algorithm 3. Should the value of
E[Λ1] ever be non-positive then the expected number of
frames to yield confidence in the belief in an obstacle is
undefined. In this way E[Λ1] > 0 is a criterion for whether
or not the sensor can be used to confidently sense the
environment.

IV. EXPERIMENTS

We present three experiments. The first is used to char-
acterize the instantaneous classification error of the virtual
bumper we defined. The second experiment determines the
probability of identifying an obstacle based on the width of
the obstacle in collected virtual bumper frames, assuming
a fixed frame rate and vehicle speed. The capability of
the SPRT algorithm is then demonstrated using actual data
collected on the KRex2 rover at NASA Ames’ Roverscape
planetary analogue testing grounds. The third experiment
shows the ability to control the speed of the vehicle in
response to uncertainty. In all experiments β = 0.005.

A. Sensor Characterization

In this experiment we take a collection of N “clear” frames
and N “obstacle” frames from one data set of virtual bumper
images, where N = 10. We extract from the raw images
the three rows of pixels that contain the laser dots. The
average images µo and µc are computed from the respective
N obstacle and clear frames.

(a) Average clear image, µc. The individual laser dots are clearly
visible.

(b) Average obstacle image, µo. The laser dots are smeared over
the scene.

Fig. 4: The average images produced for clear and obstacle
frames where the laser dots would be incident on a flat plane.
For each, N = 10 frames were averaged to produce the
image.

We apply the virtual bumper algorithm on the remaining
data using the L2 norm as a similarity metric between µo,
µc, and the current image frame. We compute the true and
false positive and true and false negative classification rates
on this hold out data.

The mean images that are used for all experiments, µc and
µo, are seen in Figure 4. The statistics of the virtual bumper
algorithm on the hold out data are given in Table I. We can
see that our illustrative example detector does substantially
better than chance at detecting obstacles, however with
10% false negative and 16% false positive rates it is not
necessarily suitable for high-reliability lunar operations. At
rover velocities of 0.1m/s and a frame rate of 2fps, for
every meter of travel in obstacle free terrain there would
be approximately three false positive incidents. With this
characterization, however, we can apply the SPRT algorithm
to denoise the virtual bumper.

Obstacle present (X)
F T

Obstacle F 0.90 0.10
reported (Z) T 0.16 0.84

TABLE I

B. Obstacle Detection Probability

In simulation we determined the probability that the Wald
test would identify an obstacle as a function of the number
of frames an obstacle would be visible for. That is to say
given that the virtual bumper sensor is reporting for each
image frame either “clear” or “obstacle” we treat the sensor
like a Bernoulli random variable with the characteristics
determined by the experiment defined in Section IV-A.

Height and width as determined by a cm-scale histogram
determines visibility at a given time, while speed and frame
rate determine the duration of visibility. Modelling rocks as
hemi-spheres, the number of frames that an obstacle is visible
for is determined by the radius of the hemisphere, the speed
of the vehicle, the frame rate, and the height threshold for
obstacle-ness, in our case 0.1m. In this experiment the sensor
is considered to be flying over the scene, so it can drive
over obstacles. This is done to determine the instantaneous
classification performance of the competing algorithms.

To supplement the simulation results, we collected real-
world data using the NASA Ames’ KRex2 platform (Fig-
ure 1). The rover was driven around the NASA Ames’
Roverscape towards obstacles. The rover would drive up to



Fig. 5: The line projecting out of the lower camera represents
the laser projector projecting dots onto the terrain. The height
of the obstacle in this diagram is 1, representing any obstacle
or portion of an obstacle with a height ≥ 0.1m. The number
of frames the obstacle is visible for is determined by the
speed of the vehicle and the sensor frame rate.

obstacles, then reverse direction and continue driving. We ran
Algorithm 1 on all the datasets to determine its success rate,
and compared it to the control algorithm of averaging the last
k reported virtual bumper classifications. The frames in the
scene were manually labelled as either “clear” or “obstacle.”
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Fig. 6: The probability of detecting an obstacle given the
width of the obstacle in virtual bumper frames on 100
randomly generated transects. The probability of detecting an
obstacle given the number of frames it appears in the virtual
bumper field of view. The Window Averaging algorithm
had identical performance compared to the SPRT algorithm
where α = 0.999. When α = 0.01 the SPRT had worse
performance on shorter visibility durations, but ultimately
converged to the same performance of the other algorithms
as bump size increased. In all cases β = 0.005. The error
bars represent a 95% confidence interval.

Figure 6 shows that the performance of the SPRT al-

gorithm is statistically indistinguishable to the performance
of the window averaging algorithm. As α decreases, it
takes larger obstacles before there is 100% detection rate.
While reduced true positives is not ideal, the benefit of
the tunable algorithm is the reduction in false positives.
Depending on the risk tolerance of the mission, which may
vary over time, the SPRT can be modified to give the exact
same performance of the window-averaging algorithm or be
tuned to substantially reduce the false positive rate. Figure 7
shows that α can be used to control the false positive rate
independent of the obstacle visibility duration.
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Fig. 7: The instantaneous false positive rate varying with the
size of the bump obstacle. The obstacle width is the number
of frames that an obstacle appears in the sensors field of
view. The size of the obstacle does not have a substantial
effect on the false positive rate, however α does have an
effect on false positive rate.

The first trial on rover data demonstrates an improvement
in the false positive rate of the rover, as demonstrated in
Figure 8. We also notice in this case that the window
averaging algorithm does not have a substantially lower false
positive rate than using the raw data, whereas the SPRT
algorithm has reduced the number of false positives by
over 50%.

In the second trial, Figure 9, the exemplar virtual bumper
algorithm was not well matched to the collected data. How-
ever, even when faced with this incredibly noisy data set
the SPRT algorithm managed to reduce the number of false
positives in the data set. The window averaging algorithm,
on the other hand, added false positives.

It is important to highlight that while Tables II and III
show the instantaneous true positive rate of the SPRT al-
gorithm is lower than the window averaging algorithm, the
SPRT always detects actual obstacles.

We anticipate that with a more robust underlying sensor
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Fig. 8: Trial 1 - The SPRT algorithm reduces the number of
false positives, and it does not miss a true obstacle. While
individual frames may be falsely registered as clear, the
obstacle is still determined to be present. A vertical line
represents an image frame that contains an obstacle.

Algorithm True False True False
Positive Negative Negative Positive

Raw 0.870748 0.129252 0.840249 0.159751
SPRT 0.721088 0.278912 0.935685 0.064315
Window 0.884354 0.115646 0.854772 0.145228

TABLE II: Trial 1 - The instantaneous classification accuracy
of the SPRT and Window averaging algorithms. This data set
had 629 frames, 147 of which were obstacles. While there
was a cost in terms of instantaneous true positives, there
was an over 50% reduction in false positives. Despite the
reduction in true positives, the SPRT algorithm did not miss
any obstacles.

Algorithm True False True False
Positive Negative Negative Positive

Raw 0.966387 0.033613 0.009756 0.990244
SPRT 0.899160 0.100840 0.034146 0.965854
Window 1.000000 0.000000 0.002439 0.997561

TABLE III: Trial 2 - The instantaneous classification accu-
racy of the SPRT and Window averaging algorithms. The
example virtual bumper algorithm failed profoundly on this
dataset. Despite the unreliable sensor we still see a reduction
in false positives.
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Fig. 9: Trial 2 - The illustrative example of the virtual
bumper sensor is not a good fit for this data set. There were
529 frames, 119 of which were obstacles. However even in
adversity the SPRT algorithm reduces the number of false
positives where the window averaging algorithm does not.
A vertical line represents a frame with an obstacle.

the SPRT algorithm will have greater even utility. However
the mismatch of the sensor to the environment presents a
research avenue adapting the sensor noise model on-line.

C. Modifying Vehicle Speed

To test the ability of the modified SPRT algorithm to
slow down the vehicle we first generated terrain from the
Shoemaker-Morris rock size distribution. An example of a
generated terrain is given in Figure 10. In this experiment
we simulated motion of the rover through rocky terrain and
if any rock crosses the beam of the virtual bumper then it is
reported as an obstacle; if not, it is reported as clear. Before
the virtual bumper output is reported to the SPRT module it
is corrupted using the sensor characteristics in Table I. Each
of the transects are two metres in length.

Control of vehicle speed is given in Algorithm 3. The
algorithm always slows the vehicle speed in response to a
potential obstacle. The vehicle speed is only increased to the
nominal speed once Λt crosses below (a+ b)/2.

There are three possible outcomes covering these transects.
The first is that there is a collision between an obstacle 0.1m
in height or greater. The second is that the rover detects an
obstacle and stops before a collision occurs. The third option
is that the noise in the sensor causes the rover to stop before
an obstacle enters the region between the rover body and
the extreme range of the virtual bumper sensor. All transects
are guaranteed to have at least one obstacle greater than or
equal to 0.1m in height. We compare the SPRT algorithm and
the window averaging algorithm on the randomly generated
transects and compare how many of each category of transect
result the algorithms achieve.



Fig. 10: A sample synthetic terrain generated from the
Shoemaker-Morris distribution. [11] The black diagonal line
indicates where a 2D linear transect was extracted from the
3D terrain.
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Fig. 11: The SPRT Adjust algorithm reduces the number
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ing algorithm to 1, a substantial improvement. Similarly it
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Using the same α and β parameters as in Section IV-B we
demonstrate significant improvement in performance from
the basic window averaging to the SPRT Adjust algorithm,
shown in Figure 11. There is an 89% reduction in false
positives and a 98.6% reduction in collisions. While using
the raw data produces no collisions out of 1000 trials, it also
renders the rover practically useless due to the overwhelming
number of premature halts requested.

What remains to be studied is the possible mission im-
plications of increasing the vehicle speed above nominal
0.1m/s when there is confidence the scene is clear. Alterna-
tively, simply stopping the vehicle and accumulating confi-
dence before triggering an intervention may be beneficial to
mission performance.

V. CONCLUSIONS

It is well established that more data, at the cost of a time
lag, can improve estimation of a noisy random variable. What
we have demonstrated in this paper is that the sequential
probability ratio test can perform at least as good as the
simple window averaging algorithm, in terms of accurate
detection of obstacles. More importantly the SPRT algorithm
can be tuned to meet mission/time requirements for low
false-positive rates, with an achievable reduction in false
positives by as much as 98%. Even with fairly low in-
stantaneous detection accuracy we still managed to improve
the performance of the sensor while maintaining low false
positive rates.

Further, we have provided the criterion for E[Λ1]. If
E[Λ1] > 0 then the sensor being used to detect obstacles
can be adequately used to confirm or deny the presence
or absence of an obstacle. This is valuable in selecting
safeguarding sensors. Knowing the distribution of obstacle
sizes in the intended environment, the effective frame rate
of the sensor, and the quantity E[Λ1] provides constraints
that will help future missions design safe operating speeds
and to pick feasible terrain regions to investigate.

Above and beyond protecting the vehicle, the SPRT pro-
vides a principled mechanism to alter vehicle speed or sensor
frame rate in order to drive safely and with confidence, a
novel contribution in safeguarding sensors. When using the
speed-adjusting SPRT algorithm, there is a 98.6% reduction
in collisions and an 89% reduction in false positives. We
demonstrate that the freedom to drive a vehicle in obstacle-
strewn terrain increases the robustness and reliability of the
system, and thus the trust that may be placed on it by
remote operators. This low-cost safeguarding mechanism is
an enabling technology in flight missions and other resource
constrained operations.

Additionally this technique extends beyond safe guard-
ing systems and could easily be applied to multi-objective
science operations, ensuring vehicle speed is satisfying the
constraints of all stakeholders during exploration. Anomaly
detection approaches such as those used by Thompson et
al. [18] and Girdhar et al. [19] could complement a SPRT-
based approach.

Based on where the vehicle has travelled and how the
sensor previously classified that terrain, the rover could
update the sensor characterization from Table I. This will
help the rover adapt to regions where the underlying sensor
has varying performance, as we observed in the two KRex2
data trials.

Treating the sensor as a Bernoulli random variable can
hides important information from the SPRT. Incorporating
information estimated range to an obstacle and a sensor error
model may yield improved performance.
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