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ABSTRACT 

Time-varying spacecraft magnetic fields or stray fields 

are a problem for magnetometer systems.  While constant 

fields can be removed with zero offset calibration, stray 

fields are difficult to distinguish from ambient field 

variations. Putting two magnetometers on a long boom 

and solving for both the ambient and stray fields can be a 

good idea, but this gradiometer solution is even more 

susceptible to noise than a single magnetometer.  Unless 

the stray fields are larger than the magnetometer noise, 

simply averaging the two measurements is a more 

accurate approach.  If averaging is used, it may be 

worthwhile to explicitly estimate and remove stray fields.  

Models and estimation algorithms are provided for solar 

array, arcjet and reaction wheel fields.   

 

1. INTRODUCTION 

There are several sources of magnetometer error 

including noise, calibrations and time-varying spacecraft 

(stray) fields.  In this paper, we consider how to remove 

stray fields.  The plan for GOES-R has been to use its two 

magnetometers on a long boom first to reduce the effect 

of stray fields and second to estimate and remove them 

using a gradiometer algorithm [1].  Our simulations, 

however, have shown that for the assumed stray fields 

and noise, simple averaging gives better accuracy.   

 

The first part of this paper provides covariance 

predictions to explain that observation and to determine 

when the gradiometer would be preferable to averaging.  

Averaging does not remove stray fields, and if it is indeed 

better for GOES-R, then removing those stray fields may 

be a worthwhile endeavor. The second part of the paper 

provides models for the solar array, arcjet and reaction 

wheel fields, and the third describes testing and 

algorithms for characterizing and removing them.  

 

2. GRADIOMETRY OR AVERAGING 

Our goal is to measure the ambient field �⃗� 𝐴, but our 

inboard �⃗� 𝐼𝐵 and outboard �⃗� 𝑂𝐵 magnetometer 

measurements are corrupted by stray fields �⃗� 𝑆 

 

�⃗� 𝐼𝐵 = �⃗� 𝐴 + �⃗� 𝑆(𝑟 𝐼𝐵)                        (1) 

�⃗� 𝑂𝐵 = �⃗� 𝐴 + �⃗� 𝑆(𝑟 𝑂𝐵)                       (2) 

 

The question is whether it is better to solve for the stray 

field and correct the ambient field estimate as the 

gradiometer does or just to average and so reduce noise.  

Intuitively, we expect that for large stray fields, the 

gradiometer will be better and that for large noise 

averaging will prevail.  To determine the transition point, 

we estimate the ambient field error for the two 

algorithms. 

 

At the magnetometers, the stray field may be 

approximated by that of a magnetic dipole �⃗⃗� .  If the 

dipole-to-magnetometer vector is 𝑟  with magnitude 𝑟 and 

unit vector �̂�, the stray field is 

 

�⃗� 𝑆 =
𝜇0

4𝜋𝑟3
(3�̂��̂�𝑇 − 𝐼3)�⃗⃗� = 𝛽(𝑟 )�⃗⃗�               (3) 

 

 We will use 𝛽 as shorthand for the coefficient matrix.  

 

2.1. Gradiometer 

 

From the dipole equation, one can see that field strength 

falls off as the third power of distance and that field 

direction does not change with distance.  This led to the 

following observation model for a pair of magnetometers 

(inboard IB and outboard OB) so far from the spacecraft 

that the magnetometers and dipole were effectively 

collinear.   

 

𝑦 = (�⃗� 𝐼𝐵

�⃗� 𝑂𝐵
) = (

𝐼3 𝐼3
𝐼3 𝐼3 𝜌3⁄

) (�⃗�
 𝐴

�⃗� 𝑆
) = 𝐻𝑥            (4) 

 

In this expression, 𝜌 is the ratio of the outboard-to-

inboard magnetometer distances 

 

𝜌 = 𝑟𝑂𝐵 𝑟𝐼𝐵⁄ > 1                          (5) 

 

mailto:monica.todirita-1@nasa.gov


 

and �⃗� 𝑆 is the stray field at the inboard magnetometer.  For 

later use with the averaging covariance, we partition the 

Jacobian matrix 𝐻 into ambient and stray field parts 𝐻𝐴 

and 𝐻𝑆 

𝐻 = (𝐻𝐴 𝐻𝑆) = ((
𝐼3
𝐼3

) (
𝐼3

𝐼3 𝜌3⁄
))        (6) 

 

If 𝜎2 is the observation variance, the minimum variance 

weighting matrix 𝑊 is  

 

𝑊 = 𝐼6 𝜎2⁄                              (7) 

 

The least squares solution is 

 

𝑥 = (𝐻𝑇𝑊𝐻)−1𝐻𝑇𝑊𝑦                      (8) 

or 

(�⃗�
 𝐴

�⃗� 𝑆
) =

1

𝜌3−1
(
−(𝜌3 − 1) 𝜌3

𝜌3 −𝜌3) (�⃗� 𝐼𝐵

�⃗� 𝑂𝐵
)        (9) 

 

The normal matrix 𝐻𝑇𝑊𝐻 is 

 

𝐻𝑇𝑊𝐻 =
1

𝜎2 (
2𝐼3 (1 + 𝜌−3)𝐼3

(1 + 𝜌−3)𝐼3 (1 + 𝜌−6)𝐼3
)      (10) 

 

and its inverse is the state covariance matrix 𝑃 

 

𝑃 =
𝜎2

(𝜌3−1)2
(

(1 + 𝜌6)𝐼3 −𝜌3(1 + 𝜌3)𝐼3
−𝜌3(1 + 𝜌3)𝐼3 2𝜌6𝐼3

)   (11) 

 

This gives the gradiometer ambient field variance 𝜎𝐺
2 as 

the upper left corner entry 

 

𝜎𝐺
2 =

1+𝜌6

(𝜌3−1)2
𝜎2                       (12) 

.   

2.2. Averaging 

 

Now, we do the same for the averaging algorithm.  If we 

solve for �⃗� 𝐴 as the average of the two magnetometer 

measurements, the observation model is 

 

𝑦 = (�⃗� 𝐼𝐵

�⃗� 𝑂𝐵
) = (

𝐼3
𝐼3

) �⃗� 𝐴 = 𝐻𝐴𝑥                 (13) 

and �⃗� 𝐴 is 

�⃗� 𝐴 =
1

2
(𝐼3 𝐼3) (�⃗� 𝐼𝐵

�⃗� 𝑂𝐵
)                     (14) 

 

Thus, the noise portion 𝑃𝑛 of the ambient field covariance 

is 

𝑃𝑛 =
𝜎2

2
𝐼3 = (𝐻𝐴

𝑇𝑊𝐻𝐴)
−1                  (15) 

 

This is not the total covariance because it ignores the 

error due to the stray field.  To account for this, we use 

“consider covariance” 𝑃𝑐 [2].  If 𝑃𝑆 is the covariance of 

the stray field itself 

𝑃𝑆 = 𝜎𝑆
2𝐼3                                   (16) 

 

its contribution to the ambient field estimate is  

 

𝑃𝑐 = 𝑇𝑃𝑆𝑇
𝑇 = (𝑃𝑛𝐻𝐴

𝑇𝑊𝐻𝑆)𝑃𝑆(𝑃𝑛𝐻𝐴
𝑇𝑊𝐻𝑆)

𝑇     (17) 

 

where the transformation matrix 𝑇 is 

 

𝑇 =
𝜎2

2
𝐼3(𝐼3 𝐼3)

𝐼3

𝜎2 (
𝐼3

𝐼3 𝜌3⁄
) =

𝜌3+1

2𝜌3 𝐼3            (18) 

 

The total averaging ambient field covariance 𝑃𝐴 is the 

sum of 𝑃𝑛 and 𝑃𝑐 

𝑃 = 𝑃𝑛 + 𝑃𝑐                              (19) 

 

The total variance of the ambient field solution error 𝜎𝐴
2 

is  

𝜎𝐴
2 =

𝜎2

2
+ (

𝜌3+1

2𝜌3 )
2

𝜎𝑆
2                    (20) 

 

2.3. Algorithm Comparison 

 

If the gradiometer variance 𝜎𝐺
2 is greater than the 

averaging variance 𝜎𝐴
2, averaging is the better choice.  

The ratio of averaging to gradiometer standard deviations 

is  

𝜎𝐴

𝜎𝐺
= √

(𝜌3−1)2

1+𝜌6 (
1

2
+ (

𝜌3+1

2𝜌3 )
2 𝜎𝑆

2

𝜎2)              (21) 

 

Figure 1 shows this ratio for different values of stray 

field-to-noise and inboard-to-outboard distance 𝜌 

 

 
 

Figure 1. Averaging / Gradiometer Error 

 

Equating the two variances gives an equation for the stray 

field variance beyond which the gradiometer becomes 

the better choice 

 

1+𝜌6

(𝜌3−1)2
𝜎2 =

𝜎2

2
+ (

𝜌3+1

2𝜌3 )
2

𝜎𝑆
2              (22) 

 

Solving for the transition ratio gives 

 
𝜎𝑆

𝜎
= √2

𝜌3

𝜌3−1
                              (23) 

 

This expression suggests that for the assumed outboard-

to-inboard distance ratio of 1.33, the stray field variance 

would have had to have been at least twice that of the 



 

noise for the gradiometer to be preferable to averaging.  

In our simulations, we assumed that noise and stray field 

standard deviations were both 0.1 nT.   

 

3. STRAY FIELD MODELS 

Because we believe that we can calibrate for 

magnetometer zero offsets and static spacecraft fields, 

our primary concern now is with time-varying, i.e. stray 

fields [3].  Every spacecraft assembly was measured for 

compliance with the magnetic specs, and the three that 

were found to generate the largest stray fields were the 

solar array, the arcjet thrusters and the reaction wheels. 

 

3.1. Solar Array Model 

 

The solar array is divided into circuits, and each may be 

modeled as a dipole.  To reduce the solar array field, half 

of those circuits were wound clockwise and the other half 

counterclockwise.  Because of the distance separating the 

circuits and the magnetometers, we approximate the solar 

array field with that of the net dipole placed at the 

centroid of the array as shown in Figure 2.   

 

 
Figure 2. Solar Array Drive Angle 𝜃 

 

The solar array dipole moment vector �⃗⃗� 𝑆𝐴 is a function 

of the effective solar array circuit area 𝐴𝑆𝐴𝑖 , current 𝑖𝑆𝐴𝑖  

and the solar array drive angle 𝜃 as shown in Figure 1 

 

�⃗⃗� 𝑆𝐴 = ∑ 𝐴𝑆𝐴𝑖𝑛
𝑖=1 𝑖𝑆𝐴𝑖 (

𝑠𝑖𝑛𝜃
0

𝑐𝑜𝑠𝜃
)             (24) 

 

The solar array field is then 

 

�⃗� 𝑆𝐴 = 𝛽 (
𝑠𝑖𝑛𝜃
0

𝑐𝑜𝑠𝜃
) (∑ 𝐴𝑆𝐴𝑖𝑛

𝑖=1 𝑖𝑆𝐴𝑖)         (25) 

 

3.2. Arcjet Model 

 

For inclination control, there are four arcjets on the –y 

(north) face of the spacecraft.  They are fired two at a 

time and do not themselves generate much field, but the 

electrical current they require does.  The two arcjet-pair 

dipole moments �⃗⃗� 𝑎/𝑏 are a function of the current 𝑖𝑎/𝑏 

and the circuit areas projected onto the yz (x-component), 

zx (y-component) and xy (z-component) planes as shown 

in Figure 3. 

 
Figure 3. Arcjet Dipole Moment Areas 𝐴𝑁/𝑆 

 

These areas may be written as a vector 𝐴 𝑎/𝑏 such that the 

two arcjet dipoles take the form 

 

�⃗⃗� 𝑎/𝑏 = (𝐴𝑥
𝑎/𝑏

𝐴𝑦
𝑎/𝑏

𝐴𝑧
𝑎/𝑏)

𝑇
𝑖𝑎/𝑏 = 𝐴 𝑎/𝑏𝑖𝑎/𝑏  (26) 

 

The arcjet fields can then be written as a linear function 

of the arcjet current 

 

�⃗� 𝑎/𝑏 = 𝛽𝐴 𝑎/𝑏𝑖𝑎/𝑏                       (27) 

  

3.3. Reaction Wheel Model 

 

Reaction wheel residual magnetization produces a dipole 

moment that varies sinusoidally at the rotation rate.  If the 

rotation rate 𝜔𝑅𝑊𝑖  is within magnetometer passband, the 

magnetometer sees it.  The moment vector is in the rotor 

plane and may be expressed in terms of unit basis vectors 

�̂� and �̂� fixed in the reaction wheel assembly frame as 

shown in Figure 4.   

 
 

Figure 4. Reaction Wheel Phase Angle 𝜓 

 

Predicting reaction wheel fields requires knowing the 

magnitude of the rotor dipole moment 𝑚𝑅𝑊𝑖, the wheel 

speeds 𝜔𝑅𝑊𝑖  and the rotor phase 𝜓𝑅𝑊𝑖 .  If we neglect the 

distance between the wheels, we can sum the moments as 

 

�⃗⃗� 𝑅𝑊 = ∑ 𝑚𝑅𝑊𝑖𝑛
𝑖=1 (𝑐𝑜𝑠𝜓𝑅𝑊𝑖�̂�𝑅𝑊𝑖 + 𝑠𝑖𝑛𝜓𝑅𝑊𝑖�̂�𝑅𝑊𝑖)                                           

(28) 

where the �̂�𝑖 and �̂�𝑖 are 



 

 

�̂�𝑖 = �̂� × �̂�𝑖 |�̂� × �̂�𝑖|⁄                    (29) 

�̂�𝑖 = �̂�𝑖 × �̂�𝑖 |�̂�𝑖 × �̂�𝑖|⁄                   (30) 

 

The plan then would be to compute these dipole moment 

vectors, calculate the fields they produce at the 

magnetometers and subtract them from the inboard and 

outboard readings before averaging  

 

 �⃗� 𝑅𝑊 = 𝛽 �⃗⃗� 𝑅𝑊                        (31) 

   

4. STRAY FIELD CHARACTERIZATION 

To remove the solar array, arcjet and reaction wheel 

fields as outlined above, we have to know: 

1. Solar array drive angle, circuit areas and 

currents 

2. Arcjet sensitivities and currents 

3. Rotor in-plane dipole moments, rotation rates 

and phases 

4.1. Solar Array Characterization 

 

The solar array drive angle and currents come in 

telemetry, so the important remaining items to determine 

are the circuit areas.  On the ground, known currents were 

forced through the solar array circuits, and the resulting 

magnetic fields were measured.  These measurements 

were turned into dipole moments again for the 

observation model 

 

(�⃗�
 1𝑚𝑖

�⃗� 2𝑚𝑖
) = (

𝛽(𝑟 1𝑚)

𝛽(𝑟 2𝑚)
) �⃗⃗� 𝑖

𝑆𝐴𝑖                  (32) 

 

These were then normalized by the applied currents to 

give the effective areas 𝐴𝑆𝐴𝑖  for each circuit 

 

𝐴𝑆𝐴𝑖 = 𝑚𝑆𝐴𝑖 𝑖𝑆𝐴𝑖⁄                          (33) 

 

On-orbit we plan to dither the solar array and estimate its 

dipole moment from the resulting field variation.  We 

have to choose dither amplitude and frequency that 

satisfy the solar array angular velocity 𝜔 and acceleration 

𝛼 constraints while changing the field appreciably at a 

frequency well above that of ambient variations.   
 

Assuming sinusoidal dither with amplitude Θ and angular 

velocity Ω, the solar array drive angle 𝜃 is equal to 

 

𝜃 = Θ𝑠𝑖𝑛Ω𝑡                             (34) 

 

Limits on the maximum solar array angular velocity 𝜔 

and acceleration 𝛼 constrain Ω and Θ are 

 

𝜔 = �̇� ≤ ΩΘ ≤ 𝜔𝑚𝑎𝑥                    (35) 

𝛼 = �̈� ≤ Ω2Θ ≤ 𝛼𝑚𝑎𝑥                   (36) 

 

Dithering causes the solar array field to vary about a non-

zero mean value.  To estimate the dipole moment, we first 

subtract the average field value from both the observation 

and the prediction.  A direct search then minimizes the 

sum of squared errors. 

 

With one hour of 5o dithering, we are able estimate the 

solar array dipole moment to 0.5 Am2 (1) accuracy.  

This is less accurate than the ground measurements but 

does provide a check under flight-like conditions.  As 

shown in Figure 5, if we were to use the in-flight 

estimates, we would expect to reduce solar array stray 

fields by half. 

 
Figure 5. Reduction of Solar Array Fields 

 

 

4.2. Arcjet Characterization 

 

Unfortunately, it is not possible to fire the arcjets on the 

ground with the cabling in a flight-like configuration, so 

arcjet magnetic characterization has to be on-orbit.  In 

normal operations, the arcjets are fired every few days in 

one long pulse.  The on- and off-transitions should be 

quite sharp, and we know when to look for them.  So it 

should be possible to observe them accurately.  In 

addition, we will have telemetry for the currents.   

 

As above, the procedure would be to solve a least squares 

problem for the arcjet dipole moment using the change in 

the magnetometer observations ∆�⃗� 𝐼𝐵/𝑂𝐵 before and after 

the transitions 

 

(∆�⃗� 𝐼𝐵

∆�⃗� 𝑂𝐵
) = (

𝛽(𝑟 𝐼𝐸)

𝛽(𝑟 𝑂𝐸)
) �⃗⃗� 𝑎/𝑏              (37) 

 

where 𝑟 𝐼𝐸and 𝑟 𝑂𝐸are the arcjet electrical power unit 

position 𝑟 𝐸 to magnetometer position vectors 

 

𝑟 𝐼𝐸 = 𝑟 𝐼𝐵 − 𝑟 𝐸                            (38) 

𝑟 𝑂𝐸 = 𝑟 𝑂𝐵 − 𝑟 𝐸                            (39) 

 

Without noise, it would only take one 𝑎 and one 𝑏 arcjet 

pair pulse to determine the fields.  The magnetometer 



 

noise 𝜎 plus the ambient field variability 𝜎𝐵 make it 

necessary to average multiple firings.  If over the short 

time (0.25 sec) it takes the magnetometer to respond to 

the step transition, the ambient field does not change, the 

only noise is from the magnetometer itself.  In this case, 

it would take 100 transitions (50 pulses) to reduce the 

0.10 nT magnetometer noise to the 0.01 nT level we 

might want for arcjet field knowledge.   

 

4.3. Reaction Wheel Characterization 

 

Before assembly, we measured the magnetic dipole 

moment of each of the six reaction wheel rotors.  

Assuming the dipole moment does not change, if we 

knew the rotor orientations, i.e. phase angles, we could 

predict the reaction wheel fields at the magnetometers.   

 

Unfortunately, there is no rotor phase telemetry, so we 

have to estimate the phases.  We use tachometer wheel 

speeds to propagate phase between observations, i.e. 

times when the rates are within the magnetometer 

passband.  During those times, we estimate the rotor 

fields and remove them from the magnetometer readings. 

 

Over the course of a day, wheel speeds may look like 

what is displayed in Figure 6. When wheel speeds are 

within the magnetometer passband, measurements are 

corrupted. Wheel speeds are used as inputs to a bank of 

Least Mean Squares (LMS) based adaptive filters [4, 5]. 

Because six wheels may be within the magnetometer 

measurement passband, the required number of parallel 

LMS adaptive filters is six, i.e. one per wheel.  

 

 
Figure 6. Typical Reaction Wheel Speeds 

 

Each LMS adaptive filter is responsible for estimating the 

wheel dipole phase angle and amplitude. The estimated 

magnetic dipole vector is then used to remove the wheel 

field from the magnetometer outputs. The parallel bank 

of filters is shown in Figure 7.  

 

 
 

Figure 7. Bank of Parallel LMS Adaptive Filters 

 

There are two inputs to each LMS adaptive filter. One is 

the tachometer signal, and the other is the filter effectivity 

error. Filter effectivity error is a measure of how well the 

filter is removing the undesired wheel field. Based on 

these two inputs, the LMS adaptive filter generates a 

correction signal to remove the dipole field.  

 

To prevent the LMS filters from competing with each 

other in a detrimental manner, the learning rates for the 

six LMS adaptive filters are skewed. This has the effect 

of permitting some filters to converge to wheel magnetic 

dipole signals quicker than other filters. In this manner, 

filters can self-select which magnetic dipoles to converge 

to when multiple wheel speeds are within the 

measurement band. The remaining filters then converge 

to the remaining wheel magnetic dipole signals. 

 

Figure 8 shows the predicted reduction in reaction wheel 

speeds using this approach.   

 

 
Figure 8. Reduction in Reaction Wheel Fields 
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The top row shows the simulated reaction wheel fields 

superimposed on a sinusoidally-varying ambient field.  

The traces are wide when the wheel speeds go through 

the magnetometer passband.  The bottom row shows the 

magnetometer readings after being corrected with the 

LMS filter estimates.   

 

 

5. CONCLUSION 

This paper proposes ways of dealing with time-varying 

stray magnetic field errors in space-based magnetometer 

systems.  It examines gradiometer noise susceptibility 

and recommends when to use gradiometry and when to 

average.  Unless stray fields are twice as large as 

magnetometer noise, covariance analysis suggests that it 

is preferable to average rather than use the gradiometer.   

 

It also outlines models for three common sources of stray 

fields, i.e. solar array, arcjets and reaction wheels, and 

suggests how the necessary parameters can be measured 

and the stray fields removed.  Because averaging does not 

remove stray fields, if it is chosen over gradiometry, it 

may be worthwhile to add these steps to ground 

processing.   

 

One question not covered is on-orbit performance 

verification.  How will we know that any corrections we 

make actually help?  There may be times when we are 

collocated with other GOES satellites and can compare 

measurements, but most of the time there will be no 

reference nearby.  This and other operations questions 

remain to be addressed. 
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