

Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the NAIRAS Model

Christopher J. Mertens¹, Erica J. Alston¹, Tore Straume², Brad Gersey³, Terry C. Lusby², Ryan B. Norman¹, Guillaume P. Gronoff⁴, W. Kent Tobiska⁵, and Rick Wilkins³

¹NASA Langley Research Center, ²NASA Ames Research Center, ³Prairie View A& M University, ⁴Science Systems and Applications, ⁵Space Environment Technologies

NAIRAS Model

- NASA Nowcast of Atmospheric **Ionizing Radiation for Aviation Safety** (NAIRAS) Model
- Prototype operational model
- Running in real-time at the NASA Langley Research Center since April 2011

RaD-X Science

Goals and Objectives

- **Goal 1:** Improve NAIRAS model by characterizing energy deposition of cosmic ray primary (CR) particles
- **Objective 1:** Measure dosimetric quantities in the upper atmosphere above the Pfotzer maximum to isolate **CR** primaries

RaD-X Mission

Mission and Instrument Parameters

- **Platform:** High-Altitude Balloon
- Launch Site: Fort Sumner, NM

- Distinguishing Features
 - Real-time physics-based, deterministic, global model
 - Real-time inclusion of both galactic cosmic radiation (GCR) and solar energetic particle (SEP) radiation
 - Real-time solar-magnetospheric effects on geospace radiation environment
 - Real-time meteorological data (NCEP/GFS)

HELIOSPHERE MAGNETOSPHERE ATMOSPHERE

Public Web site: http://sol.spacenvironment.net/~nairas/ (or google NAIRAS)

- **Upper/Left:** Climatology of zonal-average GCR effective (full-body average) dose rates at various altitudes and flight levels (FL)
 - Solar Minimum (solid green line); Solar Maximum (solid blue line)
 - The dashed lines: +/- 1-standard deviation
- **Upper/Right:** Climatology of GCR effective dose rates as a function of vertical geomagnetic cutoff rigidity at various altitudes and flight levels

- **Objective 2:** Utilize dosimeters that can isolate proton and heavy-ion **CR** primaries and atmospheric neutrons
- **Goal 2:** Identify low-cost atmospheric radiation dose measurement solutions for global, continuous monitoring
- **Objective 3:** Characterize the relationship between siliconbased dosimetric measurements and radiobiological response

High-Altitude Measurements

Taking data at high altitude above the Pfotzer maximum provides a direct measurement of CR primaries, permitting the separation of discrepancies due to source uncertainties from discrepancies caused by the ensemble of complex physical processes at aircraft flight altitudes

Instrument Selection

Ability to separate **CR** primary protons and heavy-ions and atmospheric

neutrons by combining measurements at two float altitude regions (Region-A

Viable low-cost dosimeters for continuous, global monitoring of radiobiological

- The radiation environment in the upper atmosphere above the Pfotzer maximum is a large source of uncertainty for radiation exposure at aircraft flight altitudes [Lindborg et al., 2004]
- Model/measurement comparisons at aircraft altitudes point out discrepancies, but do little to reveal a causal source of discrepancy due to

- **Mission Duration:** 24-hours
- **Temporal Sampling:** 1-5 minutes
- Launch Readiness Date: September 2015
- **Instruments:** (1) TEPC, (2) Teledyne TID dosimeter, (3) Liulin LET Spectrometer, and (4) RaySure microdosimeter emulator
- **Measurement Uncertainty:** < 30%
- Instrument TRL: All components TRL 6 or higher

Concept of Operation

(FL). Line style/color same as upper/left figure

Upper/Left: TEPC/NAIRAS comparisons of 1-hour averaged ambient dose equivalent rates for DUS-MRU 13-14 February 2008 flight

- NAIRAS underestimates TEPC by about 50%
- These results consistent with comparisons with ICRU Report 84 reference aircraft measurements [Mertens et al., 2013]
- Upper/Right: Liulin/NAIRAS comparisons of 1-hour averaged silicon

variation in composition and energy of the radiation environment with atmospheric depth

The choice of dosimeters was motivated by:

response (direct measurement or empirical fit)

TEPC: Industry standard microdosimeter

dose measurement, which is defined as

provides radiation protection (operational)

ambient dose equivalent [ICRU, 2010; ISO,

Liulin: Silicon-based LET spectrometer that

permits identification of protons at Region-

detector that is mostly sensitive to charged

particles at RaD-X altitudes. Viable silicon-

radiation monitoring. Requires empirical fit

based dosimeter for continuous, global

A and separation of heavy-ion contributions

and Region-B shown below)

2012].

at Region-B.

Science Payload and Gondola

Milestones and Science Activities

- **Project Milestones**

absorbed dose rates for DUS-MRU 13-14 February 2008 flight NAIRAS underestimates Liulin by about 70%

Conclusions

- Suggest largest NAIRAS uncertainty in charged particle source/transport/interactions
- Measurements at flight altitudes alone cannot unambiguously identify source of NAIRAS model uncertainty

to TEPC ambient dose equivalent to characterize radiobiological response.

TID: Teledyne total ionizing dose (TID)

RaySure: Viable silicon-based microdosimeter "emulator" which is easy to manufacture . Internal calibration directly computes ambient dose equivalent.

Percentage by Particle (%)

— neutro

- alpha

HZE

— neutron

— alpha

HZE

proton

Region-B

Region-A

Selection Conference (08/20/2013)

- Kickoff (10/31/2013)
- SRR: Systems Requirements Review (02/19/2014)
- **Near-Term Science Activities**
 - Modeling instrument and radiation shielding environment (05/2014)
 - PDR: Preliminary Design Review (05/2014)
 - Dosimeter Beam Test and Calibration (08/2014)