

Impact of AMS-02 Measurements on Reducing GCR Model Uncertainties

T.C. Slaba¹, P.M. O'Neill², S. Golge³, J.W. Norbury¹

¹NASA Langley Research Center, Hampton, VA ²NASA Johnson Space Center, Houston, TX ³University of Houston, Houston, TX

Solar Energetic Particles, Solar Modulation and Space Radiation: New Opportunities in the AMS-02 ERA October 18-23, 2015 Honolulu, Hawaii, USA

Outline

- Radiation exposure analysis overview
- Initial sensitivity and uncertainty quantification results
- Galactic cosmic ray (GCR) models
- Impact of AMS-02 measurements on reducing uncertainties

Exposure Analysis Overview

s/Carcinogenesis.pdf

about/divisions/hacd/hrp/aboutspace-radiation.html

Impact of GCR Model Uncertainty

- GCR protons account for >50% of the total exposure behind shielding⁽¹⁾
- GCR alphas are the next largest contributor
- Ions with Z > 2 and energy below 500 MeV/n (ACE) account for less than 5% of the exposure

Relative contribution (%) of each boundary ion/energy group to effective dose behind 20 g/cm² aluminum during solar minimum⁽¹⁾.

	< 0.25	[0.25, 0.5]	[0.5, 1.5]	[1.5, 4]	> 4	Total
Z = 1	1.2	5.4	18.2	18.4	14.8	58.1
Z = 2	1.2	2.2	4.1	2.9	1.7	12.2
Z = 3-10	< 0.1	3.3	3.8	1.3	0.8	9.1
Z = 11-20	< 0.1	0.2	6.6	2.0	1.1	10.0
Z = 21-28	< 0.1	< 0.1	4.7	3.8	2.1	10.6
Totals	2.5	11.1	37.4	28.4	20.5	100.0

(1) Slaba, T.C., Blattnig, S.R., Space Weather 12: 217-224, 2014.

Impact of GCR Model Uncertainty

- GCR model uncertainty induces roughly <u>+</u>20% error on effective dose⁽²⁾
 - Results below for Badhwar-O'Neill (BON) 2014 GCR model⁽³⁾

- Error bars represent uncertainty associated with GCR model only
- For nominal vehicle shielding (>10 g/cm²), relative errors are roughly <u>+</u>20%

⁽²⁾ Slaba, T.C., Xu, X., Blattnig, S.R., Norman, R.B., *Space Weather* 12: 233-245, 2014.
(3) O'Neill, P.M., Golge, S., Slaba, T.C., NASA TP 2015-218569, 2015.

Badhwar-O'Neill Model Description

- The Badhwar O'Neill (BON) galactic cosmic ray model is used at NASA as input into radiation transport codes for
 - vehicle design, mission analysis, astronaut risk analysis
 - other models used as well (discussed in later slides)
- BON model revisions are based on the same fundamental framework
 - Model equations are solved to describe particle transport through solar system
 - Solar activity is described by a single parameter related to observed sunspot numbers

International Models and Comparisons

- GCR models tend to agree reasonably well at highest energies⁽²⁾
 - Effects of solar modulation are less pronounced
 - Significant contributor to exposure behind shielding

- Matthia et al. (DLR) recently developed a simplified form of Nymmik's model⁽⁶⁾
 - Shown to be reasonably accurate^(2,6)
- Nymmik (MSU) has developed a semi-empirical model^(4,5) (not shown)
 - Used by Russian Space Agency & others (DLR, ESA)
 - Official update has not been provided recently

- (2) Slaba, T.C., Xu, X., Blattnig, S.R., Norman, R.B., Space Weather 12: 233-245, 2014.
- (4) Nymmik, R.A., Panasyuk, M.I., Suslov, A.A., Adv. Space Res. 17: (2)19-(2)30, 1996.
- (5) International Standards Organization (ISO) 15390, 2004.
- (6) Matthia, D., Berger, T., Mrigakshi, A.I., Reitz, G., Adv. Space Res. 51: 329-338, 2013.

International Models and Comparisons

- Exposures behind shielding are in good agreement if updated GCR models are used
 - BON2014 and Matthia are within 10% of each other, on average, over past 40 years

Effective dose versus time behind 20 g/cm² aluminum shielding

GCR Model Development

- GCR models are developed and validated using available measurements
 - Short duration, high energy, balloon and satellite measurements
 - Low energy, continuous measurements from ACE/CRIS (most of the available measurements)
 - Current gap in measurement database for continuous, high energy measurements

Name	Flight	Time	lons (Z)	Energy (GeV/n)	Data pts.	82% of
ACE/CRIS	Satellite	1998-present	5-28	0.05 – 0.5	8288	🔶 available
AMS	STS-91	1998	1, 2	0.1 – 200	58	data
ATIC-2	Balloon	2002	1, 2, 6, 8, 10,,14, 26	4.6 – 10 ³	55	Gata
BESS	Balloon	1997-2000, 2002	1, 2	0.2 – 22	300	
CAPRICE	Balloon	1994, 1998	1, 2	0.15 – 350	93	
CREAM-II	Balloon	2005	6-8, 10, 12, 14, 26	18 – 10 ³	42	
HEAO-3	Satellite	1979	4-28	0.62 – 35	331	
IMAX	Balloon	1992	1, 2	0.18 – 208	56	
IMP-8	Satellite	1974	6, 8, 10, 12, 14	0.05 – 1	53	
LEAP	Balloon	1987	1, 2	0.18 – 80	41	
MASS	Balloon	1991	1, 2	1.6 – 100	41	
PAMELA	Satellite	2006-2009	1, 2	0.08 – 10 ³	472	
TRACER	Balloon	2003	8, 10, 12,,20, 26	0.8 – 10 ³	55	
Lezniak	Balloon	1974	4-14, 16, 20, 26	0.35 – 52	131	
Minagawa	Balloon	1975	26, 28	1.3 – 10	16	
Muller	STS-51	1985	6, 8, 10, 12, 14	50 – 10 ³	16	
Simon	Balloon	1976	5-8	2.5 – 10 ³	46	_

Galactic Cosmic Ray Model Development

- Recent work has significantly reduced model uncertainties⁽³⁾
 - More rigorous approach to model calibration and validation resulted in BON2014
 - Determined measurements (energies) most important for exposure quantities behind shielding
 - Model parameters calibrated using optimization methods with an emphasis on higher energies
 - Comprehensive validation metrics applied to quantify model uncertainty
 - Process can include new measurements and is repeatable

(3) O'Neill, P.M., Golge, S., Slaba, T.C., NASA TP 2015-218569, 2015.

Impact of AMS-02 Data

- Widely used GCR models are mainly semi-empirical
 - Data is needed to refine free parameters in models
- AMS-02 data will serve two important functions
 - Provide substantial data for independent validation (i.e. data not used to tune model)
 - Fill important data gaps to enable improved parameter calibration
- Current schedule for using AMS-02 for GCR measurements is mainly driven by impact on exposure
 - Monthly GCR proton measurements for energies greater than 500 MeV
 - Next step is to analyze GCR alphas
 - Specific heavy ions will be emphasized later

Impact of AMS-02 Data

- If GCR proton and alpha uncertainty is cut in half •
 - Uncertainty estimate drops from roughly $\pm 20\%$ to $\pm 15\%$

Impact of AMS-02 Data

If GCR proton and alpha uncertainty is entirely removed Uncertainty estimate drops from roughly $\pm 20\%$ to $\pm 5\%$

Summary

- Widely used GCR models rely on available measurements
 - Measurements used directly for development and validation
 - Updated models are in reasonable agreement
 - GCR models induce roughly <u>+</u>20% uncertainty on effective dose behind shielding
- AMS-02 will fill an important gap in the measurement database
 - Significant need for high energy, time-resolved proton and alpha measurements
 - Current measurement database is dominated by ACE/CRIS
 - ACE/CRIS measurement domain induces less than 5% of exposure behind shielding
- Proton and alpha measurements from AMS-02 will reduce model uncertainties
 - Possibility exists to have a significant impact on reducing overall exposure uncertainties

References

- (1) Slaba, T.C., Blattnig, S.R., Space Weather 12: 217-224, 2014.
- (2) Slaba, T.C., Xu, X., Blattnig, S.R., Norman, R.B., Space Weather 12: 233-245, 2014.
- (3) O'Neill, P.M., Golge, S., Slaba, T.C., NASA TP 2015-218569, 2015.
- (4) Nymmik, R.A., Panasyuk, M.I., Suslov, A.A., Adv. Space Res. 17: (2)19-(2)30, 1996.
- (5) International Standards Organization (ISO) 15390, 2004.
- (6) Matthia, D., Berger, T., Mrigakshi, A.I., Reitz, G., Adv. Space Res. 51: 329-338, 2013.