
ABSTRACT	
The Astrobees are next-generation free-flying robots 

that will operate in the interior of the International 
Space Station (ISS). Their primary purpose is to 
provide a flexible platform for research on zero-g free-
flying robotics, with the ability to carry a wide variety 
of future research payloads and guest science 
software. They will also serve utility functions: as 
free-flying cameras to record video of astronaut 
activities, and as mobile sensor platforms to conduct 
surveys of the ISS. 

The Astrobee system includes two robots, a docking 
station, and a ground data system (GDS). It is 
developed by the Human Exploration Telerobotics 2 
(HET-2) Project, which began in Oct. 2014, and will 
deliver the Astrobees for launch to ISS in 2017. 

This paper covers selected aspects of the Astrobee 
design, focusing on capabilities relevant to potential 
users of the platform.  

1 INTRODUCTION 
The Astrobee system draws on AERCam [1] and 

PSA [2] for small space free-flyer inspiration. It is an 
upgrade to the SPHERES Research Facility already on 
ISS. The SPHERES satellites are among the most used 
ISS payloads, and have hosted diverse experiments 
ranging from formation flying [3], to satellite 
inspection [4], magnetic propulsion [5], and visual 
navigation [6]. However, opportunities to run 
SPHERES activities are limited, because they require 

substantial astronaut effort for unstowing, setup, 
replacing consumables, and continuous supervision. 

In contrast, the Astrobees have no consumables 
other than rechargeable batteries, they dock, recharge, 
and undock autonomously, and they perform most 
operations without astronaut supervision. Astrobees 
can also fly farther and faster, have better sensing and 
computing, and have new capabilities to support 
research on manipulation and human-robot interaction.  

Each Astrobee robot is shaped as a cube 30.5 cm on 
a side, with mass ~6 kg, and uses battery-powered 
fans for propulsion (Fig. 1).  

 

2 CONCEPT OF OPERATIONS 
Astrobee’s concept of operations (conops) was 

introduced in an earlier paper [7]. Here, we provide a 
brief review to help motivate the system design. 

Astrobees can move throughout the U.S. Orbital 
Segment (USOS) of the ISS. Each sortie begins and 
ends with the Astrobee docked at its charging station; 
docking and undocking are executed autonomously. 
Operators use a planning tool in the GDS control 
station software to generate a sortie plan, which 
contains a mix of 6-degree of freedom (DOF) motion 
paths and other commands. The robot executes the 
plan autonomously. During execution, an operator on 
the ground monitors progress through the control 
station, which receives video and telemetry feeds. 
Most faults cause the robot to stop and wait for 
operator assistance. 

There are several alternative ops workflows. For 
example, during frequent loss-of-signal periods for the 
ISS space-to-ground link, the robot can continue 
execution without operator oversight; significant 
anomalies will pause execution until communications 
are restored. Operators can also interactively 
teleoperate the robot, using the control station to send 
interactive motions and commands similar to those 
found in plans. The ISS crew can also run the GDS 
control station software on their laptops, if desired. 

Next, we review three of the representative ops 
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Figure 1: Free flyer front view 

	



scenarios introduced in [7], with an eye to how they 
drive the Astrobee system design. 

Research Scenario: A guest scientist uses an 
Astrobee robot to perform an experiment that requires 
mounting a custom payload and flying within a 
specific ISS module. 

Minimizing burden on the ISS crew is an important 
Astrobee goal. Installing and removing a payload 
unavoidably requires crew, but crew should not need 
to be involved in other aspects of experiment setup 
and teardown, nor should they need to supervise the 
experiment itself. 

This scenario motivates these capabilities: (1) 
Autonomously dock and undock from the charging 
station. (2) Follow a plan to navigate to any location 
on ISS (to pre-position the Astrobee in the module for 
the experiment). (3) Perch on an ISS handrail (to wait 
for astronaut assistance, reducing power consumption 
and staying out of the way of other crew activities). 
(4) Quick-release payload installation/removal. (5) 
Execute guest software (to run the experiment). (6) 
Improve all aspects of mobility performance (max 
acceleration, max velocity, accuracy, etc.) to allow the 
broadest possible set of experiments. 

Camera Scenario: ISS Flight Operations uses 
Astrobee to stream live HD video of a crew activity. 

This scenario motivates these capabilities: (1) 
Multiple-hour sortie durations (to record long crew 
activities without interruption). (2) Interactive 
teleoperation (to support live repositioning when 
needed to improve the view). (3) Repoint camera 
while perching (capturing useful video angles with 
reduced power consumption). (4) End-to-end 
computing, communications, and GDS capacity to 
compress, transmit, and view HD video on the ground. 

Search Scenario: ISS Flight Operations uses an 
Astrobee carrying an RFID reader to confirm the 
location of a tool needed for an upcoming crew 
activity. 

This scenario is an example of using an Astrobee to 
perform a sensor survey; in this case, the RFID reader 
is the sensor, and we assume the tool is tagged with an 
RFID. The scenario envisions starting by scanning the 
module where the tool was last seen, then executing a 
search algorithm that homes in on the tool by 
analyzing variations in the RFID signal strength. 

This scenario motivates these capabilities: (1) Build 
and execute extensive survey plans that include many 
target positions and commands to take sensor samples. 
(2) Minimize oversight burden on operator (survey 
activities can be long and monotonous). (3) Execute 
guest software (search algorithm provided by RFID 
experts). 

3 ROBOT DESIGN 
Each Astrobee robot is cube-shaped, ~30.5 cm on a 

side, weight ~6 kg (Fig. 1). Although Astrobees can 
move in any direction, they have a preferred forward 
motion direction and a top side that nominally faces 

the overhead or “ceiling” of the ISS interior. 
Prominent features include: the propulsion modules 

that occupy the entire left and right faces of the cube, 
the touch screen and a variety of sensors on the 
forward face, the dock adapter and perching arm on 
the aft face, and open payload bays at bottom center. 

3.1 Propulsion 

The Astrobees are designed to operate in the 
pressurized intra-vehicular (IV) environment but not 
the extra-vehicular (EV) environment of the ISS. Early 
in the Astrobee concept development process, we 
studied producing a dual-use robot that could operate 
both IV and EV, for example, using cold-gas 
propulsion with autonomous refueling. We rejected 
this option because ensuring EV safety would have 
greatly increased project costs and imposed design 
constraints that would have reduced the robots’ IV 
capability. 

The selected IV-only propulsion design uses battery-
powered fans. With electricity as the only consumable, 
we can support autonomous resupply with relatively 
simple autonomous docking to recharge. 

Each Astrobee has two propulsion modules that 
occupy the entire left and right sides of the robot. Each 
module is built around a plenum; the plenum is 
pressurized by a single centrifugal impeller, which 
draws in air through a central intake and feeds six 
exhaust nozzles around the edges. 

The two propulsion modules are interchangeable. 
They are arranged so that their impellers rotate in 
opposite directions and generally at the same speed, 
canceling unwanted drag torque and gyroscopic 
moment disturbances. The impeller speed is adjustable 
to trade between peak performance vs. reduced power 
and noise. Basing each module on a single central 
impeller allows us to maximize the impeller diameter, 
reducing RPM rate, power, and noise. Confining the 
propulsion system to the left/right sides of the robot, 
with both intakes and nozzles directed outward, also 
greatly improves design modularity—the complexities 
of the central module and guest payloads that fit 
between the propulsion modules are isolated from the 
propulsion air flow and can be excluded from 
aerodynamic analysis and performance optimization. 

With a constant impeller speed, the thrust from each 
nozzle has fixed direction and continuously adjustable 
magnitude, controlled by adjusting the nozzle open 
area with a servo that actuates two flappers. The 
flappers can adjust from fully open to fully closed in 
<100 ms, and flapper motion introduces negligible 
disturbance forces. Through careful design and 
prototype iteration, the nozzles achieve aerodynamic 
discharge coefficient >0.9 (1 is perfectly efficient) and 
consistent thrust alignment, even when nearly closed. 

A propulsion system is holonomic in 6-DOF if it has 
the ability to instantaneously apply force in any 
direction and torque about any axis. This capability is 
important for Astrobee as a research platform, because 



a holonomic thruster arrangement can simulate the 
thruster arrangement of any other spacecraft of 
interest. Holonomic control is provided by the 6 x 2 = 
12 independent thrusters. The nozzle geometry is 
arranged with thrust vectors offset, such that they do 
not pass through the robot’s body frame origin 
(geometric center); thus, each nozzle produces a 
combination of force and torque. We can construct a 
pure force on any Cartesian axis (+/-X, Y, or Z) by 
applying equal thrust with a matched pair of nozzles 
that have aligned forces and opposing torques. 
Likewise, we can construct a pure torque with a pair 
of nozzles that have aligned torques and opposing 
forces (in fact, each torque axis can be produced with 
either of two redundant nozzle pairs). 

It is possible to achieve n-DOF holonomic control 
with as few as n + 1 unidirectional thrusters [8], but by 
using 12 > 7 thrusters, we improve efficiency and 
make the force allocation problem better conditioned 
and more robust to deviations from the calibrated 
propulsion model (such as slightly misaligned 
thrusters). In case of certain types of thruster 
malfunctions, it might be possible to take advantage of 
redundancy to continue flying an Astrobee with 
reduced performance [9], but implementing this 
capability is not in scope for the current project. 

Although Astrobees have holonomic control, their 
maximum acceleration capability is not symmetrical. 
When following a typical trajectory, flying forward, 
most of the required thrust is starting and stopping on 
the forward/aft (X) axis; this axis has the largest 
nozzles that achieve the full max acceleration 
requirement (10 cm/s2). Nozzles on the right/left (Y) 
and bottom/top (Z) axes are mostly used for turning 
and for rejecting environmental disturbances; for these 
axes, we reduced the nozzle size, giving up peak 
acceleration to save space and improve control 
precision at lower thrust levels. A further asymmetry 
comes from load balancing between the two 
propulsion modules. Pure forces are constructed by 
using a pair of nozzles. For X and Z forces, the two 
nozzles are on different propulsion modules, so the 

force can draw power from both impellers. Y forces 
use two nozzles on the same module, drawing power 
from a single impeller, which reduces the maximum 
force available. 

An important propulsion design driver was the need 
for efficiency—producing the required thrust with low 
noise and power consumption. Basic rocket physics 
dictates that with a fixed fraction of reaction mass, the 
achievable Δv scales linearly with increasing exhaust 
velocity ve, but with the downside that ideal thrust 
power efficiency (W/N) scales inversely with ve. 

Typical spacecraft design, with limited reaction 
mass, seeks to maximize Δv by increasing ve. 
Astrobees, on the other hand, have unlimited reaction 
mass (air in the pressurized cabin), allowing us to 
focus on power efficiency by minimizing ve. Astrobee 
nozzles operate efficiently at low pressure (~0.1 psi) 
and exhaust velocity (~11 m/s). For comparison, the 
SPHERES satellites use EV-analog cold gas thrusters 
that operate at ~25 psi with exhaust velocity ~250 m/s. 

A further advantage of low-pressure propulsion is 
that the required pressure can be produced by an 
efficient centrifugal impeller, eliminating any need for 
a compressor, and precision engineering is not 
required to adequately seal the plenum. 

Astrobee exhaust velocity is lower bounded by the 
need to achieve sufficient thrust while fitting within 
volume constraints. The open area of each nozzle 
ranges from ~40-65 cm2 (compare to ~0.005 cm2 for 
SPHERES), and together they occupy around 10% of 
the total robot surface area. 

All moving parts of the propulsion system are 
enclosed, which is important for reliability and safety. 
The intake is covered by a screen with ~1 mm 
openings to avoid drawing in crew hair or drawing in 
and ejecting particles floating in the cabin. The nozzle 
flappers are covered with a coarser grille to protect 
fingers and keep out objects that could cause jams. 

3.2 Structure 

Modularity was a key design driver. Astrobee’s 
major modules, such as the propulsion modules, 
forward and aft panels, and payloads, support 
straightforward removal and replacement by crew. In 
some cases, spares will be stocked on orbit to enable 
repairs. Astrobees use captive fasteners to mitigate the 
risk of loose fasteners in the crew cabin, so crew 
maintenance does not require a glove box. 

Each Astrobee’s core frame is aluminum. The 
propulsion module plenum is primarily 3D printed 
using lightweight Windform XT, and saves mass by 
making dual-use of exterior impact foam as a 
structural material. 

3.3 External Sensors 

Each Astrobee uses a suite of six commercial off-
the-shelf (COTS) external sensors (Fig. 3). First is the 
NavCam, a forward-facing monocular RGB imager 
with 130° field of view (FOV), fixed focus, and 1.2 

	
Figure 2: Exploded view with nozzle geometry 

	



megapixel (MP) resolution. NavCam images feed the 
sparse mapping and optical flow portions of the 
general-purpose pose estimator (section 3.4), and are 
also useful for operator situation awareness due to the 
wide FOV. 

For improved relative pose estimation during 
docking and perching, Astrobees use DockCam and 
PerchCam. DockCam is a clone of NavCam that faces 
aft, where it can view fiducials on the Astrobee dock 
during the docking approach. PerchCam is an aft-
facing CamBoard Pico Flexx time-of-flight flash 
LIDAR depth sensor with 62° FOV, 224 x 172 
resolution, and effective range 0.1-4 m. It detects ISS 
handrails based on their 3D shape and determines the 
Astrobee’s relative pose during perching approach. 

To detect obstacles, Astrobees use HazCam, a clone 
of PerchCam that faces forward. 

To stream video of crew activities, Astrobees use 
SciCam, a forward-facing RGB imager with 54.8° 
FOV, 13 MP resolution, and auto-focus, similar to the 
camera module found on the back of many modern 
smart phones. 

Finally, to provide a redundant velocity estimate, 
Astrobees use SpeedCam, a top-facing PixHawk 
PX4Flow integrated sonar/optical flow sensor, which 
does its own internal data processing and provides 3D 
velocity estimates directly to Astrobee’s low-level 
processor. 

3.4 Position Estimation 

Astrobee position estimation has four main modes: 
general-purpose, fiducial-relative, perch-relative, and 
impaired. All modes use an augmented-state extended 
Kalman filter (EKF) for sensor fusion, and all make 
use of gyroscope and accelerometer readings from 
Astrobee’s inertial measurement unit (IMU). They 
differ in the additional inputs used by the EKF. 

General-purpose mode is used to estimate position 
anywhere in the ISS USOS, with accuracy sufficient 
for reliable navigation in free space (20+ cm away 
from walls). In this mode, the EKF has two additional 
inputs. First, visual texture features on the ISS walls 
observed in NavCam images are matched with a prior 
sparse map of features, providing an absolute position 
update at ~2 Hz. Second, an optical flow algorithm 
matches features across frames in the same image 

stream at ~6 Hz, providing smoother relative updates. 
Fiducial-relative mode provides more accurate and 

robust position information when artificial fiducials 
(or “AR targets”) are in view. It matches fiducials 
detected in NavCam or DockCam images with a prior 
fiducial map. It will be used in two main scenarios. 
First, for autonomous docking, in order to achieve the 
~1 cm position accuracy needed for successful mating, 
the Astrobee dock will have fiducials. Second, in order 
to support guest science needs for improved motion 
accuracy during experiments, we may outfit a 
designated workspace in the ISS with several fiducials 
on the surrounding walls. 

Perch-relative mode provides accurate pose 
estimates relative to an ISS handrail, based on 3D 
point clouds from the PerchCam depth sensor. It 
provides the ~2 cm position accuracy required near the 
end of the perching approach for successful grasping. 
The perch estimator fits a handrail geometric model to 
a point cloud, recognizing the handrail’s linear shape 
and relationship to the planar wall behind it. 

Impaired mode is used when inputs required for the 
other modes are not available, for example due to a 
sensor fault or software fault on the mid-level 
processor. Impaired mode uses the 3D velocity 
estimate provided by the SpeedCam, which allows the 
Astrobee to stop and station keep until the fault is 
resolved. 

More detailed papers on the general-purpose and 
perch-relative estimators will appear soon.  

3.5 Navigation and Control 
Astrobee’s navigation stack executes 6-DOF motion 

trajectories. These trajectories are generated by the 
GDS control station planner or by Astrobee’s flight 
software. In either case, the trajectories are 
constructed to ramp velocity smoothly and respect 
operating limits such as max velocity and acceleration 
constraints. A trajectory is represented as a spline 
curve of polynomial chunks parameterized by time. 

The navigation and control pipeline operates as 
follows: (1) Navigator: Stores the overall trajectory, 
monitors progress, and feeds new chunks into the 
pipeline as needed. (2) Command shaper: Taking into 
account any deviation from the target trajectory, 
calculates a short-term repair trajectory that smoothly 
transitions from the current state (12-DOF 
pose+velocity) to rejoining the target trajectory, while 
respecting operating limits. (3) Controller: A PID 
controller that calculates a force/torque command 
designed to zero the error between the current state 
and the command shaper’s repair trajectory. (4) Force 
allocator: Calculates the nozzle servo positions that 
implement the controller’s force/torque command. (5) 
Output: The nozzle command from the force allocator 
is forwarded to the propulsion module controller via 
I2C, where it is translated to PWM outputs for the 
individual servos. 

While most of the control approach is 

	
Figure 3: Side view with sensor viewing angles. 

	
	



straightforward, there are some particular challenges. 
First, it is non-trivial to calibrate the propulsion 
physics model needed by the force allocator. The 
thrust output by any nozzle has a non-linear 
dependence on both the RPM rate of the impeller 
(which increases plenum pressure) and the open area 
of every other nozzle (which decreases pressure). 
Second, Astrobee configuration changes, such as 
moving the arm and adding or removing payloads 
(which may include integrated thermal fans), will 
induce inertial property changes and new disturbance 
forces. Finally, during activities like perching and 
docking, the controller will need to accommodate 
contact forces. 

3.6 Computing and Software Architecture 

An Astrobee has three main processors: (1) The 
Low-Level Processor (LLP) controls the propulsion 
system, and reliably runs the high-rate control 
software, in isolation from the rest of the software. (2) 
The Mid-Level Processor (MLP) runs most of the 
software developed by the Astrobee team, including 
the compute-intensive machine vision algorithms, in 
isolation from guest software. (3) The High-Level 
Processor (HLP) is primarily for guest science use, 
but also hosts less critical functions such as streaming 
HD video compression and touch screen interaction. 

To achieve a good combination of power, size, and 
performance, we use COTS ARM architecture 
processors provided in a system-on-module format, 
derived from modern smart phone technology. The 
LLP is a Wandboard Dual with two cores that run at 
up to 1 GHz and max power ~3 W. Both the MLP and 
HLP are IFC6501 modules, each with four cores that 
run at up to 2.5 GHz and max power ~10 W. The three 
main processors ride on two custom carrier boards that 
are designed to enable a possible on-orbit upgrade by 
crew later in the project life cycle. Each Astrobee also 
carries PIC microcontrollers for power management 
and distributed control of the propulsion modules and 
perching arm. 

The three main processors communicate with each 
other and with the dock via Ethernet. Other Astrobee 
avionics components and payloads mostly 
communicate using USB 2.0 or I2C data buses. 

Astrobee flight software uses a service-oriented 
robotic architecture style [10], built on the Robot 
Operating System (ROS) middleware. The LLP and 
MLP run Ubuntu Linux, and the HLP runs Android, 
which drives the touch screen display. 

3.7 Power 

Astrobees carry rechargeable Li-ion batteries, 
specifically Inspired Energy model ND2040HD34. An 
Astrobee can operate with as few as two batteries 
(reducing mass and improving performance) or as 
many as four (increasing battery life). Each battery 
outputs 14.4V nominal, stores 49 Wh of energy, and 
incorporates numerous safeguards to avoid the risk of 

fire or leakage in the ISS environment.  
Each Astrobee has an electrical power system (EPS) 

board based on a PIC microcontroller, which manages 
power consumption by switching components on only 
when needed, provides the ability to boot and reset the 
main processors, and outputs telemetry on internal 
temperatures and power system health. 

3.8 Communications 

During sorties, Astrobees communicate commands, 
telemetry, and video through the ISS WiFi network 
and Ku-band downlink. After sorties, Astrobees can 
transfer large files through an Ethernet connection 
with the dock. 

Commands and telemetry use NASA’s Robot API 
Delegate (RAPID) message conventions and are 
delivered by RTI Data Distribution Service (DDS) 
middleware, which offers tunable quality-of-service 
that can tolerate high-latency networks and dropped 
packets. HD video is H.264 compressed and streamed 
to the ground via the Real-Time Transport Protocol 
(RTP). 

Because the WiFi and Ku-band networks are subject 
to frequent dropouts, Astrobees keep onboard logs of 
all streaming data, allowing later downlink of a 
pristine copy. 

3.9 Thermal 

Engineers are accustomed to relying on passive 
gravity-driven thermal convection to provide free 
cooling; reduced convection in the zero-g ISS 
environment makes careful thermal design especially 
important. 

The Astrobee core module is cooled using a pair of 
always-on cross-flow thermal fans that draw in air 
from forward intake vents, blow it over a heat sink 
that cools the MLP and HLP, and exhaust aft. These 
fans do produce a net disturbance force, but it is 
constant and small (<5% of propulsion system thrust). 

The propulsion module impeller and servo motors 
are the other main heat sources. Since these motors 
only operate when the propulsion system is active, 
they are naturally cooled by the propulsion air flow. 

A variety of anomalies could cause overheating: 
jammed motors, blocked vents, failed fans, etc. In 
these situations, over-temperature power cutoffs 
ensure thermal safety. 

3.10 Perching Arm 

Each Astrobee carries a perching arm on its aft side 
that allows it to grasp ISS handrails and dwell for 
extended periods, reducing power consumption and 
interference with ISS operations [11-12]. It could also 
support future manipulation research. 

The arm has three degrees of freedom: two joints 
and a gripper. The joints allow the arm to stow 
completely within Astrobee’s protective foam exterior 
when not in use, and deploy only for grasping. 

The gripper is an underactuated tendon-driven 



design with three fingers. When unpowered, it is 
passively spring-loaded shut; winding up the tendon 
opens all three fingers. 

Once an Astrobee grasps a handrail, it powers down 
its propulsion system, and its arm joints double as a 
pan-tilt unit for pointing cameras located on the 
opposite (forward) side of the robot (Fig. 4). 

The arm is designed to be flexible and backdrivable; 
its grip is not strong enough to injure the crew, and a 
perched Astrobee can be easily removed from a 
handrail if it is in the way in an emergency. The crew 
can also manually backdrive and perch the arm on a 
handrail, as a convenient way to move an Astrobee 
when needed. 

3.11 Collisions 

Astrobee robots must not injure crew or damage the 
ISS. As a free-flying robot in a tightly confined space, 
collisions are a particular concern. 

For comparison, the SPHERES satellites handle 
collision safety primarily by assuming the constant 
presence and oversight of crew. The Astrobee conops, 
on the other hand, calls for performing most sorties 
end-to-end without crew tending, except in case of 
anomalies. 

The Astrobees use a tiered approach to mitigate 
collisions. First, to ensure crew and ISS safety, 
Astrobee hardware is designed to be inherently 
collision-safe, regardless of any software anomalies. 
Second, to minimize ops disruptions, Astrobee flight 
software includes several collision mitigation features. 

We ensure collision safety by (1) hardware limiting 
the maximum thrust capability of the propulsion 
system to 0.72 N, and (2) encasing each Astrobee in 
an impact-absorbing foam shell, similar to a bicycle 
helmet, with rigid hardware recessed behind the shell. 
The worst-case kinetic energy of a collision is 
approximately the propulsion force times the longest 
straight-line path in the ISS interior (~21 m). 
Factoring in air resistance, the maximum impact 
velocity is ~2.1 m/s, equivalent to a 23 cm drop in 
Earth surface gravity. Impacts near the worst-case 
velocity will crush the foam shell by up to ~1.5 cm 
depth, absorbing most of the impact energy in the 
process. 

Astrobee flight software has several features that 

mitigate collisions. The simplest is an over-speed 
cutoff: when an Astrobee detects that it has exceeded 
its nominal maximum speed of 0.5 m/s, or loses its 
velocity fix, it powers off the propulsion system. This 
feature limits impact velocity to below 0.5 m/s, 
reducing the equivalent drop height to 1.3 cm. 

To further avoid low-speed collisions, we combine 
multiple layers of checks: (1) Astrobee trajectories 
will generally be specified by a trained operator, with 
an opportunity to view a 3D simulation of flying the 
trajectory in the ISS environment. Using this feature, 
operators will catch and correct some errors prior to 
execution. (2) Astrobees will store a list of known 
keepout zones, such as module walls, projecting 
hardware, and areas near exhaust vents that could 
blow them off course. An Astrobee will refuse to 
execute a trajectory that goes too close to a keepout 
zone. (3) The HazCam can detect unexpected 
obstacles, causing the Astrobee to stop and request 
operator assistance. 

We note that, despite these measures, like humans in 
crowded office environments, Astrobees operating 
unattended in the complex and dynamic ISS 
environment will unavoidably bump into objects from 
time to time, with minimal consequences. Astrobee’s 
safety features primarily focus on preventing higher-
speed collisions and effectively controlling the risk of 
crew injury or damage. 

3.12 Human-Robot Interaction 

The Astrobees are designed to interact with people, 
including the ISS crew, flight controllers, and the 
general public (for example, during crew outreach 
videos). They will also be used for human-robot 
interaction research. 

Each Astrobee carries a touch screen, speaker and 
microphone, signal lights, and a laser pointer. Initially, 
the Astrobees will use these components primarily to 
help crew understand the Astrobee’s state and 
intentions (for example, providing turn signals). 
Eventually, they could also provide capabilities like 
video telepresence for flight controllers, and pointing 
the laser to communicate a precise location to a crew 
member. 

3.13 Dock 

The Astrobee docking station has two berths, each 
providing power and Ethernet connectivity to one 
Astrobee (Fig. 5). 

When docking, an Astrobee autonomously 
approaches its berth using visual servoing relative to 
fiducials mounted to the dock. Once contact is made, a 
system of conical lances (on the berth) and cups (on 
the robot) guides the final mating, accommodating up 
to ~1 cm of alignment error. The berth connector has 
20 spring-loaded pogo pins that contact matching pads 
on the robot side. Compliance in the pins 
accommodates any remaining alignment error.  

When mating is complete, permanent magnets on 

										

	
Figure 4: The perching arm grasps an ISS 

handrail and doubles as a pan/tilt unit 

	



the berth attract striker plates on the robot, providing 
passive retention force. To enable undocking, push 
rods extend from the dock and push the Astrobee ~3 
cm away, sufficient separation for the propulsion 
system to easily overcome the reduced magnetic force. 

The dock also includes COTS battery chargers 
sufficient to simultaneously charge a full set of four 
stand-alone Astrobee batteries. This function provides 
spare charged batteries, allowing an Astrobee to 
execute back-to-back activities when crew are 
available to assist with battery swapping. 

3.14 Ground Data System (GDS) 

Operators monitor and command Astrobee through 
control station software. Control stations can be used 
by ISS flight controllers, research facility staff, or 
guest science researchers at their own institutions. 

The control station user interface is implemented 
using the Eclipse Rich Client Platform (RCP) toolkit. 
It provides tools for planning (Fig. 6), execution 
monitoring, and live teleoperation. As the control 
station receives position telemetry, it renders the 
robot’s estimated pose within a 3D model of the ISS, 
in combination with video and status displays. 

The GDS also includes servers for archiving 
Astrobee data, and a suite of engineering software 
tools to support ongoing maintenance and upgrades of 
the Astrobee robots. 

4 GUEST SCIENCE 
Astrobee guest science will build on the successful 

SPHERES Research Facility. Guest scientists will 
pursue their own funding to develop their experiments, 
and receive in-kind support from the new Astrobee 
Research Facility (integration guidance, ground testing 
facilities, etc.) and the ISS program (launch services, 
etc.). 

The SPHERES Working Group (SWG) is a 
community of researchers interested in using the 
SPHERES facility. The Astrobee team is working with 
the SWG to develop plans for the transition to 
Astrobee, and NASA has already awarded early 
funding to develop Astrobee-relevant payloads, 
through the Small Business Innovative Research 
(SBIR) and Early Stage Innovation (ESI) programs. 

Beyond the research areas initiated with SPHERES, 
future Astrobee research is likely to include: (1) Free-
flyer manipulation, employing the Astrobee perching 
arm, or adding advanced manipulator payloads [13]; 
(2) Free-flyer human-robot interaction (HRI) using 
the Astrobee touch screen, speaker, microphone, laser 
pointer, and signal lights, or adding new hardware 
[14]. 

Researchers can modify the Astrobee system in a 
variety of ways. The simplest is to add an onboard 
software node that interacts with the robot using high-
level APIs defined through the Robot Operating 
System (ROS). Guest software can subscribe to 
telemetry and send commands such as robot motions, 
arm motions, and HRI interaction, including providing 
an astronaut user interface through the touch screen. 
The robot’s Android/ARM high-level processor is set 
aside to host guest software, and isolated from high-
rate control code. 

If guest software needs functions not provided in the 
high-level API, such as experimental control 
algorithms that need to run at high rates, researchers 
can customize the Astrobee core software for their 
experiment. We plan to open source release the core 
software code base to facilitate community 
contributions. Note that core software changes will 
need careful review to ensure reliability. 

Guest scientists can also add hardware payloads to 
the robot. Each Astrobee can host up to three 
simultaneous payloads, each within a ~15 x 15 x 10 
cm peripheral bay, attached with a quick-release 
mechanism: two tool-free quarter-turn fasteners whose 
closure also engages the blind-mate connector that 
carries power and USB 2.0 data. 

The peripheral bays are arranged with one on top 
(aft) and two on the bottom (forward and aft). The 
bays are recessed behind the foam shell that absorbs 
impact energy in a collision. The two bottom bays are 
contiguous, so an Astrobee can accommodate one 
double-size payload. The top bay is often occupied by 
the Astrobee’s perching arm, which can be swapped 
with a payload as needed. 

Unlike aircraft in 1g environments, an Astrobee’s 

	
Figure 5: Docking station with two berths. Push 

rods shown extended, fiducials not shown. 

	

	
Figure 6: Early version of GDS control station 

planning interface 

	



maximum payload is not limited by its lifting power. 
Much larger payloads could attach to an Astrobee’s aft 
dock adapter in a tractor-trailer configuration, or 
multiple Astrobees could cooperate to exert stronger 
forces on a payload [15]. Note that if payloads extend 
outside the peripheral bays or exceed ~1 kg mass, 
further analysis would be needed to ensure collision 
safety and update control software. 

As a pilot for demonstrating Astrobee payload and 
survey capabilities, we are coordinating with the 
RFID-Enabled Automated Logistics Management 
(REALM) project at Johnson Space Center [16]. 
Astrobee will serve as a mobile RFID reader platform 
to search for missing items, complementing fixed 
readers in cabinets and hatches. The REALM 
Astrobee payload will use a bottom payload bay, 
together with thin flat flexible antennas mounted on 
the propulsion module faces.		

5 PROJECT STATUS 
The Astrobee project is currently performing ground 

testing of Prototype 4 (P4), the fourth in a series of 
integrated risk reduction prototypes. P4 is the first 
prototype to have flight-like size, structure, and 
propulsion (Fig. 7), and include a full docking station.  

Lessons learned from P4 will be merged into the 
final design iteration, prior to verification of a 
certification unit later this year. 

6 CONCLUSION 
Astrobee is a flexible platform that will enable the 

next generation of zero-g free-flying robotics research. 
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