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Overview 
•  This talk discusses characterizing the optical wavefront error of the  

James Webb Space Telescope (JWST) Science Instruments (SIs), 
comprising the Integrated Science Instrument Module (ISIM). 

•  This characterization was done in order to verify optical requirements 
on the SIs’ wavefront error and focus, and to gather data needed for 
the JWST on-orbit commissioning sequence. 

•  Some of the requirements are not on the wavefront error or focus 
themselves, but on their uncertainties. Error budgeting is an important 
part of this work. 
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Agenda 
•  ISIM-level wavefront-error and focus requirements 
•  Method used:  Image-based wavefront sensing 
•  Input data: Focus sweeps, OGSE calibration, and plate-scale 

measurements 
•  RMS wavefront-error characterization results 
•  NIRCam Coronagraphic Module trending 
•  Overview of wavefront-error uncertainty budget terms 
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ISIM-level Wavefront Error & Focus Requirements 

•  RMS wavefront error req’ts for NIRCam SW, NIRISS, and MIRI. 
–  Requirements for NIRCam LW are verified at SI level 
–  Guider 1 & 2 have noise-equivalent angle (NEA) req’ts instead. 

•  Wavefront-error 3rd-order  
aberrations on orbit are needed for 
Multi-Instrument Multi-Field (MIMF)  
alignment, the last step of the 9-step  
commissioning procedure for the JWST.. OTE on orbit 
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ISIM-level Wavefront Error & Focus Requirements 

•  Focus knowledge for multiple field points in each SI.  The ISIM-level 
requirements are actually for co-focus, knowing the focus of each SI 
field point relative to a field point in one of the NIRCam SW modules. 

•  Wavefront-error stability needs to be demonstrated to ensure that 
the observatory meets its performance requirements during the 14 
days between maintenance/re-optimization on orbit. 
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ISIM-level Optical Trending 
•  The NIRCam instruments contain internal LEDs, mounted out-of-field 

in the telescope focal plane, that can illuminate the optical train of 
NIRCam’s Coronagraphic Module (COM). 
 
Monitoring the stability of the images from the COM LEDs is a 
powerful method to monitor the long-term health and stability of 
NIRCam, without relying on external light sources or other OGSE. 
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Image-Based Wavefront Sensing 
•  Wavefront error is measured using image-based wavefront sensing / 

phase retrieval.   

•  Wavefront sensing uses a set of images recorded using the instrument 
under test, and uses a computer algorithm to determine the 
instrument’s exit-pupil wavefront error most consistent with the input 
images. 

•  The set of images is typically a focus sweep, a series of images with 
the plane of focus systematically moved between images. 
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Image-Based Wavefront Sensing 
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•  There are two types of wavefront-sensing algorithms: 
–  Iterative-transform 
–  Nonlinear optimization 

 
    We use 4 separate algorithms on the ISIM Wavefront Sensing team,    
    two ITA and two NLO. 



ISIM Cryogenic-Vacuum Testing 
•  The Science Instruments (SIs) in the 

Integrated Science Instrument Module (ISIM) 
of the James Webb Space Telescope (JWST) 
were tested in three cryogenic-vacuum tests 
in the NASA GSFC’s Space Environment 
Simulator (SES): 

–  ISIM CV1RR,  Aug. – Nov. 2013 
–  ISIM CV2, June – Oct. 2014 
–  ISIM CV3, Oct. 2015 – Feb. 2016 
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Input data:  Focus sweeps 
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Input data: Focus sweeps 
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Input data: OGSE calibration 
•  During ISIM-level testing, the SIs were illuminated using the  

OTE Simulator (OSIM).  OSIM was characterized over three 
cryogenic-vacuum tests at NASA GSFC. 

•  For successful, high precision wavefront sensing, several aspects of 
the OSIM characterization were needed: 

–  OSIM wavefront error across its FOV, to be removed  
from the results of OSIM + SI field point wavefront sensing 

–  OSIM source spectrum 
–  OSIM source apodization 
–  OSIM exit-pupil geometry 
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Input data: Pupil distortion 
•  Each SI has a small amount of pupil distortion, that needs to be well 

characterized for exit-pupil models and for OSIM wavefront-error 
subtraction. 

•  Example from FGS Guider 1: 
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OSIM exit pupil DifferenceOSIM + Guider 1 exit pupil



Input data: Pupil distortion and f/# 
•  Pupil distortion an f/# are both measured using a Pseudo-

nonredundant mask (PNRM) in OSIM. 
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NIRCam SW A NIRCam LW A Guider 1 NIRSpec (fixed slit)
PNRM Mask Example MTFs using the PNRM



Wavefront-error performance characterization 
•  SI wavefront error was determined, following the steps outlined previously: 

–  Focus sweeps were recorded in the SI field point, using illumination from OSIM 
–  Wavefront sensing algorithms were run to determine OSIM + SI field point 

wavefront error maps 
–  OSIM wavefront error map is subtracted, isolating the SI wavefront error 

•  With these maps, a variety of performance metrics can be evaluated. 
In the subsequent slides, we show RMS wavefront error across the field of 
view for each SI. 

–  Data extrapolation is required to reach the edges of the FOV; 
the areas of extrapolation are noted by a dashed line. 

–  Extrapolation has much larger errors than interpolation! 
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RMS wavefront error: NIRCam SW A 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

21	   32	  

Interpolated	   20	   39	  

Extrapolated	   20	   60	  



RMS wavefront error: NIRCam LW A 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

24	   90	  

Interpolated	   21	   90	  

Extrapolated	   21	   103	  
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RMS wavefront error: NIRCam SW B 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

26	   59	  

Interpolated	   21	   59	  

Extrapolated	   21	   79	  
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RMS wavefront error: NIRCam LW B 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

24	   101	  

Interpolated	   21	   101	  

Extrapolated	   21	   120	  
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RMS wavefront error: Guider 1 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

29	   74	  

Interpolated	   25	   74	  

Extrapolated	   25	   87	  
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RMS wavefront error: Guider 2 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

40	   119	  

Interpolated	   36	   119	  

Extrapolated	   36	   146	  
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RMS wavefront error: NIRISS 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

29	   60	  

Interpolated	   20	   60	  

Extrapolated	   20	   68	  
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RMS wavefront error: NIRSpec 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

58	   109	  

Interpolated	   52	   109	  

Extrapolated	   52	   119	  
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RMS wavefront error: MIRI 
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(nm	  RMS)	  

Min	   Max	  

Measured	  	  
field	  points	  

45	   86	  

Interpolated	   28	   87	  

Extrapolated	   28	   134	  
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NIRCam Coronagraphic Module trending 
•  The coronagraphic module (COM) of the NIRCam shortwave channel 

can be monitored with the internal LED, coupled with an “Internal 
Phase Retrieval” (IPR) mask, a bonded circular mask & prism in the 
NIRCam pupil wheel.    

•  Images can be recorded in focus* and using the +4 wave (at full pupil 
and 2.12um light) weak lens in the NIRCam filter wheel. 

•  The LED pinhole was moved so it is not conjugate with the detector, 
creating ~1/2 wave defocus even for the “in focus” configuration. 
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NIRCam Coronagraphic Module trending 

•  This result was stable to < 7 nm RMS between ISIM CV2 & CV3. 
•  This optical path starts out of field and reaches the detector because of the 

IPR prism.  The aberration canceling that occurs in the NIRCam field of view 
does not happen here.  The large RMS wavefront error in this channel is 
expected, not indicative of any issue when using NIRCam’s regular 
imaging field.  
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NIRCam Coronagraphic Module trending 
•  For the NIRCam LW COM, the IPR mask prism was installed 

incorrectly in the pupil wheel, and its images do not reach the detector.   
•  Wavefront-error trending for NIRCam LW COM was enabled using an 

alternate form of wavefront sensing, Transverse Translation Diversity 
(TTD), designed and analyzed by Moore & Fienup. 

•  In this TTD data, images are taken using the NIRCam LW MASKRND 
coronagraphic mask.  This pupil covers < 20% of the full exit pupil.  
Instead of using a defocus sweep, a TTD sweep involves moving the 
mask in small angular steps across the full exit pupil. 
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NIRCam Coronagraphic Module trending 
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Wavefront-error Uncertainty Budget Terms 
Key terms in our wavefront-error uncertainty budgets: 
•  Uncertainties in the OSIM + SI field point wavefront-error map 

Evaluated using Monte-Carlo simulations, creating simulated focus-
sweep data consistent with detector noise properties and evaluating 
the data using wavefront-sensing algorithms with initial data differing 
from truth consistent with all known uncertainties. 
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Wavefront-error Uncertainty Budget Terms 
•  Uncertainties in the OSIM + SI field point wavefront-error map 
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Wavefront-error Uncertainty Budget Terms 
•  Uncertainties in the OSIM field point wavefront-error map 

Evaluated by the OSIM team as part of the delivery of OSIM. 
Top-level wavefront-error requirements are: 

≤ 20 nm RMS uncertainty for the full OSIM wavefront-error map 
≤ 10 nm RMS uncertainty for any 3rd order Zernike aberration 
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Wavefront-error Uncertainty Budget Terms 
•  Uncertainties due to launch vibration & acoustics 

Evaluated using wavefront-error map changes between ISIM CV2 & 
CV3.ISIM underwent vibration & acoustics testing between the cryo-vac 
tests, but SIs also had detector SCAs and other equipment replaced.   

•  Uncertainties in the 1g to 0g transition and SES test chamber to on-
orbit thermal profile 
Evaluated using STOP modeling.  Please see: 
R. Gracey et al., “Structural, thermal, and optical performance (STOP) 
modeling and results for the James Webb Space Telescope integrated 
science instrument module,” in Modeling III, talk 9911-48, 28 June at 16:50 
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