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• X-rays reflected at very shallow angles

• Typical configuration uses combination of parabola and 
hyperbola to reduce aberrations

X-ray optics permits detailed imaging and background 
reduction

• Typically many such mirrors are concentrically nested to 
increase effective area

Introduction

Chandra – x-ray mirror system

The challenge is to develop the optical fabrication 
technology capable of producing x-ray optics but 
with an order of magnitude lighter mirrors and at an 
affordable price. Decadal Telescope TIM, June 17 2016



Material Density 

(g/cm3)

CTE

(10-6 / K-1)

Elastic Modulus

GPa

Yield Strength

MPa

Fused Silica 2.2 0.5 72 48*

Beryllium 1.8 12 318 240

BeAL-162MET 2.1 24 69 276

AlSi 2.8 13.9 193 314

Duralcan F3S.30S

AlSi+SiC(30% by vol)

2.8 14.6 120 210

Mechanical Properties of Potential Mirror Substrate Materials

*Maximal achievable value. The ‘working’ value is typically much less and depends on the surface/subsurface condition.

Ideally, the mirror shell has low 
density, low coefficient of expansion 
(CTE), high modulus of elasticity and 
high yield strength. It should also be 
a material that is not too difficult to 
figure and polish.

Substrates can be plated with the 
nickel phosphorous alloy: 
- Be + NiP (CATS-ISS telescope)
- BeAl +NiP
- AlSi + NiP

Direct Fabrication

Companies are confident they can deliver the Be, BeAl and AlSi substrates 
fabricated with necessary tolerances

Additional Benefits of metal substrate: 
• Less joints – less epoxy error
• Thermal design could be simplified, the support structure from the same 

material
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Zeeko machine

- The machine utilizes a “bonnet” 
technique in which an inflated rubber 
hemispherical diaphragm supports the 
polishing medium. 

- there are different “bonnet” sizes (20 
mm, 40 mm and 80 mm radii of 
curvature) 

- This computer-controlled deterministic 
polishing processes leads to a high 
convergence rate. 

- The control software had to be 
developed in order to figure x-ray optics

Correction of figure through deterministic 
material removal

Tool offset

surface

bonnet
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Process development

 Parametric model is created

 The process operational parameters are optimized 

 Algorithm for optimal correction of the surface errors are verified

Example of measured wear function
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before after

Figure error (St. Dev.) 500 nm 10.7 nm

Slope error (> 2 cm) cm(RMS) 6.32 arcsec 0.30 arcsec

Low frequency (> 7 cm) slope error (RMS)   2.66 arcsec 0.09 arcsec

Mid frequency (2-7 cm) slope error (RMS) 5.73 arcsec 0.29 arcsec

Mandrel Experiments- before and after

ART-XC mandrel installed on the Zeeko
machine for figuring experiments

Decadal Telescope TIM, June 17 2016



• Differential Deposition
- Kiranmayee Kilaru (USRA, MSFC)
- Carolyn Atkins (UAH)
- David Windt (Reflective X-ray 
Optics, LLC) 

Correction of figure through 
Diferential Deposition

Principle of Differential Deposition
Decadal Telescope TIM, June 17 2016



Horizontal and Vertical Coating systems at MSFC

X-ray mirror held in a 

rotating and 

translating collet

Mask

9

Sputtering target
Mask

Segmented glass 

optic 
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Recent X-ray test results: Angular resolution is improved  from 17 to 20 arc secs to ~ 5 arc secs HPD.

• Variation of sputtered beam profile along the length of mirror, particularly for short focal length mirrors –
Improvements in mechanical set-up to maintain constant target-to-substrate distance for tapered-shells

• Thorough characterization of the overlap areas in the case of customized correction for each meridian

• Improvements in the mask to shell alignment system

• Stress effects – Quantify and control stress – so far simulations and metrology agree well and there is no evidence for 
stress induced distortion for these full-shell optics

Sources of errors
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Thin-film stress (In-situ stress measurement)

• Stress is a leading technological challenge in thin-film coatings regardless of their application.
• The intrinsic stress in the thin-film single and multilayer reflective coatings will deform the optic’s figure and compromise

their ability to render sharply-focused, high-resolution images.  
• We have developed a method for the in-situ, high-resolution measurement of the stress during film growth 

In-situ measurement has helped identify a mechanism for reducing the stress in iridium by three orders of magnitude

“Mechanical stress measurement during thin film fabrication”, NASA, 
United States Patent Application #14,645,994, (2015), D. Broadway
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 Working on demonstration of x-ray optics fabricated directly.

 Working towards the in-situ metrology of X-ray mirrors inside the differential 
deposition vacuum chambers and during polishing

 Combine the direct fabrication with Differential Deposition Technique

 Incorporate the in-situ stress measuring system into coating chambers

Future work
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Summary

 MSFC develops the direct fabrication technology for full shell x-ray optics made 
from metal substrates;

 Post-fabrication and post-assembly figure correction provides an additional 
venue to meet the requirements;

 Differential Deposition technique has potential for development of sub-arc-
second x-ray optics;

 Use of in-situ stress measurement system could significantly reduce x-ray optics 
deformation when single or multi- layers are used to boost reflectivity.
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