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Project Description	
With its unique subarcsecond imaging performance, 
NASA’s Chandra X-ray Observatory1 illustrates the 
importance of fine angular resolution for x-ray astron-
omy. Indeed, the future of x-ray astronomy relies upon 
x-ray telescopes with comparable angular resolution 
but larger aperture areas. Combined with the special 
requirements of nested grazing-incidence optics, mass, 
and envelope constraints of space-borne telescopes ren-
der such advances technologically and programmati-
cally challenging.2 

The goal of this technology research is to enable the 
cost-effective fabrication of large-area, lightweight 
grazing-incidence x-ray optics with subarcsecond reso-
lution. Toward this end, the project is developing active 
x-ray optics3,4 using slumped-glass mirrors with thin-
film piezoelectric arrays (fig. 1) for correction of intrin-
sic or mount-induced distortions (fig. 2).5 

Partnering institutions for this project are the Smithson-
ian Astrophysical Observatory (SAO), the Pennsylva-
nia State University (PSU), and NASA Marshall Space 
Flight Center (MSFC). SAO is responsible for overall 
direction, mirror substrates, metrology,6 and analy-
ses; PSU, for development of thin-film piezoelectric 
arrays;7–9 and MSFC, for coating studies, additional 
metrology, and x-ray testing (fig. 3).

Adjustable Grazing-Incidence X-ray Optics

Figure 1: Grazing-incidence conical mirror segment with  
a backside piezoelectric array for active figure correction 
through voltage-controlled bimorph deformation. The drawing 
(top) shows—in cross section from inner concave surface 
outward—a thin-film optical coating (blue), the slumped-glass 
substrate (clear), a thin-film ground electrode (red), a thin-film 
piezoelectric layer (gray), and a thin-film pixilated electrode 
(red). The photo (bottom) displays a fabricated active mirror 
segment, with a 7×7 array of 1 cm square electrodes.
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Figure 2: Simulated figure error maps for a segmented mirror, 
showing (a) initial error with respect to the prescribed mirror 
figure, (b) applied corrective adjustment, and (c) residual figure 
error after applied correction.
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Anticipated Benefits

The primary anticipated benefit is the active correction 
of grazing-incidence x-ray optics for space applica-
tions. This technology is equally applicable to normal- 
incidence optics, although existing adaptive-optics 
technologies are adequate in situations where mass or 
envelope is not an issue.

Potential Applications

The potential applications of active x-ray optics are 
large-area, lightweight x-ray telescopes and beam-
focusing x-ray mirrors for synchrotron light sources 
and for x-ray free-electron lasers, although alternative 
technologies are suitable for ground-based applications. 
In addition, there are potential spinoff applications for 
underlying thin-film technologies being developed to 
enable adjustable lightweight mirrors.

Notable Accomplishments	
PSU has made significant progress in developing thin-
film pixilated piezoelectric devices—over 90% yield9 
in active pixels, on-device thin-film transistors7 (for 
row-column addressing) and strain gauges (to monitor 
deformations), and use of anisotropic conductive films7 
(to simplify electrical connections). MSFC has devel-
oped an in situ stress monitor to help accurately control 
coating stress during deposition. 
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Figure 3: MSFC capabilities supporting the development of adjustable grazing-incidence optics: (a) Coating chamber, used for 
developing controlled-stress sputtered deposits; (b) a vertical long-trace profilometer, one of multiple metrology instruments for 
charcterizing x-ray mirror surfaces; and (c) the 3-m-diameter (vacuum) instrument chamber at MSFC’s 100-m-long X-ray Test 
Facility.
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