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Project Description

With its unique subarcsecond imaging performance,
NASA’s Chandra X-ray Observatory! illustrates the
importance of fine angular resolution for x-ray astron-
omy. Indeed, the future of x-ray astronomy relies upon
x-ray telescopes with comparable angular resolution
but larger aperture areas. Combined with the special
requirements of nested grazing-incidence optics, mass,
and envelope constraints of space-borne telescopes ren-
der such advances technologically and programmati-
cally challenging.?

The goal of this technology research is to enable the
cost-effective fabrication of large-area, lightweight
grazing-incidence x-ray optics with subarcsecond reso-
lution. Toward this end, the project is developing active
x-ray optics®* using slumped-glass mirrors with thin-
film piezoelectric arrays (fig. 1) for correction of intrin-
sic or mount-induced distortions (fig. 2).

Partnering institutions for this project are the Smithson-
ian Astrophysical Observatory (SAO), the Pennsylva-
nia State University (PSU), and NASA Marshall Space
Flight Center (MSFC). SAO is responsible for overall
direction, mirror substrates, metrology,® and analy-
ses; PSU, for development of thin-film piezoelectric
arrays;7*9 and MSFC, for coating studies, additional
metrology, and x-ray testing (fig. 3).
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Figure 1: Grazing-incidence conical mirror segment with
a backside piezoelectric array for active figure correction
through voltage-controlled bimorph deformation. The drawing
(top) shows—in cross section from inner concave surface
outward—a thin-film optical coating (blue), the slumped-glass
substrate (clear), a thin-film ground electrode (red), a thin-film
piezoelectric layer (gray), and a thin-film pixilated electrode
(red). The photo (bottom) displays a fabricated active mirror
segment, with a 7x7 array of 1 cm square electrodes.
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Figure 2: Simulated figure error maps for a segmented mirror,
showing (a) initial error with respect to the prescribed mirror
figure, (b) applied corrective adjustment, and (c) residual figure
error after applied correction.
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Figure 3: MSFC capabilities supporting the development of adjustable grazing-incidence optics: (a) Coating chamber, used for
developing controlled-stress sputtered deposits; (b) a vertical long-trace profilometer, one of multiple metrology instruments for
charcterizing x-ray mirror surfaces; and (c) the 3-m-diameter (vacuum) instrument chamber at MSFC’s 100-m-long X-ray Test

Facility.

Anticipated Benefits

The primary anticipated benefit is the active correction
of grazing-incidence x-ray optics for space applica-
tions. This technology is equally applicable to normal-
incidence optics, although existing adaptive-optics
technologies are adequate in situations where mass or
envelope is not an issue.

Potential Applications

The potential applications of active x-ray optics are
large-area, lightweight x-ray telescopes and beam-
focusing x-ray mirrors for synchrotron light sources
and for x-ray free-electron lasers, although alternative
technologies are suitable for ground-based applications.
In addition, there are potential spinoff applications for
underlying thin-film technologies being developed to
enable adjustable lightweight mirrors.

Notable Accomplishments

PSU has made significant progress in developing thin-
film pixilated piezoelectric devices—over 90% yield®
in active pixels, on-device thin-film transistors’ (for
row-column addressing) and strain gauges (to monitor
deformations), and use of anisotropic conductive films’
(to simplify electrical connections). MSFC has devel-
oped an in situ stress monitor to help accurately control
coating stress during deposition.
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