National Aeronautics and Space Administration

Long-Term Orbital Debris Prediction Uncertainty Modeling

J.-C. Liou, PhD Chief Scientist for Orbital Debris National Aeronautics and Space Administration

U.S.-China Expert Workshop on Orbital Debris Mitigation and Satellite Collision Avoidance

Washington DC, U.S.A., 27 June 2016

Environment Projection Uncertainties

Sources of uncertainties

- Initial population
- Future launches
 - Orbits, dimensions, masses, material, mission lifetimes, etc
 - Proliferation of CubeSats, Mega-constellations
- Orbit propagation and solar activity projection
- Breakup frequency and outcome
 - Explosions, collisions
- Mitigation
 - The 25-year rule compliance, etc

Two general approaches for future projection

- Examine the extreme cases to bound the problem
- Analyze the nominal cases based on reasonable assumptions

On-Going IADC Studies (1/2)

- NASA is contributing to an on-going IADC study to characterize the uncertainties associated with future launches
 - The initial population consists of the LEO-crossing, 10 cm and larger objects as of 1 January 2013, based on the ESA population file
 - Vary launch rate, masses and areas of intact objects
 - Use a constant solar flux (100 SFU)
 - Assume 8-year mission lifetime for future spacecraft.
 - Set future explosions to zero.
 - Allow no station keeping and no collision avoidance maneuvers
 - Project the environment for 200 years
 - Run at least 100 Monte Carlo simulations.

On-Going IADC Studies (2/2)

- NASA is contributing to an on-going IADC study to characterize the uncertainties associated with
 - Solar activity projection
 - Orbit propagation
 - Breakup model
 - Fragment distributions
 - Catastrophic versus non-catastrophic collisions
 - Collision cross sectional areas associated with appendages

CubeSats and Mega-Constellations

- The proliferation of CubeSats and the proposed megaconstellations present new challenges to the space environment and to other operational spacecraft
 - Increased collision risk to other operational spacecraft
 - Potential of a collision cascade effect at the mega-constellation mission altitude
 - Higher debris population growth in the environment
- NASA is currently conducting two parametric studies to quantify the potential negative environmental impacts of CubeSats and mega-constellations in low Earth orbit
 - Long-term population increase
 - Collision activities