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Ball Bearing Analysis with the ORBIS Tool 
 

Jacob D. Halpin* 
 
 

Abstract 
 
Ball bearing design is critical to the success of aerospace mechanisms. Key bearing performance 
parameters, such as load capability, stiffness, torque, and life all depend on accurate determination of the 
internal load distribution. Hence, a good analytical bearing tool that provides both comprehensive 
capabilities and reliable results becomes a significant asset to the engineer. This paper introduces the 
ORBIS bearing tool. A discussion of key modeling assumptions and a technical overview is provided. 
Numerous validation studies and case studies using the ORBIS tool are presented. All results suggest the 
ORBIS code closely correlates to predictions on bearing internal load distributions, stiffness, deflection and 
stresses.  
 

Introduction 
 
ORBIS was first released to the public in 2008 and has been actively maintained and enhanced since. The 
program was developed to modernize the state-of-the-art for bearing codes. Most prior industry standard 
tools came from the MS-DOS era and required a flat-file type input deck for operation. While these codes 
pioneered the analytical bearing industry they required a fairly steep learning curve to operate proficiently. 
With the advent of 64-bit processors in modern computer technology, support for MS-DOS has declined 
rapidly leaving software programmers with the burden to update their codes. Unfortunately, many 
developers of the early bearing tools are no longer around to maintain their codes.  
 
The development approach for ORBIS began with selection of the Java programming language for its 
foundation. Java was initially selected because it runs on a virtual machine that is supported by most 
computer platforms (i.e., Windows, Mac OS, Unix). Also, the widespread popularity of Java over the internet 
gave confidence that it would be actively supported for many years to come. Some additional fringe benefits 
of the Java language that proved particularly useful during the development stages were its object-oriented 
programming environment and support of multi-threaded processing.  
 
The core bearing model used within ORBIS is based on A. B. Jones’ mathematical theory of rolling element 
bearings [1]; herein referred to as the Jones model. This model provides a nonlinear solution to an entire 
system of bearings and has been the industry standard for many decades. The primary handicap to the 
Jones model is its inherent fixed ring assumption. This assumption is generally not tolerable for modern 
aerospace bearing designs, particularly those that utilize thin section bearings. ORBIS addresses this by 
including ring compliance algorithms into the core solver. These algorithms determine ring strain during the 
mounting, preloading, and thermal expansion stages of the solver, thereby greatly improving model 
accuracy. A more thorough discussion on key bearing modeling assumptions is provided herein. 
 
To validate the ORBIS code a multi-tiered approach is taken. First, the core solver is compared against the 
A. B. Jones High Speed Ball and Roller Bearing Analysis Program. This comparison study includes twenty-
nine different configurations and results such as maximum mean Hertzian contact stresses, bearing row 
displacements, row reaction forces, and row stiffness components are evaluated. Since these cases must 
use a fixed ring assumption to match the A. B. Jones program, the next validation step focuses on the ring 
compliance algorithms. In this study, Alan Leveille’s codes BRGS10 and BRGS14 are compared in a case 
study that was jointly run by Brian Gore from Aerospace Corporation and Steve Koss from Naval Research 
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Laboratories. The study compares the resolved mounted preload state on a hard preloaded duplex pair of 
bearings for variations to the bearing fits, contact angles, curvature, temperature and free preload.  
 
The final section presents case studies, based on real bearing analyses found in a literature search, where 
published results are compared with ORBIS predictions. The first case study is from the 22nd Aerospace 
Mechanisms Symposia proceedings titled “Two Gimbal Bearing Case Studies: Some Lessons Learned” by 
S. H. Loewenthal. The second case study is from NASA/TP-2014-217906, titled “Analysis of Space Station 
Centrifuge Rotor Bearing Systems: A Case Study” by J. V. Poplawski, S. H. Loewenthal, F. B. Oswald, E. 
V. Zaretski, W. Morales, and K. W. Street. 
 

Technical Model Overview 
 
ORBIS uses numerical techniques to solve the nonlinear elastic behavior of the user-defined system of one 
or more bearing rows. The model considers each ball-to-race contact for all bearing rows defined in the 
system, resulting in complete knowledge of the element load distributions and their raceway attitudes. A 
solution to the system is achieved when the sum of all bearing row reaction forces is sufficiently close to 
the external applied forces (system equilibrium). 
 
The system model follows the same process necessary to assemble a rotational system:  initial conditions 
are defined, the bearings are fit into the assembly, preload is applied to the bearings, and external loading 
is finally applied to the mounted and preloaded bearing system. The parameters describing relative ring 
displacements and internal clearance changes are tracked at each step of the process; ultimately leading 
to the final state of the bearing system. 
 
Since bearings typically operate with very small internal clearances, it is important to consider the effects 
of boundary conditions on the races when establishing the mounted state of the bearing system. ORBIS 
implements a compliance model based on classical thick ring theories to determine the final mounted and 
preloaded state of the bearing system. The compliance model is also used for assessing thermal strains. 
Once all mounting, preloading and thermal strains have been considered, the traditional fixed ring theories, 
as developed by Jones, are applied to assess effects due to external loading. 
 
The compliance model makes a key assumption that in the local vicinity of the bearing, the housing, shaft 
and bearing rings can be expressed with a series of nested rings. Thick ring theory assumes the 
representative rings have uniform constant wall thickness and all deflections remain within the linear elastic 
region of the material. Since the groove side of a bearing race clearly has a non-constant cross section, an 
equivalent diameter has been developed to represent bearing rings. The equivalence model is shown in (1) 
and (2), and has been correlated to detailed finite element models. A key benefit to the equivalence model 
is that it is based on the geometry defining the raceway depth and therefore can account for the general 
class of raceways. The compliance algorithms also track various sudden changes in the boundary 
conditions of each nested ring; such as when the fit between a bearing outer diameter (O.D.) and housing 
inner diameter (I.D.) transitions from clearance to interference due to preload expansion or thermal 
expansion. 
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Figure 1.  Bearing nomenclature for equivalent raceway diameter 

 
 

Capabilities and Features 
 
Brief overview of ORBIS 
The ORBIS main graphical interface is shown in Figure 2. This interface is used to configure/setup the 
bearing system to be analyzed. ORBIS implements a database approach for definition of key common 
elements of the analysis, thereby making the setup, and subsequent attainment of results, a fairly quick 
process. Database features are provided for definition of bearings, materials and lubricants. Once these 
elements have been defined within the database, the user only needs to assign them to their system from 
the main interface.  
 
Another noteworthy feature of the main interface is the system sketch (shown in the upper-right quadrant 
of the interface). This sketch provides a useful means for checking that the setup is as intended. Within the 
sketch is a drawing of all assigned rows along with their associated contact angle orientation. The bearing 
rows are labeled with their database name and coordinate position along the shaft. All assigned load points 
are also included with their defined coordinate positions. Additionally, rows that float on a preload spring 
are identified with a spring symbol adjacent to the bearing row. 
 
Analytical results are displayed in a separate output window as shown in Figure 3. In addition to displaying 
tabulated text for the complete set of results, the window contains features to help recognize common 
results quickly. At the top of the window is a quick reference summary table of maximum values for mean 
stress, truncation, mounted preload and torque at each bearing row. The bottom region of the results 
window contains a control panel that allows the user to filter which results to display. Another feature, which 
is illustrated in the figure, is that all elements with stresses exceeding a predefined threshold are highlighted 
in red. Additionally, any element found to have truncation is always highlighted.  
 
A more thorough description of the ORBIS software can be found at [2]. 
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Figure 2.  ORBIS main graphical interface 

 

 
Figure 3.  Result output window 
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Key Analytical Considerations 
 
Mechanisms that implement rolling-element bearings typically rely on certain performance parameters from 
the bearings. The most common parameters are load capability, stiffness, torque, and operational life. As 
it turns out, all of these parameters are dependent on the internal load distributions—meaning normal loads 
and associated contact angles—within each bearing defined in the system. Given accurate loaded contact 
angles of each element within a system, Hertzian contact mechanics provide the elliptical contact areas 
that are the basis for solving stresses, stiffness, primary torque components, and the fatigue life. Hence, 
the importance of accurately predicting the internal load distributions of a system of bearings should be 
foremost. 
 
A point often overlooked in the analysis of bearings, which is particularly true for aerospace mechanisms 
due to their extremely high launch load environment, is that external loads are typically derived by analytical 
means, such as finite element modeling, and thus the bearing element stiffness is required as an input to 
the finite element model. This creates a circular process where the bearing stiffness is needed in order to 
predict the loads on the bearings. Additional complications arise due to the fact that finite element models 
require a linear stiffness yet bearing stiffness is nonlinear with load. Typically, the best that can be done 
here is to determine a linear approximation of the bearing stiffness in the vicinity of the load recovery. This 
may require more than one iteration to establish. 
 
Abstract models of real systems are based on assumptions of the phenomena modeled and it is therefore 
prudent to review such assumptions. Let’s first discuss the inherent assumptions of the mathematical 
theories derived by A. B. Jones. The Jones model can be summarized as follows. Each raceway’s center 
of curvature is represented with a fixed diameter circle. The outer raceway circles are fixed in space and a 
local coordinate frame is attached at the center of the inner raceway circles. Inner raceway displacements, 
which are relative to the fixed outer rings, create differences to the normal approach between the inner and 
outer circles. The location of the ball center, relative to the fixed outer raceways, and solved at each ball 
station, is determined by ensuring the ball is in quasi-static equilibrium. A Newton-Raphson search routine 
then iterates on displacements to the moveable coordinate inner rings. Given the normal approach of the 
ball center relative to each raceway, classical Hertzian contact analysis is utilized to determine normal loads 
and elliptical contact areas at each raceway contact point. The vector sum of all ball loads then provides 
the resultant force reacting on the shaft for a given set of inner ring displacements. Complete bearing 
equilibrium is achieved when the shaft reaction forces are equal, or sufficiently close, and opposite to the 
externally applied loads. 
 
The Jones method, which is a very elegant derivation, does rely on the assumption that raceway circles 
maintain a fixed radius (a.k.a. fixed ring assumption). Should the raceways expand or contract it would 
change the normal approach to the ball center and could have a profound effect to the internal load 
distribution. Most traditional bearing materials are intentionally selected to be very hard and stiff and typical 
normal approach dimensions of the contacting bodies are on the order of 5 micrometers (0.0002 inch). This 
implies very small changes to the normal approach can have a profound effect on contact angles and 
normal loads. Such changes should therefore be included in the predictive model to enhance accuracies. 
 
Items such as interference fitting, ring clamping, preloading and thermal expansions will all effect the 
bearing ring diameters. Most of which, if not all, are inherent in every mechanism containing rolling-element 
bearings. Before continuing our discussion on key model assumptions lets illustrate some common 
mounting influences with an example. Figure 4 illustrates a duplex pair of angular contact bearings that are 
oriented back-to-back. Although not shown in the figure we shall assume the bearings are hard preloaded 
by some means (perhaps a clamp plate or jam nut). It is well known that such systems as this can be quite 
sensitive to the mating fits of the bearing. Also, since the bearings are mounted in structure with a higher 
coefficient of thermal expansion than the bearing material (e.g., aluminum shaft and housing versus 440C 
bearings), we expect that temperature excursions will also affect the internal load distribution of the 
mounted bearings. 
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a

Aluminum

Parameter Value
I.D., mm (in) 50.8 (2.000)
O.D., mm (in) 67.36 (2.652)
Ball Dia., mm (in) 3.968 (0.15625)
No. balls per row 34
Free Contact Angle (deg) 22.5
Inner and Outer Curvature 0.53
Free Preload, N (lbf) 178 (40)
Ring and Ball Material 440C

 
Figure 4.  Example problem 

 
Using the sensitivity utility in ORBIS allows us to perform parametric studies of inner ring fits and bulk 
system temperature. This utility takes the user defined system and allows perturbations to an input variable, 
such as inner ring fit up or bulk system temperature, to be plotted against selected output variables, such 
as mounted preload and maximum stress. 
 
Figure 5 shows two pairs of plots illustrating the effects of inner ring fit up and bulk temperature of the 
system on the mounted preload and mean Hertzian stress of the bearings. Figures 5a & 5b illustrate that 
small amounts of interference at the inner diameter of the bearing cause a rapid increase in the mounted 
preload. This occurs because the expansion of the inner ring reduces the free contact angle of the bearing; 
thereby increasing the manufactured preload gap, also referred to as the ring stick-out, between the 
abutting inner ring faces. With a hard-preloaded system, this gap is forced closed and the balls must react 
the increased strain. 
 
Figures 5c & 5d show the effects of the aluminum expansion rates on the bearings. The plots illustrate that 
as the temperature is either increased or decreased from ambient the mounted preload and stress will 
increase. Initial fits for this example are line-to-line on the shaft and 5 μm (0.0002 in) clearance on the 
housing. Note that the influence to cold temperature is more pronounced than when the system is heated 
above ambient. At first glance, this may not seem intuitive since both the shaft and housing are made from 
aluminum. Hence, as you heat the system above ambient the inner ring fit gets tighter and the outer ring fit 
gets looser and, adversely, as you cool the system the outer ring fit gets tighter while the inner ring fit gets 
looser. In either case one ring of the bearing is driven by its boundary condition, however for the bearing to 
react preload the ball must have equal loads at both raceways. Therefore, the rate of preloading will be a 
function of the loose ring’s hoop stiffness. Since the inner ring has a higher hoop stiffness than the outer 
ring it will react loads quicker and thus the cold case is more sensitive. Another contribution to why the cold 
case is worse is the fact that the diameter of the outer ring is larger than the inner ring and, for a given 
temperature delta from ambient, the magnitude of diametral change for the outer ring will slightly exceed 
that of the inner ring. 
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Figure 5.  Effects of inner ring fit up on (a) mounted preload and (b) mean Hertzian stress and 

effects of shaft and housing bulk temperature on (c) mounted preload and (d) max mean  
Hertzian stress 

 
 
One other noteworthy modeling assumption, which is inherent in the Jones model, is that the contact area 
between the rolling elements and raceways are always fully contained. When the contact ellipse is not fully 
contained, it is said to be truncated. A truncated contact area will invalidate the reported stress but also 
incurs errors to the resolved internal load distribution since the contact stiffness is a function of the contact 
area. There are some simple methods to de-rate the stress for truncated elements but not the stiffness. 
Hence, it becomes important to, at a minimum, know when a system has truncation.  
 

(a) (b) 

(c) (d) 
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Model Validation 
 
Core Jones Model 
Since ORBIS is based on theories published by A.B. Jones, validation of the core solver can be achieved 
by comparing identical analysis cases with the A. B. Jones High Speed Ball and Roller Bearing Analysis 
Program. Numerous test cases were designed to demonstrate that ORBIS maintains accuracy for wide 
variety of different system geometry. Key results tracked for comparison included maximum mean Hertzian 
contact stresses, bearing row displacements, row reaction forces, and row stiffness components. These 
result parameters validate that the nonlinear elastic system solver is correctly determining the internal load 
distributions and Hertzian contact mechanics for the bearing system. 
 
Twenty-nine test cases were developed for this comparison and are shown in Table 2. The characteristic 
system consisted of a back-to-back pair of bearings with a single central load point. Note that contact 
angles, raceway curvatures and material properties were held constant for all test cases. These parameters 
will be more thoroughly studied in the flexible ring validation cases discussed later. Independent axial, radial 
and moment loading was studied to verify principal load component accuracy. Combined, or simultaneous 
loading (all 5 directions), was also studied and included variations in system preload, bearing size, number 
of balls, ball diameter and bearing row separation. 
 
As shown in Table 1, which summarizes the percent differences between ORBIS and Jones software for 
all twenty-nine test cases, ORBIS results correlate to the A.B. Jones program within a fraction of one 
percent. These differences are deemed insignificant and likely relate to either differences in convergence 
criteria for the Newton-Raphson solver or rounding errors between the two programs (note that ORBIS 
maintains 64-bit floating point precision while it is believed that the Jones code might only hold 16-bit 
precision). Figure 6 depicts the Hertzian stress comparisons for each of the test cases. 
 
 
 

Table 1.  Comparison of all results 

Comparison Parameter 
% Difference 

Min  Mean  Max  
Bearing Row Stiffness Components -0.1% 0.0% 0.2% 
Inner Ring Deflections -0.3% 0.1% 0.6% 
Bearing Row Reaction Forces -0.2% 0.0% 0.8% 
Max Mean Hertzian Contact Stress -0.5% -0.3% 0.0% 
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Table 2.  Test Case Parameters 

Case 
Bore 
(mm) 

O.D. 
(mm) 

# 
Balls 

Ball 
Dia. 

(mm) 

Row 
Span 
(mm) 

Preload 
(N) Fx (N) Fy (N) Fz (N) 

My 
(Nm) 

Mz 
(Nm) 

1 12.7 19.05 21 1.59 38.10 89 89 89 89 2.26 2.26 
2 19.05 25.4 30 1.59 50.8 178 178 178 178 4.52 4.52 
3 25.4 34.93 28 2.38 69.85 267 267 267 267 226 226 
4 50.8 66.68 34 3.97 133.35 356 445 890 890 452 452 
5 76.2 92.08 50 3.97 184.15 445 890 1779 1779 904 904 
6 101.6 114.3 80 3.18 228.6 667 1334 3559 3559 1695 1695 
7 127 165.1 36 9.53 330.2 890 1779 4448 4448 2825 2825 
8 152.4 190.5 42 9.53 381 1112 2669 8896 8896 5085 5085 
9 127 165.1 36 9.53 254 890 - - - - - 
10 127 165.1 36 9.53 254 890 2224 - - - - 
11 127 165.1 36 9.53 254 890 4448 - - - - 
12 127 165.1 36 9.53 254 890 8896 - - - - 
13 127 165.1 36 9.53 254 890 1.78E4 - - - - 
14 127 165.1 36 9.53 254 890 3.56E4 - - - - 
15 127 165.1 36 9.53 254 890 7.12E4 267 - - - 
16 127 165.1 36 9.53 254 890 - 2224 - - - 
17 127 165.1 36 9.53 254 890 - 4448 - - - 
18 127 165.1 36 9.53 254 890 - 8896 - - - 
19 127 165.1 36 9.53 254 890 - 1.78E4 - - - 
20 127 165.1 36 9.53 254 890 - 3.56E4 - - - 
21 127 165.1 36 9.53 254 890 - 7.12E4 - - - 
22 127 165.1 36 9.53 254 890 - - - 113 - 
23 127 165.1 36 9.53 254 890 - - - 226 - 
24 127 165.1 36 9.53 254 890 - - - 452 - 
25 127 165.1 36 9.53 254 890 - - - 904 - 
26 127 165.1 36 9.53 254 890 - - - 1808 - 
27 127 165.1 36 9.53 254 890 - - - 3616 - 
28 127 165.1 36 9.53 254 890 - - - 7232 - 
29 127 165.1 36 9.53 254 890 - - - 14464 - 
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Figure 6.  Comparison of maximum mean Hertzian contact stresses for various loading. ORBIS 

results denoted with circles and A. B. Jones results shown with solid line. (a) shows axial loading, 
(b) shows radial loading, (c) shows moment loading and (d) shows 8 combined load cases. 

 
Ring Compliance Model Validation 
Since the ring compliance model is used to establish the mounted, or operating, conditions we shall first 
consider a simple duplex pair of bearings against a well-known code that contains both ring compliance 
and considers both thermal expansions and ring clamping. The configuration consists of a duplex pair of 
angular contact bearings oriented back-to-back with a hard preload. The shaft and housing are made from 
titanium and the bearing rings and balls are 440C. Variations of the free contact angle, raceway curvatures, 
shaft and housing temperatures, I.D. and O.D. fits, and pre-ground preload are studied. Comparison of the 
predicted mounted preload are made against two different versions of A. Leveille’s code: BRGS10 and 
BRGS14. 

(a) 

(c) (d) 

(b) 
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Table 3 shows key setup parameters for the system that were fixed during the study. Table 4 shows the 
various run cases studied along with the resulting mounted preload condition from all three codes. As 
shown, ORBIS correlates much closer with BRGS14 than BRGS10. Average difference between ORBIS 
and BRGS14, for all cases considered, is within 5.3%. It is believed that the earlier version of Leveille’s 
code (BRGS10) does not contain an account for ring clamping, which would explain why it predicts lower 
mounted preloads. It is not known how Leveille modeled the bearing ring stiffness, particularly the derivation 
of the equivalent diameter for the grooved side of the races. A common rule of thumb for ring influences is 
to take approximately 80% of the interference as internal clearance loss in the bearing. This method is not 
recommended as it assumes a fixed ratio of the stiffness between the boundary and bearing ring. 
 

Table 3.  Setup parameters for mounted preload study 
Parameter Value Parameter Value 
Pitch Dia., mm (in) 171.45 (6.750) Housing O.D., mm (in) 202.18 (7.960) 

Ball Dia., mm (in) 9.525 (0.375) 
Modulus of Elasticity, Rings & Balls, GPa 
(psi) 

200 (2.90E+07) 

No. Balls 42 Poisson's Ratio, Rings & Balls 0.28 

Shoulder Height (h/d) 0.206 
Coefficient of Thermal Expansion, Rings & 
Balls, 1/°C 

1.02E-05 

Dam Height (h/d) 0.011 
Modulus of Elasticity, Shaft & Housing, 
GPa (psi) 

112 (1.62E+07) 

Row Width, mm (in) 19.05 (0.750) Poisson's Ratio, Shaft & Housing 0.31 

Row Straddle, mm (in) 19.05 (0.750) 
Coefficient of Thermal Expansion, Shaft & 
Housing, 1/°C 

8.82E-06 

Shaft I.D., mm (in) 134.62 (5.300)  
 

Table 4.  Mounted preload study results 

Initial Conditions (Free) Mounted Preload (N) 
Contact 
Angle 
(deg) 

I.R. & O.R. 
Curvature 

Shaft / 
Housing 

Temp (°C) 

I.D. 
Clearance 

(mm) 

O.D. 
Clearance 

(mm) 
Clamping 
Force (N) 

Ground 
Preload (N) BRGS10 BRGS14 

ORBIS 
V2.4.1 

22.5 
54.5 

76/76 

0.01397 0.01905 
53378 

5115 
5538 6112 5858 

-10/-10 5373 5133 5084 

66/76 

3327 3861 3643 

4226 

2300 2931 2718 
20.0 2447 3051 2851 
22.5 55.0 2331 2954 2749 

25.0 54.0 
2108 2785 2540 

0.02286 0.03048 2189 2264 2246 
0.00508 0.00762 2838 3318 3087 

 
Case Studies 
This first example is taken from the proceedings of the 22nd AMS [3]. Here, we focus on Loewenthal’s first 
case study. The described design consists of a large thin section (12” (30.5-cm) O.D., 11” (27.9-cm) I.D. 
and 0.250” (6.35-mm) diameter balls) duplex pair of angular contact bearings, oriented face-to-face that is 
hard preloaded in beryllium structure. The bearing system must operate with fairly large radial thermal 
gradients. Loewenthal mentions that he found it more expedient to construct a special purpose bearing 
code to solve this class of problem. In his study, Loewenthal constructed a design plot to show maximum 
contact stresses versus the radial thermal gradient. Using the Sensitivity Utility within ORBIS and holding 
the outer race temperature fixed while varying the shaft temperature the maximum contact stresses were 
solved. These data were then exported from ORBIS for post processing and, as shown in Figure 7, 
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constructed as a function of gradient along with a few points from Loewenthal’s plot. As shown, ORBIS 
correlates well with Loewenthal’s predictions for most of the gradient spectrum considered (note: original 
units have been converted to SI in accordance with AMS policy). The biggest difference between the two 
predictions occurs at -20°F (-29°C) case, where ORBIS predicts about twice the stress. Note that this region 
of bearing stress is highly nonlinear because the contact area is approaching a theoretical point (near zero 
ball loads). 

 
Figure 7.  Comparison of thermal gradient stresses to Loewenthal's paper 

 
The next example is from an analysis of the space station centrifuge rotor bearing system [4]. In this study, 
the rotor shaft assembly is analyzed for both bulk temperature loading and thermal gradients. The rotor 
shaft assembly is comprised of a three-bearing system: a duplex face-to-face pair and deep-groove 
(Conrad) bearing. The housing and shaft are aluminum 7075-T73 and all bearing rings and balls are 440C 
stainless. Figure 8 shows the cross section of the rotor shaft assembly. As shown, the system has a fairly 
large span (~600 mm) and preload springs are located on rows 2 and 3 (where row 1 is the leftmost row in 
the figure). Due to both the bearing span and fact that the housing and shaft are made from aluminum there 
are obvious concerns regarding how this bearing will react to both bulk temperature and temperature 
gradients. 
 
Figure 8 shows the results from ORBIS plotted against the original publication. Here, we have chosen to 
plot only rows 2 and 3 because row 1 does not differ from row 2 appreciably (row 1 and 2 being the face-
to-face pair). As shown, ORBIS matches very closely with the original author for both bulk temperature 
loading and temperature gradients. Row 3, which is the deep-groove bearing, clearly has the most 
sensitivity to temperature fluctuations. It should be noted that the ambient shaft fit for row 3 has a fairly 
profound effect on the contact angle and the publication only mentions a range, or tolerance, for this 
parameter. The results shown assumed this fit was at its minimum value (0.022 mm). Also, as shown in 
Figure 8 (right), row 3 has a maximum predicted contact angle that is approximately 2 degrees higher from 
the publication when the gradient is 20°C. All other points, which are located at both higher and lower 
gradients, have a much smaller deviation (less than 1° average). This one point appears a bit out of family 
compared with the other points. 
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Figure 8.  Main rotor assembly cross section (reference Figure 2 in [4]) and comparison of 
operating contact angle predictions. Left: rows 2 & 3 shown against bulk bearing temperature 

(reference Figure 3 in [4]). Right: rows 2 & 3 shown against bearing temperature gradient 
(reference Figure 5 in [4]). 
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Conclusion 
 
Many aerospace designs contain bearing rings have been thinned down to minimize weight. They may also 
utilize dissimilar materials for the bearing support structure. Such systems require ring compliance 
considerations to accurately determine the internal load distribution of the bearings and, ultimately, the 
proper performance assessment of the bearings. The ORBIS software tool has been introduced and was 
developed to account for these effects. Various key technical analysis considerations, including relevant 
assumptions and a description of the compliant ring modeling, has been discussed. Numerous validation 
cases, including a few published bearing analysis studies, were performed and all results suggest the code 
closely correlates to other trusted predictions. In addition to providing reliable results, the tool offers a 
significant upgrade from the earlier MS-DOS based programs. Forethought has been taken to help ensure 
ORBIS will provide long-term dependability and robust compatibility with various computer operating 
systems and machine architectures by using the Java programming language. Moreover, ORBIS strives to 
eliminate many hand calculations often required with other programs and provides iterative design utilities 
that allow the user to quickly understand and asses the performance of their bearing system. 
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