

NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

Leonard K. Tower and Steven M. Geng Glenn Research Center, Cleveland, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI Program provides access to the NASA Technical Report Server—Registered (NTRS Reg) and NASA Technical Report Server— Public (NTRS) thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers, but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., "quick-release" reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to help@sti.nasa.gov
- Fax your question to the NASA STI Information Desk at 757-864-6500
- Telephone the NASA STI Information Desk at 757-864-9658
- Write to: NASA STI Program Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

Leonard K. Tower and Steven M. Geng Glenn Research Center, Cleveland, Ohio

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

Leonard K. Tower and Steven M. Geng National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Summary

A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM—2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.

Introduction

A heat pipe code LERCHP has been developed at the Glenn Research Center over a period of years to facilitate the initial design and evaluation of space power systems (Refs. 1 to 4). Versions of this code were based on the disk operating system (DOS) of personal computers then available and were written using Microsoft compilers based on Fortran 77. In order for LERCHP to be usable on machines with 32- and 64-bit architecture, the source code was revised, updated, and recompiled using Compaq Visual Fortran. This report introduces the recompiled code as GLENHP.

Discussion

Source code for the new Windows-based GLENHP is similar to that used for LERCHP, the DOS version (Refs. 2 and 3). The mode of keyboard data input for GLENHP is essentially the same as that used in LERCHP, as described in References 2 and 3.

Reference 4 contains a detailed description of the structure of the source code, including flow charts showing the manner in which a solution is obtained. The essential equations employed in computing the liquid, vapor, and thermal flows in a heat pipe are also shown. Simple equations for the performance limits (capillary, entrainment, etc.) are given. A description of the algorithm employed in computing a heat pipe run is presented. Listings of the subroutine names and variable names employed in the source code are contained in References 3 and 4. Examples of data input and output from the console are also shown.

In the previous DOS code of LERCHP (Refs. 2 and 3) two options were provided for the evaporator heat input: (1) specified heat input and (2) heat transfer from the environment by radiation and/or convection. In the present code GLENHP, fixed evaporator surface temperature is added as a third heat input condition. This feature is prompted by laboratory heat pipe tests, where the evaporator is often clamped in a heated block such that the heat pipe evaporator surface temperature is at a fixed and known value.

A change in the manner of data output has been made in the new code GLENHP. The DOS-based LERCHP used a dedicated printer to produce a running log of data input and output. The new code creates a file HPOutput.txt. The user can then request the production of a text file. Alternatively, the user can create graphical outputs from HPOutput.txt.

GLENHP should only be used to obtain a first approximation for any heat pipe design problem. Of necessity, a limited number of pipe parameters are employed in the code. The code provides for changes in these parameters as a user option. Published sources should be referred to for a variety of these in refining a design. Among these are wick thermal conductivity, permeability, entrainment, and the onset of boiling. Reference 5 is one source for some of these.

The code will provide a simple view of a heat pipe for situations where the user provides thermal boundary conditions to obtain a preliminary estimate of pipe performance. The role of any heat pipe in a system or structure whose thermal conditions are being evaluated requires the use of a commercially available code. This requirement is beyond the scope of GLENHP.

Liquid Pressure in Wicking

During execution of the code, circumstances can arise where the liquid pressure in the wicking can locally exceed the vapor pressure adjacent. Ernst (Ref. 6) identified this situation in an analytical study of the pressures within a heat pipe. He ascribed it to the possibility of vapor pressure recovery in the condenser. Ernst in his incompressible analysis elected to assume the equality of liquid and vapor pressures in the condenser. This effect has subsequently been neglected normally as a factor in heat pipe operation (Ref. 5, pages 27 and 28, and Ref. 6). However, if the wick liquid pressure exceeds the vapor pressure, this condition—if encountered in actual practice—could be detrimental to heat pipe operation. Liquid may be stripped from the wick interior into high-velocity vapor streams. A malfunction or operational failure of the pipe can then result. Whether this adverse differential of liquid and vapor pressure represents a serious situation in the heat pipes may be debated. This pressure differential is accounted for in GLENHP, since the code was derived to handle compressibility. During code execution it is defined as the occurrence of a wet point. If it were to be encountered in practice, the experimenter would possibly identify it as being related to entrainment. The present code separately identifies entrainment as stripping of liquid from wick pores due to vapor flow. However, if the wet point phenomenon is a factor, it is not identified in the code as being related to entrainment. Examples of data input resulting in identification of wet points follow in the appendixes.

It is often assumed that the pressures in the vapor and the wicking are equal at the end of the condenser. If there is even the slightest excess liquid at this point, a meniscus the diameter of the vapor space could exist with a corresponding pressure differential between liquid and vapor. The code makes this assumption unless a wet point is identified, signifying liquid outside the wick. If a wet point is found, the code assumes that liquid and vapor pressures are the same at the condenser end.

Execution of GLENHP

The executable code that has been provided by a Compaq Visual Fortran compiler runs on a 32-bit machine in the usual fashion by typing GLENHP. However, this same executable code if loaded on a 64-bit machine can be run from the 32-bit command prompt window CMD.EXE that is located in the directory C:\Windows\System32:

- (1) The user launches CMD.EXE.
- (2) A pop-up window appears on the screen.
- (3) The user launches GLENHP from within the 32-bit CMD.EXE window.
- (4) Execution of a desired case produces the output file HPOutput.txt.
- (5) The user accesses this file to create a printout or graphical displays.

Examples of Code Operation

Some examples have been prepared to illustrate the operation of the code. For these examples, when the GLENHP software is first started, it requests data input such as that presented in Appendix A for the first case. These examples are not representative of any real heat pipe application but are only intended to illustrate a portion of code capability. The example, Appendix A, is for a pipe whose heat source is a closely fitted circumferential radiation heater at a uniform temperature. The data produced in the file HPOutput.txt for the example of Appendix A are shown in Appendix B. A portion of the data generated by the solution are then employed in a second example to provide a case in which nonuniform evaporator heat input is specified, as shown in Appendix C. Appendix D illustrates the entry of data for a bent pipe in a gravitational field (g) such that the orientation of the pipe is expressed as the distance below a horizon. This causes the presence of a wet point. Also presented in Appendix D is a case in which the occurrence of a wet point is caused in 0g by a particular choice of wick. In Appendix E the bent pipe data of Appendix D are input as pipe angles below the horizon instead of distance, demonstrating an option available in the code.

Appendix F contains an example of a heat pipe with a square evaporator, round adiabatic and condenser sections, and an artery the entire length. For the square section the code approximates the vapor flow situation by means of the wetted perimeter approximation incorporated in the code.

Concluding Remarks

The new GLENHP heat pipe code has been organized to enable changes in some input variables without reentering the entire data set. A heat pipe designer can thus search quickly for possible heat pipe configurations that can be refined by recourse to more elegant data algorithms available in the literature. Also, the documented source code can be modified by the incorporation of such algorithms and recompiled to provide solutions aligned with the user's needs.

Appendix A.—Radiation Heating of Evaporator

A close-fitted heater radiating to the evaporator as in laboratory testing is assumed. End losses are neglected. A cylindrical artery partially embedded in two wraps of screen wicking is attached to the length of the pipe. The condenser is finned to increase the effective radiation heat transfer area to the environment. Assumed dimensions of the pipe interior are listed in the following tabulation. GLENHP requests the following data to be entered for this case when prompted on the screen. Definitions of the requested parameters are contained in extensive listing contained in Reference 4.

"g" field strength, fraction of "g" Straight Pipe	0	
Initial # of Runge-Kutta steps	100	default
Number of data points output	20	ueraurt
Number of thermal sections	3	
Pipe dimensions same in all sections	5	
-		
Artery protrudes into vapor space Outside wall diameter, m	0.0191	
Inside wall diameter, m	0.0191	
Screen wick with artery	0.01/5	
Wick properties do not differ in sections		
Screen wire diameter, m	2.54x10 ⁻⁵	
Space between wires, m	3.81x10 ⁻⁵	
Crimping factor		default
Screen wraps	2	deraurt
Number of arteries	2	
Artery inside diameter, m	_	-3
	1.346x10	
Artery vapor blockage, m ²	2.01x10 ⁻⁶ 5.027x10	
Artery perimeter in vapor flow, m Nucleation radius, m		
	1X10-0	default
Stainless steel pipe Stainless steel wick		
Sodium working fluid	0	ما م 4 م م ا ب
Wetting angle, degree Weber number	0	default default
Thermal conditions section 1	0.283	deraurt
	1 5 1 0 77	
Heater temperature	1510 K	
Constant section properties	0 0	
Section end, m	0.2	
Specific area, m ² /m	0.06	
Radk	0.8	
HC, W/m ² K	0	
Thermal conditions section 2 (adiabatic)		
Heat input		
Constant section properties	0 1	
Section end, m	0.4	
Heat input, W	0	
Thermal conditions section 3		
Environment temperature specified		
Constant section properties	1 0	
Section end, m	1.0	
Environment temperature, K	273	
Specific area per unit length, m ² /m	0.15	
Radiation factor, Radk	0.8	
Convection coefficient, W/m^2	0	

Execution of the data input using this example results in the output listed in Appendix B.

Appendix B.—Data Output for Radiation Case of Appendix A

The data input and output in the radiation case of Appendix A are listed here. Some of the resulting thermal data are used to generate an example for Appendix C of specified heat input to the evaporator rather than heat input from a radiation heater. For brevity, the number of data points along the pipe for sections 2 and 3 are set at 10.

Particular attention is called to the data output for the end of the pipe at z = 1.0. The vapor pressure is listed as 4183 N/m² and the liquid pressure as 4151 N/m². This is due to the assumption that at the end of the condenser, a fillet exists at the inside diameter of the pipe. At this condition, the liquid pressure is less than the vapor pressure by roughly the capillary pressure difference $\Delta p = 4 \sigma/d$, where σ is the local surface tension and *d* is the approximate inside pipe diameter.

GLENHP HEAT PIPE CODE, NASA GLENN RESEARCH CENTER TURBULENCE CONSIDERED IN LAST CONDENSER BEGIN LISTING OF INPUT DATA "G" FIELD STRENGTH, FRACTIONS OF "G" 0.000000 INITIAL # OF RUNGE-KUTTA STEPS CHOSEN 100 NUMBER OF DATA POINTS OUTPUT ALONG PIPE 20 NUMBER OF THERMAL SECTIONS IN THE PIPE 3 CIRCULAR SECTION, ARTERIES PROTRUDE INTO VAPOR SCREEN WICK WITH ARTERIES SCREEN WIRE DIAMETER, DIAM, m 0.25400001E-04 SPACE BETWEEN WICK WIRES, WIDE, m 0.38099999E-04 NUMBER OF ARTERIES TO AN ANALYSIN AND ANALYSIN AN NUMBER OF ARTERIES IN SECTION, NA 1 ARTERY INSIDE DIAMETER,DAI, m 0.13460000E-02 VAPOR BLOCKAGE BY EACH ARTERY, APP, m**2 0.20099999E-05 ARTERY PERIMETER IN VAPOR FLOW, PER, m 0.50269999E-02 ALL WICKING, X-SECTION DIMENSIONS SAME AS THERMAL SECTION 1 SCREEN WICK WITH ARTERIES SUBROUTINE DO= 0.1910000E-01 DI= 0.1750000E-01 TWI= 0.1016000E-03 AK= 0.8064128E-13 PE= 0.5936646E-01 PORE= 0.6701331 AV= 0.2329647E-03 RCM= 0.1905000E-04 DWBR= 0.3810000E-04 RSS= 0.000000 RN= 0.1000000E-05 TYPE OF PIPE MATERIAL CHOSEN 1 = STAINLESS STEEL 304TYPE OF WICK MATERIAL CHOSEN 1 = STAINLESS STEEL 304WEBER NUMBER 6.2831802 WETTING ANGLE, DEG 0.000000 WORKING FLUID SODIUM

SECTION NUMBER 1 ENVIRONMENT OR HEATER TEMPERATURE SPECIFIED IN THIS SECTION ZI(1) 0.0000000 ZI(2) 0.2000000 SA= 0.59999999E-01 RADK= 0.80000001 HC= 0.0000000 TENV= 1510.0000 SECTION NUMBER 2 HEAT INPUT SPECIFIED IN THIS SECTION I=1 ZI= 0.20000000 I=2 ZI= 0.40000001 OSEC= 0.0000000 SECTION NUMBER 3 ENVIRONMENT OR HEATER TEMPERATURE SPECIFIED IN THIS SECTION ZI(1) 0.4000001 ZI(2) 1.000000 SA= 0.15000001 RADK= 0.80000001 HC= 0.0000000 TENV= 273.00000 THERMAL CONVERGENCE EXCELLENT, O/OIN<.0001 BEGIN PRINTOUT OF RESULTS MENISCUS PRESS.DIFFERENCE AT EVAP TOP P - PLTOP, N/m**2 = 1897.6665 CAPILLARY LIMIT PC, N/m**2 = 14526.531 BEGIN SECTION # 1 Z=0.0000000P=4856.2129PL=2958.5464T1Z=897.08563T4Z=906.09375TM=897.08563VM=0.0000000MACHM=0.0000000A=0.56590277DQDZ=12445.024Q=0.0000000A= Z=0.5000001E-01P=4825.3979PL=2968.8403T1Z=896.66736T4Z=905.68512TM=896.41522VM=40.531361MACHM=0.67083761E-01A=0.55235010DQDZ=12449.333Q=622.31598622.31598 P= 4720.4102 PL= T4Z= 904.27509 TM-3003.2021 Z= 0.1000000 T1Z= 895.22498 894.04822 A= 0.56787127 VM= 82.621643 MACHM= 0.13700800 DQDZ= 12462.154 1245.0210 Q= Z=0.15000001P=4531.2305PL=3062.2944T1Z=892.55560T4Z=901.66614TM=889.63947VM=128.38832MACHM=0.21366450A=0.59369910DQDZ=12484.926Q=1868.5631 Z=0.2000000P=4238.4932PL=3146.4602T1Z=888.23206T4Z=897.43927TM=882.42041VM=181.30273MACHM=0.30352971A=0.63523388DODZ=12514.847O=2493.5010 DQDZ= 12514.847 Q= 2493.5010

MENISC P-	SECTION # 2 US PRESS.DIFFER PLTOP, N/m**2	=	1092.0		
CAPILL Z= T1Z= VM= DQDZ=	ARY LIMIT PC, 0.20000000 888.23206 181.30273 0.0000000	P=	4238.4917 888.23206	II / PL= TM= A=	3146.4602 882.42041 0.63523388
Z= T1Z= VM= DQDZ=	0.30000001 886.95673 184.89436 0.0000000	P= T4Z= MACHM= Q=	4155.2915 886.95673 0.30955526 2493.5010	PL= TM= A=	3345.2727 881.58350 0.54240239
Z= T1Z= VM= DQDZ=	0.40000001 885.69464 188.54225 0.0000000	P= T4Z= MACHM= Q=	4074.3271 885.69464 0.31566089 2493.5010	PL= TM= A=	3544.2275 880.78931 0.47198483
MENISC P-	SECTION # 3 US PRESS.DIFFER PLTOP, N/m**2 ARY LIMIT PC,	=	530.10		
Z= T1Z= VM= DQDZ=	0.40000001 885.69464 188.54225 -4134.8052	P= T4Z= MACHM= Q=	4074.3281 882.62860 0.31566089 2493.5010	PL= TM= A=	3544.2275 880.78931 *******
Z= T1Z= VM= DQDZ=	0.50000000 886.18213 157.28496 -4143.6401	P= T4Z= MACHM= Q=	4105.4390 883.11249 0.26209491 2079.6047	PL= TM= A=	3728.0933 884.62219 *******
Z= T1Z= VM= DQDZ=	0.60000002 886.64832 125.53560 -4152.4971	P= T4Z= MACHM= Q=	4135.3799 883.57495 0.20870291 1664.7627	PL= TM= A=	3878.6050 886.64832 *******
	0.70000005 886.97113 93.855392 -4158.6333	P= T4Z= MACHM= Q=	4156.2217 883.89508 0.15601297 1249.1902	PL= TM= A=	3996.1235 886.97113 *******
Z= T1Z= VM= DQDZ=	0.80000007 887.20038 62.516827 -4163.0107	P= T4Z= MACHM= Q=	4171.0771 884.12250 0.10390959 833.09253	PL= TM= A=	4080.6765 887.20038 *******
Z= T1Z= VM= DQDZ=	0.90000010 887.33905 31.401892 -4165.6792	P= T4Z= MACHM= Q=	4180.0840 884.25995 0.52190155E-01 416.64297	PL= TM= A=	4132.2461 887.33905 ******

Z= 1.000000 P= 4183.3164 PL= 4150.8364 T1Z= 887.38873 T4Z= 884.30927 TM= 887.38873 VM= ******* MACHM= ******* A= ******** DQDZ= -4166.6694 Q= 0.11382652E-01 TBOIL(1) 0.49891233 DELTCR 3720.5415 TBOIL IS GRADIENT ACROSS LIQUID, DELTCR IS THEORETICAL GRADIENT NEEDED TO BOIL

SUMMARY

1510.0000
906.09375
897.08563
884.30927
887.38873
2493.5010
0.31566089
1897.6665
14526.531

CASE FINISHED

Appendix C.—Specified Heat Input to Evaporator

This appendix illustrates the entry of thermal data for the case of specified heat input to the evaporator. The heat pipe physical specifications are the same as those listed in Appendix A and tabulated in Appendix B. However, rather than radiation heat input, the varied evaporator heat input determined from that example are used as the specified evaporator heat inputs for this case. The thermal data of section 1 (evaporator) output as DQDZ in Appendix B are entered as heat input DQI at 5 specified points. At execution, the code spline fits the variables DQI for integrating through the evaporator. Thermal conditions for sections 2 and 3 are as in Appendix A. Again, for brevity, the data for sections 2 and 3 are listed as though only 10 data points were selected for output rather than 20 as indicated in Appendix A.

As might be expected, the output for this case closely resembles that of the radiation case, Appendix B, illustrating the satisfactory performance of the spline fit routine as applied to the evaporator heat input data.

```
SECTION NUMBER 1 HEAT INPUT SPECIFIED IN THIS SECTION
# OF POINTS IN SECTION (1) = 5
I= 1 Z= 0.0000000 DQI= 12445.024
I= 2 Z= 0.50000001E-01DQI= 12449.333
I= 3 Z= 0.10000000 DQI= 12462.154
I= 4 Z= 0.15000001 DQI= 12484.926
I= 5 Z= 0.20000000 DQI= 12514.847
SECTION NUMBER 2 HEAT INPUT SPECIFIED IN THIS SECTION
I=1 ZI= 0.20000000 I=2 ZI= 0.40000001 QSEC= 0.0000000
SECTION NUMBER 3 ENVIRONMENT OR HEATER TEMPERATURE SPECIFIED IN THIS
SECTION
                        ZI(2) 1.000000
ZI(1) 0.40000001
  SA= 0.15000001
                        RADK= 0.80000001 HC= 0.0000000 TENV= 273.00000
THERMAL CONVERGENCE GOOD, WITHIN RANGE:
  1E-4<Q/QIN<.0005
BEGIN PRINTOUT OF RESULTS
MENISCUS PRESS.DIFFERENCE AT EVAP TOP
  P - PLTOP, N/m**2 = 1898.1704
APILLARY LIMIT PC, N/m**2 = 14526.860
CAPILLARY LIMIT PC, N/m**2 =
BEGIN SECTION # 1
                        P= 4853.6733
T4Z= 906.05988
Z =
       0.000000
                                                    PL=
                                                              2955.5029
T1Z=897.05127T4Z=906.05988VM=0.0000000MACHM=0.0000000DQDZ=12445.024Q=0.0000000
                                                    TM= 897.05127
A= 0.56590372
Z=0.10000000P=4717.7954PL=3000.1594T1Z=895.18884T4Z=904.23706TM=894.01111VM=82.662239MACHM=0.13707787A=0.56788737DQDZ=12458.768Q=1244.99891244.9989
```

Z= T1Z= VM= DQDZ=	0.20000000 888.18896 181.40250 12514.847	P= T4Z= MACHM= Q=	4235.6562 897.39697 0.30370548 2493.3547	PL= TM= A=	3143.4177 882.37158 0.63531482
MENISC P-	SECTION # 2 US PRESS.DIFFER PLTOP, N/m**2 ARY LIMIT PC,	=	1092.		
Z= T1Z= VM= DQDZ=	0.20000000 888.18896 181.40250 0.0000000	P= T4Z= MACHM= Q=	4235.6577 888.18896 0.30370548 2493.3547	PL= TM= A=	3143.4177 882.37158 0.63531482
Z= T1Z= VM= DQDZ=	0.30000001 886.91211 185.00067 0.0000000	P= T4Z= MACHM= Q=	4152.4038 886.91211 0.30974233 2493.3547	PL= TM= A=	3342.2251 881.53345 0.54249471
Z= T1Z= VM= DQDZ=	0.4000001 885.64838 188.65582 0.0000000	P= T4Z= MACHM= Q=	4071.3870 885.64838 0.31586018 2493.3547	PL= TM= A=	3541.1750 880.73853 0.47209266
MENISC P-	SECTION # 3 US PRESS.DIFFER PLTOP, N/m**2 ARY LIMIT PC,	=	530.2		
Z= T1Z= VM= DQDZ=	0.40000001 885.64838 188.65582 -4133.9365	P= T4Z= MACHM= Q=	4071.3867 882.58270 0.31586018 2493.3547	PL= TM= A=	3541.1750 880.73853 *******
Z= T1Z= VM= DQDZ=	0.5000000 886.13580 157.38554 -4142.7695	P= T4Z= MACHM= Q=	4102.4766 883.06653 0.26226887 2079.5452	PL= TM= A=	3725.0383 884.57465 *******
Z= T1Z= VM= DQDZ=	0.60000002 886.60217 125.62152 -4151.6289	P= T4Z= MACHM= Q=	4132.4067 883.52911 0.20885046 1664.7902	PL= TM= A=	3875.5530 886.60217 ********
Z= T1Z= VM= DQDZ=	0.70000005 886.92511 93.926689 -4157.7661	P= T4Z= MACHM= Q=	4153.2422 883.84943 0.15613489 1249.3043	PL= TM= A=	3993.0806 886.92511 *******
Z= T1Z= VM= DQDZ=	0.8000007 887.15436 62.573692 -4162.1431	P= T4Z= MACHM= Q=	4168.0908 884.07684 0.10400640 833.29352	PL= TM= A=	4077.6489 887.15436 *******

Z=	0.9000010	P=	4177.0991	PL=	4129.2393
T1Z =	887.29315	T4Z =	884.21442	TM=	887.29315
VM=	31.444498	MACHM=	0.52262139E-01	A=	* * * * * * * * *
DQDZ=	-4164.8135	Q=	416.93073		
Z=	1.0000000	P=	4180.3374	PL=	4147.8564
T1Z=	887.34296	T4Z =	884.26385	TM=	887.34296
TlZ= VM=	887.34296 *****	T4Z= MACHM=	884.26385 *****	TM= A=	887.34296 *******

TBOIL(1) 0.49890652 DELTCR 3722.2729 TBOIL IS GRADIENT ACROSS LIQUID, DELTCR IS THEORETICAL GRADIENT NEEDED TO BOIL

SUMMARY

EVAPORATOR UPSTREAM SURFACE TEMP, K	906.05988
EVAPORATOR UPSTREAM VAPOR TEMP, K	897.05127
CONDENSER DOWNSTREAM SURFACE TEMP,K	884.26385
CONDENSER DOWNSTREAM VAPOR TEMP, K	887.34296
TOTAL HEAT INPUT TO PIPE, WATTS	2493.3547
MAXIMUM MEAN MACH NUMBER IN PIPE	0.31586018
MAXIMUM MENISCUS PRESS.DIFFERENCE	
P - PLTOP, n/m**2 =	1898.1704
CAPILLARY LIMIT PC,N/m**2	14526.860

CASE FINISHED

Appendix D.—Excess Liquid Pressure in Wicking

Possible causes of excess liquid pressure in wicking are as follows: (1) elevation of a portion of the pipe in a gravitational field (g) above the evaporator, resulting in excess hydrostatic pressure in the returning liquid and (2) choice of or lack of adequate liquid wicking. Whether the latter is an artifact of the present code is unknown. Examples of both of these situations are presented below. When they occur in the code their onset is identified by a statement of WET POINT ENCOUNTERED, a convenient description of the condition described. This condition may also be referred to as "flooding of the condenser."

(a) Bent Pipe in a Gravitational Field

For this example a partially bent pipe lying in a 1g field out of the horizontal plane is assumed. It is not representative of any real heat pipe application but is only intended to illustrate a portion of code capability. The following data and instructions below are the initial data entered at input when prompted on the screen:

"g" field strength, fractions o Pipe is not straight Curved or bent pipe Local angle is not specified	f "g″	1.0
Number of discrete curved or be	nt sections	2
Locations with input data in Se	ction 1	3
Axial distance, m Height a		
0	0	
0.2	-0.02	
0.3	-0.025	
Locations with input data in Se	ction 2	9
Axial distance, m Height a	bove horizon, m	
0.3	-0.025	
0.35	-0.024	
0.4	-0.02	
0.5	-0.015	
0.6	-0.01	
0.7	0	
0.8	0.01	
0.9	0.02	
1.0	0.03	
Initial # of Runge-Kutta steps		100 default
Number of data points output		10

The remainder of the input data are as listed for the example of Appendix A except that a constant heat input of 2500 W is entered for the evaporator of length 0.2 m. Completed entry of these data results during execution in the message "WET POINT ENCOUNTERED, MAKE OTHER CHANGE." However, the code continues the execution. Comparison of the local liquid pressures PLTOP with the local vapor pressure P reveal the portion of the pipe experiencing the wet point:

THERMAL CONVERGENCE EXCELLENT,Q/QIN<.0001 WET POINT ENCOUNTERED ALTER PIPE LENGTH,GEOMETRY,OR "g" FIELD LOCATION DATA ALONG PIPE AT WET POINT CONDITION FOLLOWS:

BEGIN PRINTOUT OF RESULTS MENISCUS PRESS.DIFFERENCE AT EVAP TOP P - PLTOP, N/m**2 = 1626.2158 CAPILLARY LIMIT PC, N/m**2 = 14522.090 BEGIN SECTION # 1 7= 0.000000 P= 4890.6538 PLBOT= 3399.7407 PLTOP= 3264.4380

 T1Z=
 897.55048
 T4Z=
 906.59088
 TM=
 897.55048

 VM=
 0.0000000
 MACHM=
 0.0000000
 A=
 0.56625521

 DQDZ=
 12500.000
 Q=
 0.0000000
 HITE=
 0.0000000

 Z= 0.1000000

 P=
 4754.7070
 PLBOT=
 3533.2751
 PLTOP=
 3397.7832

 T1Z=
 895.69922
 T4Z=
 904.76904
 TM=
 894.52832

 VM=
 82.399513
 MACHM=
 0.13660735
 A=
 0.56808478

 DQDZ=
 12500.000
 Q=
 1249.99999
 HITE=
 -0.112499999E-01

 Z= 0.2000000 P= 4274.3726 PLBOT= 3746.1077 PLTOP= 3610.1775 T1Z=888.77545T4Z=897.96222TM=883.01892VM=180.38199MACHM=0.30188519A=0.63447052DQDZ=12500.000Q=2500.0010HITE=-0.19999998E-01 BEGIN SECTION # 2 MENISCUS PRESS.DIFFERENCE AT WICK TOP $P - PLTOP, N/m^{*2} = 664.19458$ CAPILLARY LIMIT PC, N/m**2 = 14605.925 Z= 0.2000000 4274.3721 PLBOT= 3746.1077 PLTOP= 3610.1775 P=
 Image: Text state
 Text state
 Text state
 Text state
 Solution
 Text state

 VM=
 180.38199
 MACHM=
 0.30188519
 A=
 0.63447052

 DQDZ=
 0.0000000
 Q=
 2500.0010
 HITE=
 -0.199999999
 HITE= -0.19999998E-01 Z= 0.3000001 P=4191.7251PLBOT=3984.7041PLTOP=3847.9534T1Z=887.51782T4Z=887.51782TM=882.19696VM=183.90196MACHM=0.30778721A=0.54169923DQDZ=0.0000000Q=2500.0010HITE=-0.24860913E-01 Z= 0.4000001 4111.3452PLBOT=4144.6890PLTOP=4008.3218886.27429T4Z=886.27429TM=881.41827187.47322MACHM=0.31376091A=0.47122380 P= T1Z =VM= 187.47322 MACHM= 0.31376091 DODZ= 0.000000 Q= 2500.0010 HITE= -0.19878870E-01

	PLTOP, N/m**2	=	±00.05		
JAPILI	LARY LIMIT PC,	N/m^^2 =	14629.	821	
Z=	0.4000001				
P=			4144.6890		4008.3218
	886.27429	T4Z =		TM=	881.41827
	187.47322	MACHM=		A=	*******
DQDZ=	-4145.6909	Q=	2500.0010	HITE=	-0.19878870E-01
Z=	0.5000000				
2=	4142.6353	PLBOT=	4289.6772	PLTOP=	4152.8809
[1]]		T4Z =	883.68658	TM=	885.21240
/M=	156.38242	MACHM=	0.26051369	A=	* * * * * * * *
)QDZ=	-4154.5259	Q=	2085.0156	HITE=	-0.14566304E-01
Z=	0.6000002				
P=	4172.6636	PLBOT=	4400.7637	PLTOP=	4264.2886
r1z=	887.22479	T4Z =	884.14679	TM=	887.22479
/M=		MACHM=	0.20744869	A=	* * * * * * * * *
DQDZ=	-4163.3589	Q=	1669.0863	HITE=	-0.91749206E-02
2=	0.7000005				
- ?=		PLBOT=	4439.2637	PLTOP=	4303.1543
	887.54602	T4Z =			887.54602
/M=	93.318336	MACHM=	0.15507753	A=	* * * * * * * * *
DQDZ=	-4169.4766	Q=	1252.4287	HITE=	0.10420510E-02
Z=	0.8000007				
- P=	4208.4634	PLBOT=	4444.9082	PLTOP=	4308.6895
[1]]		T4Z =	884.69177	TM=	887.77429
	62.158360	MACHM=	0.10328539	A=	* * * * * * * * *
DQDZ=	-4173.8428	Q=	835.24731	HITE=	0.10983814E-01
ζ=	0.9000010				
_ ?=	4217.4946	PLBOT=	4417.4395	PLTOP=	4281.2495
[1Z=	887.91223	T4Z=	884.82861	TM=	887.91223
/M=	31.219460	MACHM=	0.51872734E-01		****
	-4176.5034	Q=	417.71512	HITE=	0.20999789E-01
<u>]</u> =	1.0000000				
2- 2-		PLROT=	4356.9326	PI.T∩P=	4220.7329
	887.96167	$T \pm B \oplus T =$ $T \pm Z =$		-	887.96167
	*******		*****	A=	****
	-4177.4893	Q=	0.14177973E-02		0.30121177E-01
-					

SUMMARY					
EVAPORATOR UPSTREAM SURFACE TEMP, K	906.59088				
EVAPORATOR UPSTREAM VAPOR TEMP, K	897.55048				
CONDENSER DOWNSTREAM SURFACE TEMP,K	884.87762				
CONDENSER DOWNSTREAM VAPOR TEMP, K	887.96167				
TOTAL HEAT INPUT TO PIPE, WATTS	2500.0010				
MAXIMUM MEAN MACH NUMBER IN PIPE	0.31376091				
MAXIMUM MENISCUS PRESS.DIFFERENCE					
P - PLTOP, $n/m**2 =$	1626.2158				
CAPILLARY LIMIT PC,N/m**2	14522.090				
WET POINT ENCOUNTERED. CHANGE PIPE	LENGTH, GEOMETRY	OR	CHANGE	ORIENTATION	IN
"g" FIELD					

(b) Wicking choice

This example considers a straight stainless pipe in 0g with no artery. The lengths are evaporator 0.2 m, adiabatic section 0.2 m, and condenser 0.6 m. The condenser environment specified in Appendix A applies. Pipe outside and inside diameters are 0.0191 and 0.0175 m, respectively. The sintered metal wick has these properties: wick thickness (TWI) 0.001 m, porosity (PORE) 0.065, and particle diameter (RSS) 0.0005 m. The wick thermal conductivity constant (WICCON) is 0.53.

Execution of the code at evaporator heat input of 600 W provides the following results. In this 0g case the wick liquid pressure PL is to be compared to vapor pressure P.

WET PO ALTER	L CONVERGENCE E INT ENCOUNTERED PIPE LENGTH,GEO LONG PIPE AT WE	METRY,OR	"g" FIELD LOCA			
BEGIN PRINTOUT OF RESULTS MENISCUS PRESS.DIFFERENCE AT EVAP TOP P - PLTOP, N/m**2 = 233.75073 CAPILLARY LIMIT PC, N/m**2 = 1411.5743						
BEGIN	SECTION # 1					
VM=	827.62231	T4Z =	1542.6198 834.82214 0.0000000 0.0000000	PL= TM= A=	1308.8690 827.62231 0.49270344	
VM=	826.78052	T4Z= MACHM=	1519.5116 833.99969 0.96605778E-01 240.00000	TM=	1309.2429 826.25714 0.50267476	
=MV	823.87463	T4Z =	1442.0148 831.16217 0.20301300 480.00003	PL= TM= A=	1310.4380 821.48755 0.53587651	
VM=	0.10000000 821.39130 153.25409 6000.0000		1378.5164 828.73901 0.26479375 600.00043	PL= TM= A=	1311.3483 817.36456 0.56422204	

BEGIN SECTION # 2 MENISCUS PRESS.DIFFERENCE AT WICK TOP P - PLTOP, N/m**2 = 67.167969					
CAPILL	ARY LIMIT PC,	$N/m^{*2} =$	1417.1	062	
Z= T1Z= VM= DQDZ=	0.1000000 821.39130 153.25409 0.000000	P= T4Z= MACHM= O=	1378.5162 821.39130 0.26479375 600.00043	PL= TM= A=	1311.3483 817.36456 0.56422204
Z= T1Z= VM=	0.12000000 820.87378 154.70505	Ρ= T4Z= MACHM=	1365.5928 820.87378 0.26728410	PL= TM= A=	1312.3846 817.07751 0.50521410
DQDZ=	0.000000	Q=	600.00043		
Z= T1Z= VM= DQDZ=	0.16000000 819.86139 157.60258 0.0000000	P= T4Z= MACHM= Q=	1340.6135 819.86139 0.27224061 600.00043	PL= TM= A=	1314.4585 816.55707 0.41360062
Z= T1Z= VM= DQDZ=	0.20000000 818.86707 160.52592 0.0000000	P= T4Z= MACHM= Q=	1316.4644 818.86707 0.27722013 600.00043	PL= TM= A=	1316.5332 816.09692 0.34785968
MENISC P-	SECTION # 3 US PRESS.DIFFEF PLTOP, N/m**2 ARY LIMIT PC,	=	-0.68359		
Z= T1Z= VM= DQDZ=	0.20000000 818.86707 160.52592 -2997.8770	P= T4Z= MACHM= Q=	1316.4648 815.16180 0.27722013 600.00043	PL= TM= A=	1316.5332 816.09692 *******
Z= T1Z= VM= DQDZ=	0.23999998 818.94727 129.12001 -2999.0134	P= T4Z= MACHM= Q=	1318.3982 815.24164 0.22203851 480.07031	PL= TM= A=	1318.4175 819.04468 *******
Z= T1Z= VM= DQDZ=	0.27999997 819.00879 96.803619 -2999.9480	P= T4Z= MACHM= Q=	1319.8837 815.30280 0.16647907 360.09009	PL= TM= A=	1319.8883 819.00879 *******
Z= T1Z= VM= DQDZ=	0.31999996 819.05273 64.593979 -3000.6084	P= T4Z= MACHM= Q=	1320.9458 815.34650 0.11108390 240.07834	PL= TM= A=	1320.9458 819.05273 *******
Z= T1Z= VM= DQDZ=	0.35999995 819.07941 32.437115 -3001.0110	P= T4Z= MACHM= Q=	1321.5901 815.37299 0.55782221E-01 120.04535	PL= TM= A=	1321.5902 819.07941 *******

Z= 0.4000001 P= 1321.8219 PL= 1321.8219 T1Z= 819.08899 T4Z= 815.38251 TM= 819.08899 VM= ******* MACHM= ******* A= ******* DQDZ= -3001.1594 Q= 0.11239421E-02 TBOIL (1) 2.1461210 DELTCR 10464.415 TBOIL IS GRADIENT ACROSS LIQUID, DELTCR IS THEORETICAL GRADIENT NEEDED TO BOIL SUMMARY EVAPORATOR UPSTREAM SURFACE TEMP, K 834.82214 EVAPORATOR UPSTREAM VAPOR TEMP, K 827.62231 CONDENSER DOWNSTREAM VAPOR TEMP, K 819.08899 TOTAL HEAT INPUT TO PIPE, WATTS 600.00043 MAXIMUM MENISCUS PRESS.DIFFERENCE P - PLTOP, n/m*2 233.75073 CAPILLARY LIMIT PC,N/m*2 1411.5743 WET POINT ENCOUNTERED. CHANGE PIPE LENGTH, GEOMETRY OR CHANGE ORIENTATION IN "g" FIELD

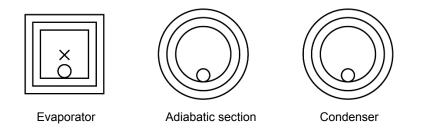
CASE FINISHED

Appendix E.—Example of Pipe Orientation Using Angle Instead of Height

In the wet point example of Appendix D the pipe orientation in a gravitational field (g) was determined by specification of height with respect to the gravitational horizon. As an alternative, angle with respect to the horizon can be used instead. For this example the height information of Appendix D was used to compute angles at each of the 12 data points provided in the tabulation therein. For z = 0, an angle is computed using the height of -0.02 m at the end of the first increment, z = 0.2 thusly: beta = arc sin (-0.02/.2). The following data when requested by GLENHP includes the tabulation of angles versus distance created in this manner.

"g" field strength, fractions of "g" Pipe is not straight Curved or bent pipe Local angle is specified	1.0
Number of discrete curved or bent sections	2
Locations with input data in Section 1	3
Axial distance, m Angle with horizon	
0 -5.739	
0.2 -2.866	
0.3 -2.866	
Locations with input data in Section 2	9
Axial distance, m Angle with horizon, beta	L
0.3 1.146	
0.35 4.589	
0.4 2.866	
0.5 2.866	
0.6 5.739	
0.7 5.739	
0.8 5.739	
0.9 5.739	
1.0 5.739	
Initial # of Runge-Kutta steps	100 default
Number of data points output	10

If the remainder of the input data are entered as for the example of Appendix D, the resulting solution data will be identical to that produced for the case of Appendix D.


Appendix F.—Round Pipe With Square Evaporator

The code uses the wetted perimeter approximation wherever the vapor state is not completely round, as when a protruding artery is present. This example considers a pipe with round adiabatic and condenser sections and a square evaporator. A single artery within the vapor space traverses the entire pipe. Heat pipes of such configuration have been proposed in the past for use in heat removal from nuclear reactors, for example. The following study is not concerned with the mode of attachment between the square and round sections or the effect on vapor and liquid flow.

For this example a case was run initially for a cylindrical pipe with the following dimensions: external diameter 0.0191 m and inside diameter of 0.0175 m. Two layers of 200-mesh screen wick were assumed on the inside surface with wire diameter of 5.334×10^{-4} m and spacing of 7.366×10^{-4} m with a porosity of 0.6536. Given this input information, the code computed a vapor area of 0.2289×10^{-3} m², a wick area-permeability (area × permeability) factor AK of 0.7109×10^{-15} m⁴, and a vapor space perimeter of 0.05364 m.

A pipe was then assumed, having adiabatic and condenser sections with the foregoing properties, but having an evaporator of square cross section having the same vapor area. Screen wicking was assumed to be the same in all sections. An AK product of 0.0736×10^{-15} m⁴, a vapor space perimeter of 0.06052 m, a wick thickness of 0.2136×10^{-3} m, and a wall thickness of 0.8×10^{-3} m were hand computed for the square evaporator. The centerline of the evaporator was 0.7564×10^{-2} m⁴ above the bottom wick surface although in 0g this specification is not required. A circular artery was then applied having an external diameter of 1.6×10^{-3} m, touching the circular wick. The inside diameter of this artery was estimated to be 1.346×10^{-3} m and external diameter, 1.6×10^{-3} m. Vapor area blockage and wetted perimeter addition were computed from this. The AK product for the artery liquid flow, given by $\pi d^4/128$ (*d* is the approximate inside pipe diameter), was 8.056×10^{-14} m⁴. The product AK for the evaporator of necessity will differ from that of the adiabatic and condenser sections. The lengths were evaporator 0.2 m, adiabatic section 0.2 m, and condenser 0.6 m.

The cross sections of the heat pipe being considered then looked like this:

The USER INPUT option was required for the evaporator. With an artery incorporated, the input data for the evaporator was then as follows:

TWALL	0.8000x10 ⁻³	wall thickness
CL	0.7564x10 ⁻²	centerline to wick (not needed, zero "g")
TWI	0.2134x10 ⁻³	wick thickness
AK	0.8496x10 ⁻¹³	area-permeability product
PE	0.6553x10 ⁻¹	vapor space wetted perimeter
PORE	0.6536	porosity of wick
AV	0.2269x10 ⁻³	vapor area
RCM	0.3683x10 ⁻⁴	capillary radius
KE	46.57	wick conductivity
DWBR	0.7366x10 ⁻⁴	Weber number

For the adiabatic section and the condenser, the option SCREEN WICK WITH ARTERIES was employed. Much of what was computed by hand for the USER INPUT option was computed by the code for these sections. However, the user was required to furnish some information to the code concerning the presence of the longitudinal artery. From this information, the code computed the decrease in vapor area and the increase in wetted perimeter due to the artery within the vapor space and changed these parameters accordingly. The complete output from the file HPOutput.txt generated at execution is as follows. A portion of the output demonstrates presence of a wet point:

GLENHP HEAT PIPE CODE, NASA GLENN RESEARCH CENTER TURBULENCE CONSIDERED IN LAST CONDENSER BEGIN LISTING OF INPUT DATA "G" FIELD STRENGTH, FRACTIONS OF "G" 1.0000000 STRAIGHT PIPE AT ANGLE WITH HORIZON (NEGATIVE IS EVAPORATOR UP), BETA, DEG 0.000000 INITIAL # OF RUNGE-KUTTA STEPS CHOSEN 100 NUMBER OF DATA POINTS OUTPUT ALONG PIPE 10 NUMBER OF THERMAL SECTIONS IN THE PIPE З SECTION WICKING AND DIMENSIONS DIFFER THERMAL SECTION NUMBER 1 NONCIRCULAR PIPE SECTION.ARTERY PRESENCE MUST BEINCLUDED IN AK FURNISHED USER INPUT WICK DATA USER INPUT WICK DATA TWALL=0.8000000E-03 CL= 0.7564000E-02 TWI= 0.2130000E-03 AK= 0.8567000E-13 PE= 0.6553000E-01 PORE= 0.6536000 AV= 0.2269000E-03 RCM= 0.3683000 KE= 46.57000 DWBR= 0.7366000E-04 RSS= 0.000000 RN= 0.100000E-05 THERMAL SECTION NUMBER 2 CIRCULAR SECTION, ARTERIES PROTRUDE INTO VAPOR SCREEN WICK WITH ARTERIES SCREEN WIRE DIAMETER, DIAM, m 0.53339999E-03 SPACE BETWEEN WICK WIRES, WIDE, m 0.73660002E-03 1.0500000 CRIMPING FACTOR NUMBER OF SCREEN WRAPS, NUMWRP, 2 NUMBER OF ARTERIES IN SECTION, NA 1 ARTERY INSIDE DIAMETER,DAI, m 0.13460000E-02 VAPOR BLOCKAGE BY EACH ARTERY, APP, m**2 0.20099999E-05 ARTERY PERIMETER IN VAPOR FLOW, PER, m 0.50300001E-02 SCREEN WICK WITH ARTERIES SUBROUTINE DO= 0.1950000E-01 DI= 0.1750000E-01 TWI= 0.2133600E-02 AK= 0.6397251E-12 PE= 0.4660203E-01 PORE= 0.6536397 AV= 0.1355186E-03 RCM= 0.3683000E-03 DWBR= 0.7366000E-03 RSS= 0.000000 RN= 0.100000E-05 ARTERY SPECIFICATIONS VAPOR BLOCKAGE BY ALL ARTERIES, m**2 0.20099999E-05 OUTSIDE PERIMETER OF ALL ARTERIES IN VAPOR FLOW, m 0.50300001E-02

THERMAL SECTION NUMBER 3 CIRCULAR SECTION, ARTERIES PROTRUDE INTO VAPOR SCREEN WICK WITH ARTERIES SCREEN WIRE DIAMETER, DIAM, m 0.53339999E-03 SPACE BETWEEN WICK WIRES, WIDE, m 0.73660002E-03 Inclock1.0500000NUMBER OF SCREEN WRAPS, NUMWRP,2NUMBER OF ARTERIES IN STOCK ARTERY INSIDE DIAMETER,DAI, m 0.13460000E-02 VAPOR BLOCKAGE BY EACH ARTERY, APP, m**2 0.20099999E-05 ARTERY PERIMETER IN VAPOR FLOW, PER, m 0.50300001E-02 SCREEN WICK WITH ARTERIES SUBROUTINE DO= 0.1950000E-01 DI= 0.1750000E-01 TWI= 0.2133600E-02 AK= 0.6397251E-12 PE= 0.4660203E-01 PORE= 0.6536397 AV= 0.1355186E-03 RCM= 0.3683000E-03 DWBR= 0.7366000E-03 RSS= 0.000000 RN= 0.1000000E-05 ARTERY SPECIFICATIONS VAPOR BLOCKAGE BY ALL ARTERIES, m**2 0.20099999E-05 OUTSIDE PERIMETER OF ALL ARTERIES IN VAPOR FLOW, m 0.50300001E-02 TYPE OF PIPE MATERIAL CHOSEN 1 = STAINLESS STEEL 304TYPE OF WICK MATERIAL CHOSEN 1 = STAINLESS STEEL 304WEBER NUMBER 6 2831802 WETTING ANGLE, DEG 0.000000 WORKING FLUID SODIUM SECTION NUMBER 1 HEAT INPUT SPECIFIED IN THIS SECTION I=1 ZI= 0.0000000 I=2 ZI= 0.20000000 QSEC= 2500.0000 SECTION NUMBER 2 HEAT INPUT SPECIFIED IN THIS SECTION I=1 ZI= 0.20000000 I=2 ZI= 0.40000001 OSEC= 0.0000000 SECTION NUMBER 3 ENVIRONMENT OR HEATER TEMPERATURE SPECIFIED IN THIS SECTION ZI(1) 0.40000001 ZI(2) 1.0000000 SA= 0.15000001 RADK= 0.80000001 HC= 0.0000000 TENV= 273.00000 THERMAL CONVERGENCE EXCELLENT, Q/QIN<.0001 WET POINT ENCOUNTERED ALTER PIPE LENGTH, GEOMETRY, OR "q" FIELD LOCATION DATA ALONG PIPE AT WET POINT CONDITION FOLLOWS: BEGIN PRINTOUT OF RESULTS MENISCUS PRESS.DIFFERENCE AT EVAP TOP P - PLTOP, N/m**2 = 1305.4321 CAPILLARY LIMIT PC, N/m**2 = 0.74694413 CAPILLARY LIMIT EXCEEDED

BEGIN SECTION # 1

Z= P= T1Z= VM= DQDZ=	0.0000000 5557.8477 906.04657 0.000000 12500.000	PLBOT= T4Z= MACHM= Q=	4371.2681 911.58411 0.0000000 0.0000000	PLTOP= TM= A= HITE=	4252.4155 906.04657 0.56602520 0.0000000		
Z= P= T1Z= VM= DQDZ=	0.10000000 5427.3794 904.45599 74.894127 12500.000	PLBOT= T4Z= MACHM= Q=	4413.2539 910.01202 0.12361052 1249.9999	PLTOP= TM= A= HITE=	4294.4019 903.50061 0.54231942 0.0000000		
Z= P= T1Z= VM= DQDZ=	0.2000000 4975.0269 898.67737 161.31113 12500.000	PLBOT= T4Z= MACHM= Q=	4547.6870 904.30347 0.26824555 2500.0010	PLTOP= TM= A= HITE=	4428.8345 894.10022 0.59725630 0.0000000		
BEGIN SECTION # 2 MENISCUS PRESS.DIFFERENCE AT WICK TOP P - PLTOP, N/m**2 = 546.19385 CAPILLARY LIMIT PC, N/m**2 = 750.58569							
	•						
	LARY LIMIT PC, 0.20000000 4975.0283 898.67737 161.31113				4428.8345 894.10022 0.59725630 0.0000000		
CAPIL: Z= P= T1Z= VM=	LARY LIMIT PC, 0.20000000 4975.0283 898.67737 161.31113	N/m**2 = PLBOT= T4Z= MACHM=	750.58 4547.6870 898.67737 0.26824555	8569 PLTOP= TM= A=	894.10022 0.59725630		

BEGIN SECTION # 3 MENISCUS PRESS.DIFFERENCE AT WICK TOP P - PLTOP, N/m**2 = -72.412598									
	LARY LIMIT PC,								
	- /	,							
Z=	0.4000001								
P=	4413.6929		4590.4360	PLTOP=	4486.1055				
T1Z=	890.84930	T4Z =	883.29358	TM=	886.70624				
VM=	302.62653	MACHM=	0.50487065	A=	*****				
DQDZ=	-4147.4321	Q=	2500.0010	HITE=	0.000000				
Z=	0.5000000								
P=	4412.0054	PLBOT=	4613.7017	PLTOP=	4509.1436				
T1Z =	890.82452	T4Z =	883.26947	TM=	890.82452				
VM=	254.84711	MACHM=	0.42273274	A=	* * * * * * * *				
DQDZ=	-4146.9795	Q=	2085.1680	HITE=	0.000000				
Z=	0.6000002								
P=	4437.4302	PLBOT=	4632.7080	PLTOP=	4528.1499				
T1Z=	891.19696	T4Z =	883.63269	TM=	891.19696				
VM=	203.26459	MACHM=	0.33711559	A=	*****				
DQDZ=	-4153.2524	Q=	1670.3429	HITE=	0.000000				
Z=	0.7000005								
P=	4492.3774	PLBOT=	4647.5674	PLTOP=	4543.0088				
T1Z=	891.99597	T4Z =	884.40912	TM=	891.99597				
VM=	151.12833	MACHM=	0.25056162	A=	* * * * * * * *				
DQDZ=	-4168.1597	Q=	1254.2313	HITE=	0.000000				
_									
Z=	0.8000007			DIMOD					
P=	4531.0083	PLBOT=		PLTOP=	4553.7114				
T1Z= VM=	892.55273 100.36338	T4Z= MACHM=	884.95007 0.16635688	TM=	892.55273 *****				
DQDZ=		Q=	836.85602	A= HITE=	0.000000				
DQD2-	-41/0.0010	Q-	050.05002	111112-	0.0000000				
Z=	0.9000010								
P=	4554.2427	PLBOT=	4664.8101	PLTOP=	4560.2520				
T1Z =	892.88556	T4Z =	885.27332	TM=	892.88556				
VM=	50.464890	MACHM=	0.83635949E-01	A=	* * * * * * * *				
DQDZ=	-4184.8999	Q=	418.64606	HITE=	0.000000				
7 –	1 0000000								
Z=	1.000000		1000		45.02 .000				
P= m17-	4562.6289	PLBOT=	4667.1870 885.38953		4562.6289 893.00537				
VM=	893.00537 *******	Т4Z= маснм=	885.38953 *******	TM= A=	893.UU53/ *****				
	-4187.2422	МАСНМ- 0=	0.57174349E-02						
5257-	110/.2122	×	0.0/1/40400		0.000000				
TBOIL(1) 1.0574868 DELTCR 3304.6387									
				HEORETICA	L GRADIENT NEEDED TO				
BOTI									

BOIL

SUMMARY THERMAL CONVERGENCE FOUND. RESULT MAY NOT BE VALID.CHECK LIMITS. CAPILLARY LIMIT EXCEEDED.ARTERIES, OR FINER SCREENREQUIRED EVAPORATOR UPSTREAM SURFACE TEMP, K 911.58411 EVAPORATOR UPSTREAM VAPOR TEMP, K 906.04657 CONDENSER DOWNSTREAM SURFACE TEMP, K 885.38953 CONDENSER DOWNSTREAM VAPOR TEMP, K 893.00537 TOTAL HEAT INPUT TO PIPE, WATTS2500.0010MAXIMUM MEAN MACH NUMBER IN PIPE0.50487065 MAXIMUM MENISCUS PRESS.DIFFERENCE P - PLTOP, n/m**2 = 1305.4321 CAPILLARY LIMIT PC, N/m**2 0.74694413 ENTRAINMENT LIMIT PROBABLY EXCEEDED.WICKING PORE SIZE IS TOO LARGE AT THIS COND- ITION CAPILLARY LIMIT EXCEEDED.ARTERIES, OR FINER SCREENAND PORES REQUIRED AT THIS CONDITION WET POINT ENCOUNTERED. CHANGE PIPE LENGTH, GEOMETRY OR CHANGE ORIENTATION IN "g" FIELD

CASE FINISHED

References

- 1. Tower, Leonard K.; and Hainley, Donald C.: An Improved Algorithm for the Modeling of Vapor Flow in Heat Pipes. NASA CR-185179, 1989. https://ntrs.nasa.gov/
- 2. Tower, Leonard K.; Baker, Karl W.; and Marks, Timothy S.: NASA Lewis Steady-State Heat Pipe Code Users Manual. NASA TM-105161, 1992. https://ntrs.nasa.gov/
- 3. Tower, Leonard K.: NASA Glenn Steady-State Heat Pipe Code Users Manual Version 2, DOS Input. NASA/TM—2000-209807, 2000. https://ntrs.nasa.gov/
- 4. Mi, Ye; and Tower, Leonard K.: NASA Lewis Steady-State Heat Pipe Code Architecture—Final Report. NASA/TM—2013-216499, 2013. https://ntrs.nasa.gov/
- 5. Reay, D.A.; Kew, P.A.; and McGlen, R.J.: Heat Pipes—Theory, Design and Applications. Sixth ed., Elsevier Ltd., Oxford, 2014.
- 6. Ernst, D.M.: Evaluation of Theoretical Heat Pipe Performance. Presented at the Thermionic Conversion Specialist Conference, Palo Alto, CA, 1967.