National Aeronautics and Space Administration

Attitude and Pointing Concepts for ISS Payload Operations

NASA/JSC Maggie Michalczyk Attitude & Pointing Office July 2016

Public Release Statement: This document has been reviewed for Proprietary, SBU, and Export Control (ITAR/EAR) and has been determined to be non-sensitive. It has been released to the public via the NASA Scientific and Technical Information (STI) Process DAA ######

Topics

- What Can Pointing Do for Payloads
- Typical Questions for Payload Customers
- Variables that Affect Target Viewing
 - Time
 - Blockage
- Examples of Pointing Support for Payloads
 - SCaN
 - OPALS
 - SOLAR

JSC/Maggie Michalczyk

Attitude and Pointing Office

- The Pointing Officer is responsible for flight control support of communications predictions, unique target lines-of-sight (LOS) computations, and optimization of ISS attitude to support payload, onboard systems, or user pointing requirements, as requested
- Pointing can integrate multiple planning products into a single output
 - TOPO's trajectory predictions
 - ADCO's attitude timeline
 - PRO's solar array plan
 - SPARTAN's radiator plan
 - ROBO's robotic plan

What Can Pointing Do For Payloads?

- Line-of-Sight Capabilities
 - Determine instrument (e.g., sensor, aperture, etc.) operation times based on orbital constraints
 - Compute acquisition times for targets
 - Integrate operational constraints (like sun avoidance) into analysis
 - Compute ISS (and any other orbiting object) overflight information for given ground sites
 - Incorporate any sensor Field of View (FOV) limits/constraints
 - Compute look angles to target, within any reference frame (ISS, payload, etc.)
 - Filter target computations based on S and Ku comm. availability (if required)

What Can Pointing Do For Payloads?

- Attitude Capabilities
 - Compute ISS / Robotics / payload attitude combinations to satisfy requirements for payload release, to acquire science, and to accomplish payload objectives
 - Verify operational constraints are not violated during robotic motion for installation
- Blockage Capabilities
 - Create blockage diagrams for antennas/instrument FOVs, from a specific point on ISS or payload structure
 - Model movement of ISS appendages (SSRMS, radiators, etc.)
- Integration Capabilities
 - Incorporate payload-specific information into analysis
 - Provide information to payload in their language

JSC/Maggie Michalczyk

Typical Questions for Payload Customers

- Does your payload have certain sensor requirements?
 - Can the Sun/Moon get in its field-of-view?
 - Do constraints matter if the sensor is on or off?
 - Time limit for how long it can look at the Sun?
 - Is there an additional buffer that needs to be protected?
- Does your payload need concurrent ISS communication with the ground?
 - S-band for telemetry?
 - Ku-band for video?
- Can ISS elements block your sensor field-of-view?
 - Solar arrays?
 - Thermal radiators?
 - Robotic elements?

Variables that Affect Target Viewing

- Trajectory
 - Weekly trajectory updates realize an average of 10 30 seconds of acquisition error
- Attitude
 - The ISS attitude fluctuates during the course of an orbit
- Time
- Structural Blockage

Variables that Affect Target Viewing: Time

- The ISS is moving at ~7 kilometers per second
- A significant factor in line-of-sight predictions for high resolution instruments is knowledge of exact time
- Depending on sensor resolution, being off by half a second may mean completely missing a small target
- GPS time is official time source for ISS
 - Currently GMT and GPS differ by 17 seconds

Variables that Affect Target Viewing: Structural Blockage

- ISS structure is big and frequently in the way
- Solar arrays
 - When in autotrack, arrays are moving at 4 deg/min
 - Predictive data received from Power Resource Officer (PRO)
- Radiators
 - Can cause significant amount of blockage
 - Positioning is typically static, but usually repositioned for high beta periods and visiting vehicles
 - Positioning plan for the future received from SPARTAN console
- Robotics
 - Robotic elements MBS, SSRMS and SPDM can cause significant blockage
 - Positioning plan for future received from Robotics Officer (ROBO)

Examples of Pointing Support for Payloads

- SCaN Testbed
- OPALS
- SOLAR

JSC/Maggie Michalczyk

SCaN Testbed

• LOS Operations

- Line of sight calculations to TDRS
- Requires scheduled events during times ISS has S-band and Kuband services available
- It is also common for SCaN to request LOS analysis of non-TDRS targets such as the Sun and ground sites
- Analysis Provided by ISS Pointing
 - SCaN provides a TDRS Communication Request weekly to Pointing
 - Pointing determines available times SCaN will have events with TDRS satellites three weeks ahead
 - The week prior to SCaN activities, Pointing updates line-of-sight calculations with latest inputs and relays significant changes to scheduled passes

SCaN Testbed FOV

OPALS

- LOS Operations
 - Communication with ground sites via a laser
 - Need considerable accuracy
 - Acquire ground beacon
 - Closed loop
- Analysis Provided by ISS Pointing
 - Provide ISS flyover times of ground sites for next three weeks
 - Determine viable passes when ground site and Sun are not concurrently within OPALS FOV

SOLAR

- LOS Operations
 - Observing Sun
 - Pointed out ISS -Z axis
- Analysis Provided by ISS Pointing
 - ROBO notifies Pointing and SOLAR if planned robotic operations will cause any robotic elements to enter SOLAR FOV
 - Pointing analyzes if Sun's track will pass behind robotic elements and notifies SOLAR of any violations
 - SOLAR uses this information to note potential interruptions to their data

SOLAR FOV

Questions?

JSC/Maggie Michalczyk

Further Information

- If you have any questions, please contact:
 - Maggie Michalczyk (Pointing Payloads Lead)
 - Email: <u>magdalen.i.michalczyk@nasa.gov</u>
 - Phone: 281-483-9237
 - Sadie Holbert (Pointing Payloads Backup)
 - Email: sadie.m.holbert@nasa.gov
 - Phone: 281-244-8263

