
 

JPL Publication 16-9 

 

A Method for Estimating the Probability 
of Floating Gate Prompt Charge Loss in a 
Radiation Environment 
L. D. Edmonds 
Jet Propulsion Laboratory 

 

 

 

 

 

 

 

 

 

 

 

 
National Aeronautics and 
Space Administration 

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

March 2016 
  



 

 

This research was carried out at the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administration. 

Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not constitute or imply its 
endorsement by the United States Government or the Jet Propulsion Laboratory, 
California Institute of Technology. 

© 2016 California Institute of Technology. Government sponsorship acknowledged. 

 
 
 
 



i 

 

Abstract: 

Since advancing technology has been producing smaller structures in electronic circuits, the 
floating gates in modern flash memories are becoming susceptible to prompt charge loss from 
ionizing radiation environments found in space. A method for estimating the risk of a charge-loss 
event is given. 
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the probability of an FG becoming deprogrammed by the next ion hit depends on whether it was 
already exposed to prior irradiation (unlike the classic SEE problem in which past history is 
quickly forgotten so the present environment is the only concern). On the other hand, this 
situation is also not the classic TID effect. While TID is cumulative, the classic situation 
involves such large numbers of particle hits that these numbers are close enough to statistical 
averages to be deterministic instead of stochastic. That is not the situation for an FG that can be 
deprogrammed by one or a few ion hits. This is a micro-dose problem that requires a custom-
made statistical analysis to interpret laboratory test data in such a way that mission risk estimates 
can be made. Such an analysis is given in this report. 
 Definitions and explanations of symbols and acronyms are included in the main text but 
can also be found in Appendix F. This appendix also explains the significance of various 
quantities and can serve as a summary of this work. 
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adequate approximation up to the point that the cumulative charge loss is enough to deprogram 
the FG, the model can still serve its intended purpose. The approximation of treating the W 
function as independent of irradiation history might be called a small perturbation approximation 
because it is expected to be accurate for a selected ion hit if the accumulated charge loss from all 
prior hits (prior to the selected hit, but after the most recent erase-and-program operation) is 
small compared to the initial charge stored in the FG. 
 The W function is used to define a cross section. We now interpret δq as an independent 
variable and define the corresponding sensitive region, a set of points denoted S(L,δq), to be 
those points (x,y) satisfying W(L,x,y) > δq. In other words, an ion with LET L will produce a 
charge loss that exceeds δq if, and only if, it hits the region S(L,δq). The cross section denoted 
σ(L,δq) is defined to be the area of S(L,δq). 
 Recall that the W function accounts for track width, so the cross section σ(L,δq) can 
exceed the geometric area of a physical structure by an amount that accounts for track width. 
However, hits that are sufficiently far from the FG will have no effect on the selected FG, so the 
cross section σ(L,δq) (which increases with decreasing δq) has a finite value in the limit as δq → 
0+, where the “+” superscript means that the approach to zero is from above. However, there is a 
complication. It is conceivable that the saturation value could be different for different LETs, or 
even for different ions having the same LET. For example, there might be a hit location (x,y) 
such that a hit at this point by an ion that produces a narrow track has no effect, while an ion that 
produces a wider track results in a nonzero charge loss. The saturation cross section would then 
be larger for the wide-track ions than for the narrow-track ions. An analysis that allows for 
different ions to have different saturation cross sections would lead to a discontinuity in a 
probability function discussed in the next section, and this is a mathematical nuisance. It is an 
avoidable nuisance because there is a simple way to work around this. Referring to the two-ion 
comparison just given, all we have to do is assign to the narrow-track ion a charge loss that is too 
small to have any physical significance, but still greater than zero to avoid a mathematical 
nuisance. In this model, if there is any LET such that a hit at a point (x,y) produces a greater-
than-zero charge loss, then any ion that hits this point will produce some greater-than-zero 
charge loss, although it might be too small to have any physical significance. In other words, in 
this model, the set of points (x,y) satisfying W(L,x,y) > 0 is the same set for all L. The saturation 
sensitive region, denoted Ssat, is defined to be this set of points, and the saturation cross section, 
denoted σsat, is defined to be the area of Ssat. Using this model and these definitions, an ion hit 
produces a nonzero charge loss if, and only if, it hits the region Ssat, regardless of LET. We also 
have 
 

0 allfor ),(lim
0

>=
+→

LqL sat
q

σδσ
δ

.                  (2) 

 
 The above discussions refer to a single isolated FG; isolated except for the presence of 
oxide structures close enough to the FG for charge trapping in the oxide to affect the effective 
charge loss of the FG. We now consider a device containing a collection of FGs. Each FG has its 
own set of points S(L,δq), call the set S1(L,δq) for FG #1 and S2(L,δq) for FG #2. It is possible 
that a single ion hit can affect both FGs so the two sets have some points in common; i.e., the 
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sets overlap.3 The set S1(L,δq) is defined to be the set of hit locations that produce a charge loss 
exceeding δq in FG #1 regardless of whether this ion hit does or does not affect any other FGs. 
The expected number of these events in FG #1 is the expected number of hits to the set S1(L,δq), 
which is the area of S1(L,δq) (the cross section) multiplied by fluence. Similarly, the expected 
number of these events in FG #2 is the area of S2(L,δq) (the cross section) multiplied by fluence. 
The sum of these expected numbers is obtained by multiplying the sum of the cross sections by 
fluence. This is true regardless of whether the two sets, S1(L,δq) and S2(L,δq), have any overlap, 
but this counting convention counts the number of events, not the number of ion hits. For 
example, if one ion hit produces an event in both FG #1 and FG #2, the count is 2 (for two 
events), not 1 (for one ion hit). This counting convention is convenient, and will be mentioned 
again in Section XII when ion trajectories at angles are discussed, because the number of counts 
summed over a collection of FGs is obtained from the sum of cross sections regardless of 
whether there is or is not overlap. If there is overlap, the sum of cross sections will be larger than 
the area of the union of the point sets.   
  

                                                 
3 A distinction will be made later (Section VI) between weak and strong interactions. We do not expect overlapping 
sets for strong interactions from normal incident ion hits when FGs are laterally separated (i.e., not one above 
another), but there might be overlap for weak interactions. 
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A
SP sat

sat
σ

=)tohit(1' .                     (4) 

 
 Note that a single randomly selected ion that produces a charge shift must also hit the 
region Ssat, so 
 

) hit to()( 11 satSandqQPqQP δδδδ >=> '' . 
 
 Using the definition of conditional probability to rewrite the right side gives 
 

) hit to() hit to()( 111 satsat SPSqQPqQP ''' |δδδδ >=> ,                           (5) 
 
where P1’(δQ > δq | hit to Ssat) is a conditional probability; the probability that the ion hit will 
produce a charge loss that exceeds δq, given that this ion hit the region Ssat. Combining (3) and 
(4) with the above gives 
 

∫
∞

=>
01 ),()(

)0(
1) hit to( dLqLLh

H
SqQP

sat
sat δσ

σ
δδ |' .          (6) 

 
 Note that the area A does not explicitly appear on the right side of (6). This area still has 
an implicit role in that it defines fluence, which is actually a macroscopic quantity. By letting A 
be large enough so that Ntotal is large enough to have a definite (instead of stochastic) value, the 
fluence can be defined by dividing Ntotal by A. The fluence is homogeneous when any portion of 
SA has the same probability of being hit by an ion of a given LET as any other portion having the 
same area. By combining these equal probabilities with a definite value of Ntotal, we have 
calculated the probability that a small portion of SA will be hit, even if that portion is too small 
for a large number of hits, and this makes a connection between a macroscopic fluence and 
microscopic statistics. However, when the meaning of fluence is understood, the area A has no 
further role in this analysis. 
 Having calculated the conditional probability in (6), we can use this to assign 
probabilities to events in a different sample space. This sample space is the set of all possible 
outcomes allowed by the condition that there is exactly one ion hit to the region Ssat. The ion can 
have any LET with probability determined by relative abundances of different ions in the 
environment. This sample space is a subset of the larger sample space (in which there were Ntotal 
hits to a macroscopic region SA) that the conditional probability in (6) applies to. Therefore, the 
probability, denoted P1(δQ > δq), that a randomly selected hit will produce a charge loss 
exceeding δq in this sample space is given by 
 

∫
∞

=>
01 ),()(

)0(
1)( dLqLLh

H
qQP

sat
δσ

σ
δδ .               (7) 

 
 To shorten the notation, we define F by 
 

)()( 1 qQPqF δδδ ≤≡ .                       (8) 
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The direction of the inequality was selected to satisfy the usual convention for a cumulative 
probability distribution, that F(δq) increases with increasing δq. Note that the condition δQ > 0 is 
implied for this sample space because, as discussed in the previous section, any ion hit to the 
region Ssat produces a greater-than-zero charge loss. Using this fact with (8), we conclude that 
F(0) is defined and equal to zero, as is the limit of F(δq) as δq → 0+, so F(δq) is continuous at δq 
= 0. Note that the conditions δQ > δq and δQ ≤ δq are mutually exclusive and all-inclusive, so (8) 
can be written as 
 

∫
∞

−=>−=
01 ),()(

)0(
11)(1)( dLqLLh

H
qQPqF

sat
δσ

σ
δδδ ,          (9) 

 
where the second equality used (7). As a consistency check, note that (2) and (9) produce 
agreement with the earlier statement that F(δq) → 0 as δq → 0+. 

The probability density function associated with F, denoted f, is given by 
 

∫
∞

−=≡
0

),()(
)0(
1)()( dLqLLh

qd
d

H
qF
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dqf

sat
δσ

δσ
δ

δ
δ .           (10a) 

 
 Integrating (10a) while using F(0) = 0 gives 
 

)()(
0

qFdxxf
q

δ
δ

=∫ .                       (10b) 

 
In particular, because F(δq) → 1 as δq → ∞, we have the normalization condition 
 

1)(
0

=∫
∞

dxxf .                         (10c) 

 
 The cumulative probability function and the probability density for the single-hit sample 
space given by (9) and (10a) are the essential results derived in this section. 
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where the second equality was obtained by changing integration variables, and G1 is given, via 
(9), by  
 

∫
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 As a reminder, f is given by 
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and satisfies 
 

)(1)( 10
xGdf

x
−=∫ ξξ .                   (15d) 

  
From the probability interpretation of Gn given by (13), it is evident that the following 

conditions apply: 
... 2, 1, all and 0 allfor 1)()(0 1 =≥≤≤≤ + nxxGxG nn          (16a) 

 
... 2, 1, allfor 1)0()(lim

0
===

→
nGxG nn

x
             (16b) 

 
... 2, 1, allfor 0)(lim ==

∞→
nxGn

x
               (16c) 

 
0 allfor 1)(lim ≥=

∞→
xxGn

n
.                (16d) 

 
... 2, 1, all and 0 allfor 1)( =≤= nxxGn             (16e) 

 
... 2, 1, allfor )()(  then If 2121 =≥∞<≤<∞− nxGxGxx nn .      (16f) 

 
All of the properties listed in (16) can be shown to be consistent with (15). Each 

inequality in (16a) is most easily proven from (15) by mathematical induction while recognizing 
that a larger integrand on the right side of (15a) produces a larger left side. The property (16b) is 
evident from inspection of (15a) while recognizing that G1(0) = 1. Verification of the property 
(16c) is postponed to the next paragraph because some discussion is needed. The property (16d) 
is seen to be consistent with (15) by using (15d) to conclude that (15a) is satisfied when Gn+1(x) 
and Gn(ξ) are both replaced by 1. Property (16e) is seen to be consistent with (15a) by noting that 
a negative x produces an integration interval in (15a) on which f = 0, so (15a) gives Gn+1(x) = 
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G1(x) = 1. Because of this property, numerical integrations utilizing the recurrence relation (15a) 
are needed only when x > 0. To show that property (16f) is consistent with (15a) we must first 
show that (16f) applies when n = 1. Recall from Section II that the cross section σ(L,δq) is the 
area of S(L,δq), which is the set of points (x,y) satisfying W(L,x,y) > δq. This implies that σ(L, 
δq1) ≥ σ(L, δq2) when δq1 ≤ δq2. This fact, together with (15b), while noting that h(L) ≥ 0, implies 
(16f) when n = 1. To establish (16f) for n = 2, 3, … , we use (15a) to get 
 

=−+= ∫+
1

0 11111 )()()()(
x

nn dxGfxGxG ξξξ  

∫∫ −−−+ 2

1

2 )()()()()( 10 111
x
x n

x
n dxGfdxGfxG ξξξξξξ . 

 
When x1 ≤ x2 we can use (16e) in the integral on the far right and then use (15d) to get 
 

∫∫∫ −+=−−+=+
22

1

2

0 1210 11111 )()()()()()()()(
x

n
x
x

x
nn dxGfxGdfdxGfxGxG ξξξξξξξξ . 

 
The last step uses the above equation in a simple proof by mathematical induction to establish 
(16f) for n = 2, 3, … . 
  Property (16c) requires some discussion because its validity requires the function G1 to 
have this property. This was already tacitly assumed in the statement above (10c) (note that F = 
F1 = 1‒ G1, so the statement that F → 1 is equivalent to G1 → 0). This is clearly correct for any 
real case because the ion LETs in any real environment are limited to a finite range (the upper 
integration limit in (3) can still be infinite because the flux is zero at LETs larger than contained 
in the environment), and any finite LET can only produce a finite charge loss even at the worst 
possible hit location, so there is some maximum charge loss, call it δqmax, satisfying G1(δq) = 0 
when δq > δqmax. However, models sometimes use simplifying approximations that might not 
agree with all aspects of reality. We assume that any approximation that might be used for the 
function f will satisfy (10c), which implies that G1 satisfies (16c). It is shown in Appendix A that 
(15) then implies (16c) for each n. 
 It is interesting to consider expected values for the sample spaces. For the single-hit 
sample space, the expected value of δq, denoted < δQ >, is defined by 
 

∫
∞

≡
0

)( dxxfxQδ .                       (17a) 

 
For the sample space consisting of n hits, the expected value of the accumulated charge loss is 
denoted En[ΔQ] and defined by 
 

∫
∞

≡∆
0

)(][ dxxfxQE nn ,                    (17b) 

 
where the probability density fn is defined by 
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)()( xG
xd

dxf nn −≡ .                     (18) 

 It is well known from statistics that 
 

QnQEn δ=∆ ][ .                       (19) 
 
As a check for consistency, note that (19) can be derived from (15). This is shown in Appendix 
A. 
 Note the competing limits in (16c) and (16d). Because of this, a value of Δq that is large 
enough to satisfy Gn(Δq) ≈ 0 depends on how large n is. A larger n requires a larger Δq for the 
approximation to apply. Similarly, a value of n that is large enough to satisfy Gn(Δq) ≈ 1 depends 
on how large Δq is. A larger Δq requires a larger n for the approximation to apply. We can get 
some additional information by taking the limit as n and Δq increase together. It can be shown 
from (15) that 
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15 

hits to this region. This constant is an adjustable fitting parameter if there is not enough available 
information for it to be known. No hit to the region SS(L,δq) will produce a charge loss greater 
than δq if δq is greater than L/a1, but a hit anywhere to the region SS(L,δq) will produce a charge 
loss greater than δq if δq is less than L/a1. Therefore, the strong interaction cross section is the 
step function given by 
 





>

<
=

1

1,

/if0

/if
),(

aLq
aLq

qL satS
S δ

δσ
δσ .                 (24a) 

 
Since the model is intended to be only a data fitting tool, analytical simplicity is given a 

higher priority than physical accuracy so we treat the weak interactions in the same way as the 
strong interactions. Specifically, the cross section for weak interactions is approximated by 
another step function, given by 
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qL satW
W δ

δσ
δσ ,                 (24b) 

 
where σW,sat and a2 are two more adjustable fitting parameters, having the same interpretations 
for weak interactions that the parameters σS,sat and a1 have for strong interactions. It should be 
noted that the use of a step function is not a new idea for curve-fitting applications. Specifically, 
for SEE rate calculations, the RPP model explained in [7] is not physically correct (because 
charge collection is not as simple as predicted by a sensitive volume model [8]), but the 
integrated RPP model (the IRPP model) constructed from the RPP model by including a 
statistical distribution of critical charges has been successful enough to be the most commonly 
used model for SEE rate calculations. The reason is that a suitably selected statistical distribution 
of critical charges (usually a Weibull function with some adjustable parameters) is able to 
compensate for error in the physical model. Similarly, error in the simplifying assumption (24b) 
can be at least partially compensated by a suitably selected statistical distribution of critical 
charge losses. The inclusion of a statistical distribution of critical charge loss will be done for the 
general case later in Section VIII, while data discussed later in Section X indicate that a Weibull 
function is the best choice, but for the present discussion, it is enough to know that errors in the 
physical model used in this section can be at least partially compensated by introducing some 
adjustable fitting parameters in later sections. With this simplified model, the total cross section 
is the sum given by 
 

satWsatSsatWS qLqLqL ,,),,(),(),( σσσδσδσδσ +=+= .        (24c) 
 

To calculate the probability in (23), we must calculate the functions Gn. We start with G1 
by using (15b) with (24) to get 
 

( ) ( )
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H
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=                (25a) 

and (15c) gives 
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( ) ( )
sat
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H
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)0(
)( ,22,11 +
= .              (25b) 

 
 The remaining functions G2, G3, …, are calculated from (25) together with either (14) or 
(15a). These calculations require that the four parameters a1, a2, σS,sat, and σW,sat be known. When 
known, numerical values can be assigned to Δq and then the probability P(ΔQ > Δq) can be 
calculated from (23). 
 A “charge loss event” (CLE) is defined by the condition that the accumulated effective 
charge loss exceeds some critical value, call it ΔqC. For example, the critical value might be the 
value at which the device circuitry signals that the FG has become deprogrammed. Or, the 
critical value might be the value at which the threshold voltage shift in a surrounding FET 
exceeds one volt (or some other amount selected by an experimenter measuring threshold 
voltage shifts). The probability of a CLE, denoted P(CLE), is the probability given by (23) 
evaluated at Δq = ΔqC when ΔqC ≥ 0. However, a modification needed to treat the case of a 
negative-critical-charge loss is needed and can be understood after explaining the meaning of a 
negative-critical-charge loss. A critical-charge loss that is negative is interpreted to mean that 
prior to any irradiation the FG charge was already too small for the FG to be sensed as being in 
the charged (programmed) state. A charge-loss event is experimentally recognized by the charge 
state, so this FG will be experimentally identified as having undergone a CLE prior to any 
irradiation. In other words, any FG with a negative ΔQC (i.e., any FG that was insufficiently 
charged prior to irradiation) is regarded as having already undergone a CLE prior to any 
irradiation. The probability of a CLE in this FG is 1, regardless of the amount of irradiation. The 
modification of (23) evaluated at Δq = ΔqC needed to produce this result is 
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where U is the unit step function defined by U(x) = 1 when x > 0 and U(x) = 0 when x ≤ 0. This 
produces the desired result because, if we take the limit as ΔqC approaches zero from above and 
use (16b), we find that the curly bracket becomes a series expansion for exp[H(0)σsat] ‒1, so the 
probability becomes 1‒exp[‒H(0)σsat]. This can be recognized (via the Poisson distribution) to be 
the probability of one or more ion hits to the region Ssat, which is the expected result. However, if 
ΔqC is negative, the step function contributes and this, together with (16e), implies that the curly 
bracket is a series expansion for exp[H(0)σsat], so the probability becomes 1, which is the 
required result. 
 Eq. (26) can be used as is for numerical calculations if the numerical routine starts with 
(25) and then numerically evaluates one of the integrals in (15a) to obtain G2, G3, etc. Numerical 
integrations are needed only when x > 0 because of (16e). But (26) has a disadvantage from the 
point of view of analysis because the dependence of P(CLE) on σS,sat or σW,sat is obscured by an 
implicit dependence contained in Gn. An equation that is more useful for analysis is one that 
explicitly shows the dependence on σS,sat and σW,sat. Such an equation can be obtained by first 
defining Cm,n(x), Dm,n(x), and Em,n(x) by 
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 The parameters defined by (27) are constructed from the environmental fluence, 
evaluated at arguments that depend on a1 and a2 which describe FG sensitivities, but do not 
depend on the cross sections σS,sat or σW,sat. It is shown in Appendix B that (26) can be written as 
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We also define U-bar, the compliment of the unit step function, for later use by 
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We often (e.g., when evaluating integrals containing continuous functions) do not have to make a 
distinction between U-bar(x) and U(‒x), but a distinction is needed when the discontinuous point 
at x = 0 has some significance. Substituting (30) into (29) gives 
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 A CLE occurs when Δq = ΔqC. Evaluating the above probability at this point gives 
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 The results in (32) are useful for revealing some properties, such as the behavior of 
P(CLE) when Hσsat is small enough for the infinite series to be approximated by the first few 
non-vanishing terms, but the infinite series is not convenient for most numerical calculations. For 
the purpose of numerical calculations, it is convenient to replace the infinite series by an 
expression containing a finite sum. This is done by expressing the exponential function as a 
power series to get 
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and combine this with (32) to get 
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U-bar is zero when m and/or n are sufficiently large, so only a finite number of terms contribute 
to the sums on the right sides of (34). Note that U-bar can be omitted from the right sides of (34) 
by imposing suitable restrictions on the summation indices. But including U-bar with an 
unrestricted sum, instead of omitting U-bar and using a restricted sum, is more convenient for the 
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analysis in the next section. As a check for consistency, note that a positive Δq that is sufficiently 
close to zero results in only the m = n = 0 term contributing to the double sum in (34a), so the 
probability becomes 1‒exp[‒Hσsat]. This can be recognized (via the Poisson distribution) to be 
the probability of one or more ion hits to the region Ssat, which is the expected result. 
 The second derivation of (32b), which implies (34b), requires only two steps because this 
derivation utilizes (28). The first step uses h(ξ) = H(0)δ(ξ ‒ LT) (where δ is the Dirac δ-function) 
and H(ξ) = H(0)U(LT ‒ ξ) with (27) to get 
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The second step substitutes this result into (28) to obtain (32b). 
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with negative- or positive-critical-charge losses and that received one or more hits to produce a 
CLE. 

An alternate expression for P(CLE|ΔQC = ΔqC), applicable only to the FG model used 
here, is the right side of (28). Using this expression with (35) gives 
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Finally, we consider a pure spectrum. For this case, we can express P(CLE|ΔQC = ΔqC) 

as the right side of (32b) or as the right side of (34b), so that (35) gives 
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 Eq. (39a) is less cumbersome than (39b) and also more easily reveals analytical 
properties of some limiting cases (as seen in the next section). However, it has a disadvantage 
from the point of view of numerical evaluations because it is not obvious, when the case 
considered is not a limiting case, which terms need to be included in a sum in order to make a 
finite sum accurately approximate the double infinite series. A more useful equation from this 
point of view is (39b). 
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At this point it is necessary to recognize the distinction between probability and expected 

numbers. For the classic SEU problem, the expected number of upsets is proportional to fluence 
and increases without bound as the fluence increases without bound (we are considering the case 
in which upsets are reset so that multiple upsets are possible). In contrast, a probability cannot 
exceed 1 and, therefore, is not proportional to fluence. An approximate proportionality is 
obtained when the fluence is small enough to make the expected number small enough to make 
the probability approximately equal to the expected number. We, therefore, confine our attention 
to this small-H limit. In this limit, the exponential function in (40) is replaced by 1 and only the 
first two terms in the sum are retained. The result is 
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 The first term on the right side of (41) represents those FGs that were insufficiently 
charged prior to irradiation. If these can be neglected, only the second term remains. We assume 
this to be the case so a cross section for a CLE (a function of LET and experimentally defined to 
be counts divided by fluence for the selected LET) becomes a useful quantity because it is 
independent of the fluence. This per-bit cross section is denoted here as σCLE and is defined to be 
the number of CLE counts (summed over FGs) divided by fluence (for a device cross section) 
and then divided by the number of FGs in the device (to convert to a per-bit cross section). 
Recognizing the probability on the left side of (41) as the number of counts divided by the 
number of FGs in the device, a change in notation writes this approximation as 
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B. Dose-Like 

 We now consider the opposite extreme case of small LET so that the fluence needed to 
produce a statistically significant number of counts is large enough to make the number of ion 
hits to a given device region large enough to be approximated by the statistical average number 
of hits. For this application it is helpful to regard the right side of (39a) as a weighted average of 
the quantity 
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with a normalized (because the sum in m and n from zero to infinity is 1) weight factor given by 
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When H is sufficiently large (the case assumed here), a plot of the weight factor in (44) versus m 
or n produces a peak at m ≈ HσS,sat and n ≈ HσW,sat, with the weight factor having much smaller 
values at other values of m or n. Summations using this weight factor are (when H is sufficiently 
large) analogous to integrals containing Dirac delta functions. The weighted average of the 
quantity in (43) can then be approximated by the value of this quantity evaluated at m = HσS,sat 
and n = HσW,sat. Using this approximation, (39a) becomes 
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which can also be written as 
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where NCLE is the number of bits in the device that experienced a CLE, and Nbit is the total 
number of bits in the device. If the irradiation is measured by ionizing dose instead of fluence 
and LET, it is convenient to use 

DLH T mg-rad
MeV1025.6 4×

= ,                    (46) 

 
where D is the dose in SiO2 (the LET should also be in SiO2) and the numerical coefficient is a 
unit conversion factor where MeV/rad-mg is a designator of the units. 
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we can define CLE cross sections for each of these ions. Dividing counts by fluence and dividing 
by the number of bits in the device (about 2.21 Gbits) to convert to a per-bit cross section 
produces Table I. Note that the largest event cross section in Table I is comparable to (perhaps a 
little larger than to account for track radius) the physical area of the FG (about 0.1μm × 0.1 μm), 
indicating that a count is produced by a single, strong interaction. 
 
 
 

 
 
Fig. 1: Counts versus fluence, for each of several LETs, taken from [3]. The LETs in the figure legend were 
recalculated for SiO2 and are Ar 5.7, Kr 20, Xe 41, Br 43.7, and Ho 72. Note that the LET in the legend for Xe 
(angle) was calculated from the cosine law which does not apply to FGs. The true effective LET is expected to be 
slightly greater than 41. 
 
 

TABLE I: CROSS SECTIONS AND LETS FOR THE SEU-LIKE DATA IN FIG. 1 
Ion Ho Br Xe (angle) Xe (normal incidence) 
LT 

(MeV-cm2/mg) 
72 Between 

43.7 and 44.7 
Effective is slightly 

greater than 41 
41 

σCLE (cm2 per bit) 1.3×10‒10 2.3×10‒11 1.2×10‒11 2.0×10‒13 
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Fig. 2: The curves are fits and the parenthesis in the curve labels are the LETs in SiO2. The points in this figure are 
the ones used to determine the fitting parameters. The Ar points are reproductions of data points in Fig. 1. The other 
points are not, but were selected so that a good fit to these points will also be a good fit to the data points in Fig. 1 
for the indicated ion. 
 
 

TABLE II: FITTING PARAMETERS USED TO CONSTRUCT FIG. 2 
b1 

(MeV-cm2/mg) 
b2 

(MeV-cm2/mg) 
σS,sat 
(cm2) 

σW,sat 
(cm2) 

 
k 

49.0 3811 1.10×10‒10 7.21×10‒9 7.643 
 
 

Fig. 2 is a fit to the Fig. 1 data and the objective of the remainder of this section is to 
explain how Fig. 2 was constructed and then discuss its implications. The first step is to select 
the cumulative distribution function that will be used to represent FG-to-FG (a.k.a., bit-to-bit) 
variations of the critical charge loss. Several choices were tried with the data in Fig. 1. The first 
one that was tried is a normal distribution. Unfortunately, any choice for the standard deviation 
that was able to fit the Ar data would predict an unrealistically large number of FGs that were 
already deprogrammed prior to any irradiation (i.e., had insufficient initial charges). The next set 
of distributions that were tried were student-t distributions with various numbers of degrees of 
freedom. Unfortunately, these all produced the same problem as the normal distribution. 
Specifically, any combination of standard deviation and number of degrees of freedom that was 
able to fit the Ar data would predict an unrealistically large number of FGs that had insufficient 
initial charges. This problem can be avoided by using the beta distribution because a 
characteristic of this distribution is that the random variable is confined to a finite interval. This 
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confinement is physically reasonable for the critical charge loss if there is no physical 
mechanism for charging with a reverse polarity, and there is an upper bound to the charging 
voltage. However, it was discovered that, at least for the data in Fig. 1, the best fit obtainable 
from the beta distribution is indistinguishable from the best fit obtainable from the Weibull 
distribution, even though the Weibull distribution has fewer adjustable parameters (here we are 
counting independent parameters that remain after redundant parameters are combined with a1 
and a2). The Weibull distribution will be used here so that F is given by 
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where k is the shape parameter and λ is the scale parameter. This gives 
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where b1 and b2 are defined by 
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Substituting (48) into (39b) gives 
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The final fitting parameters are b1, b2, σS,sat, σW,sat, and k. The physical interpretation of 

the b-parameters can be understood if we recall that the a-parameters were defined in such a way 
so that the ion LET divided by a1 is the charge loss from one strong interaction. Using this fact 
together with (49) we conclude that the LET divided by b1 is this charge loss divided by λ. But λ 
is a characteristic value of the critical-charge loss,6 i.e., the charge loss needed to produce a CLE. 
Therefore a small value of b1 implies that a small LET is enough to make the charge loss exceed 
the critical-charge loss via a strong interaction. In other words, b1 is a measure of the sensitivity 
of the FGs to CLEs via strong interactions, with a smaller value of b1 implying greater 
sensitivity. The parameter b2 has the same interpretation for weak interactions that b1 has for 
strong interactions. 

Note that the scale parameter λ is not required to be known if b1 and b2 replace a1 and a2 
as fitting parameters but there is a penalty for λ being unknown. The penalty is that if the 
b-parameters are evaluated by fitting test data produced by a laboratory radiation environment, 

                                                 
6 If there were no FG-to-FG variations (which is the large-k limit in (47) and produces a step function) λ would be 
the critical-charge loss. With FG-to-FG variations in the critical-charge loss, λ is the value of the critical-charge loss 
that is exceeded by only about 37% (which is 1/e converted to percent) of the FG population.  
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these same parameters can be used to predict the CLE probability in a different (application) 
radiation environment only if the statistical distribution of critical-charge losses is the same in 
both environments. In other words, biasing conditions and the amount of charge loss that defines 
a CLE must be the same in the laboratory as in the application. To make these statements 
intuitively clear, consider the special case in which all FGs have the same critical-charge loss 
ΔqC. For this special case, we would have b1 = a1ΔqC and b2 = a2ΔqC. If b1 (for example) is 
determined via fits to data under laboratory conditions without any knowledge of ΔqC, then a1 
and ΔqC are individually undermined, it is only the product a1ΔqC that has been determined. This 
same product can be assumed when making predictions for an application only if biasing 
conditions and the definition of a CLE are such that ΔqC is the same under application conditions 
as it was under laboratory conditions.  

We now revisit the data in more detail. Note that the LET of the Xe ions is very different 
than the LET of the Kr ions (41 for Xe in SiO2 compared to 20 MeV-cm2/mg for Kr), but the Xe 
(normal incident) data in Fig. 1 is essentially the same as the Kr data. The model cannot account 
for this because it assumes that LET is an adequate description of an ion. Furthermore, the Br 
LET (43.7 MeV-cm2/mg in SiO2) is nearly the same as the Xe LET so the model cannot account 
for the wide separation between the Xe (normal incident) data and the Br data in Fig. 1. We will, 
therefore, not attempt to fit the Xe (normal incident) data. The data used to estimate the fitting 
parameters are from Ho, Br, Kr, and Ar. Using the method in Appendix C for this data set 
produces the fitting parameters in Table II. With these parameters evaluated, the model can then 
make predictions for all ions, including those not used to determine the fitting parameters (such 
as Xe and Cl), and the results are shown in Fig. 2. Note that the model gives a conservative 
representation of the Xe (normal incident) data, but a fairly good representation of the other ions. 

A noticeable characteristic of the curves in Fig. 2 is that those curves that do not resemble 
straight lines are concave upward. This is also seen in the Ar data points in Fig. 1. There are at 
least two tendencies for this behavior. The first requires bit-to-bit variations, but does not require 
weak interactions. For illustration, consider an LET such that some bits can be upset by two (for 
example) strong interactions, but most require three. At small fluences, only the first population 
of bits significantly contributes to the counts. However, as the fluence increases so that the 
probability of three hits increases, the main contribution is now from the second population. A 
straight-line extrapolation of the small-fluence behavior would properly describe the first 
population. However, the actual number of counts reflects an increasing contributing bit 
population and, therefore, increases faster with increasing fluence than this straight-line 
extrapolation. A second tendency requires weak interactions, but does not require bit-to-bit 
variations. For illustration, consider an LET such that a CLE requires three (for example) strong 
interactions when there is no contribution from the weak interactions. At small fluences, there is 
little help from the weak interactions so the probability of a CLE is the probability of three or 
more strong interactions. However, as the fluence increases the number of weak interactions 
increases and reaches a point (at some sufficiently large number) at which only two strong 
interactions must be added to the weak interactions to produce a CLE. A straight-line 
extrapolation of the small-fluence behavior would properly describe the case in which there are 
no weak interactions. However, the actual number of counts reflects the fact that, at some 
sufficiently large fluence, the weak interactions reduces the number of strong interactions 
required for a CLE, so the actual number of counts increases faster with increasing fluence than 
this straight-line extrapolation. 
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A. The General Addition Formula 
The simplification provided by the dose-like property of an environmental contribution 

becomes clear after deriving a more general addition formula. Suppose a radiation environment 
is represented by a differential fluence hadd(L) added to another differential fluence h(L) so the 
total differential fluence hT(L) is given by hT(L) = h(L) + hadd(L). Let P(ΔQT > Δq) be the 
probability that the charge loss will exceed Δq when the radiation environment is hT, P(ΔQ > Δq) 
is this probability when the environment is h, and P(ΔQadd > Δq) is this probability when the 
environment is hadd. The first probability can be expressed as 
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where the square bracket is the probability density for the charge loss from the environment h to 
be ξ, and the conditional probability P(ΔQT > Δq | ΔQ = ξ) is the probability that the charge loss 
from the environment hT will exceed Δq given that the charge loss from the environment h is ξ. 
Given this condition, the charge loss from the environment hT will exceed Δq if and only if the 
charge loss from the environment hadd exceeds Δq ‒ ξ so 
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and the equation for P(ΔQT > Δq) becomes 
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B. The Addition Formula when a Contribution is Dose-Like 
A simplification occurs when the added environment hadd is the dose-like environment 

hD. The added charge loss is deterministic so 
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and combining this with (53) when ΔQadd is ΔQD gives 
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Using (23) to rewrite the right side gives 
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 Note that the G-functions in (55) are constructed from the fluence h, not hT, via (15a) and 
(25). When the critical charge loss ΔqC is positive, the probability of a CLE given that the critical 
charge loss is ΔqC is P(ΔQT > Δq) evaluated at Δq = ΔqC. The lower expression in (55) is not 
used when Δq is negative (because it cannot exceed ΔqD) so it is not necessary to add a unit step 
function to the sum in the lower expression in (55) as was done in (26). The result is 
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so (35) gives 
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A change in the integration variable produces an equivalent result given by 
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where ΔqD is given by (52). Recall that the G-functions are constructed from the fluence h, so the 
addition of a dose-like environment does not change these functions. 
 

C. Adding a Dose-Like Contribution to a Pure SEU-Like Spectrum 
 A particular application of (57) is the case in which a dose-like environment is added to a 
pure spectrum that produces an SEU-like response. This might be able to provide an alternate 
testing methodology as discussed later. Before discussing an alternate methodology we first 
explain why an alternate methodology might be desired. This explanation begins with a 
discussion of the original methodology which produced the data (Fig. 1) for the example in 
Section X. Recall that very large fluences (109/cm2 or more) were used at the smallest LETs to 
produce some of the points in Fig. 1. These fluences are much larger than expected from a space 
radiation environment. For SEE testing, it is typical for test conditions to use fluences much 
larger than expected from a space environment in order to obtain data having enough statistical 
significance for reliable risk estimates, but a heavy-ion fluence of  109/cm2 is extreme even from 
the point of view of standard SEE test procedures. It might be argued that a laboratory fluence 
should not be required to exceed an application fluence by more orders-of-magnitude than 
needed to obtain the statistical significance required for a risk estimate. But a counter-argument 
points out that if an application radiation environment is different than the laboratory 
environment, a device must be completely characterized in order to use test data to make 



34 

predictions for the application environment. For the case of prompt charge loss in FGs (at least 
for the example in Section X), a very large fluence at the smaller LETs is needed to completely 
characterize the device. A smaller fluence will either produce no counts or exhibit SEU-like 
behavior because the only FGs observed are those that require only one hit to produce a CLE. 
The FGs that require multiple hits to produce a CLE do not become observable in the test data 
until the fluence is large enough so that a statistically significant number of these FGs receive 
multiple hits. Though not observable at small fluences, information about these FGs is still 
needed in order to use laboratory data to predict device response in a different environment, 
hence the need for very large fluences at the smaller LETs when all testing is done with heavy 
ions. Appendix D gives a recommendation on how to select LETs and fluences for a complete 
characterization. 

Motivated by a desire to use smaller heavy-ion fluences, small enough to produce SEU-
like behavior, an alternate test method might be considered. This method exposes a set of devices 
to various levels of ionizing dose after programming but before (and without refreshes) 
performing heavy-ion tests. If the model is valid under these test conditions, it can be used to 
obtain at least a partial characterization of the device from such test data (as explained later). 
Unfortunately there is a very serious limitation regarding model applicability to this test method. 
The model is intended to describe FG charge loss but not TID effects in the sensing circuits.7 
Therefore the model applies only to qualified devices, which are devices having the property that 
there is some dose level large enough to produce an observable FG charge loss but still small 
enough to negligibly affect the sensing circuits. In other words, the FGs must be more 
susceptible to TID than the sensing circuits. Given that a qualified device (e.g., a test structure 
designed for this purpose) has been found, model validity would be tested by showing that the 
same model parameters used to fit a complete set of heavy-ion data (the type of data illustrated in 
Fig. 1 that includes fluences large enough to extend outside the SEU-like behavior) will also 
produce a fit to the data obtained from the alternate test method. Unfortunately, a qualified 
device that was tested by both methods has not yet been found in the literature. Data from the 
alternate test method are given in [10] for an example device but heavy-ion data at fluences large 
enough to extend beyond the SEU-like behavior are not given. Therefore no example 
comparisons with data can be given here. Determining which, if any, commercial devices (e.g., 
flash memories) are qualified devices is a topic for future work, and determining whether model 
predictions are correct for these devices is also a topic for future work. What is given below is 
the model prediction that is to be compared to data in future work. 
 To derive the model prediction of how TID should be expected to influence SEU-like 
(i.e., small-fluence) heavy-ion test data, it is necessary to add a dose-like environment to a pure 
spectrum in the model. Recall that the G-functions in (57) are constructed from the fluence that 
is added to the dose contribution, with the former fluence being a pure spectrum in this analysis. 
The G-functions for a pure spectrum were calculated in Appendix B with the result (in Appendix 
B notation) given by (B9b). This gives 
 
 

                                                 
7 The meaning of a sensing circuit for a NAND flash memory is as follows. A read operation copies a page of data 
from the memory into a page buffer. Individual bit states are read by assessing the page buffer. The sensing circuit 
includes all circuit elements that participate in this operation. In addition, the threshold voltage of an FET within the 
memory is compared to a reference voltage. The sensing circuit also includes the comparator and the circuit that 
produces this reference voltage. 
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where the H on the right side is the heavy-ion test fluence. Combining this with (57) gives 
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 The same arguments that converted (39a) into (42) applied to the above equation gives 
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which can also be written as 
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The terms in (58) have physical interpretations. The expected number of strong 

interactions in a randomly selected FG from the heavy-ion testing is HσS,sat. The quantity F(ΔqD) 
is the probability that an FG had already produced a CLE, i.e., already failed, from the dose 
exposure prior to the heavy-ion testing. This quantity is multiplied by 1 − HσS,sat, instead of 1, in 
the first term on the right side of (58) so that the first term will include only that subset of 
already-failed FGs that received no strong interactions during the heavy-ion test. In other words, 
the first term does not include any FGs that did receive a strong interaction during the heavy-ion 
test. This is appropriate because all such FGs are included in the second term on the right side of 
(58). However, a simple approximation can be used. A fluence small enough to produce SEU-
like behavior is small enough for the number of FGs that received multiple strong interactions to 
be negligible compared to the number that received a single strong interaction. This implies that 
the test fluence is small enough so that the expected number of strong interactions in a randomly 
selected FG is much less than 1, i.e., HσS,sat << 1. The approximation for (58) becomes 
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The cross section for a charge-loss event, denoted σCLE, is defined here to be number of 

additional CLEs (where additional means those above the pure dose contribution, i.e., produced 
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during the heavy-ion testing) divided by the additional test fluence H (again, additional means 
the fluence applied after the dose exposure, i.e., applied during the heavy-ion testing). This is 
P(CLE) − F(ΔqD) divided by the test fluence so (59) gives 
  

dose) plus like-(SEU
1

, 







∆+= D

T
satSCLE q

a
L

Fσσ . 

 
Note that ΔqD is calculated from (52) so the above equation can also be written as 
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Specializing to the case in which F is the Weibull function in (47), and defining the b-parameters 
by (49), the above equation now becomes 
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 Note that the two fitting parameters b2 and σW,sat appear only in a specific combination, 
which allows us to reduce the number of fitting parameters. One way to do this is to define ω by 
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so that (60) can be written as 
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 The fact that (62) contains only four fitting parameters (which are b1, ω, σS,sat, and k) 
means that no amount of test data in which (62) applies will be enough to uniquely determine all 
five of the original fitting parameters (which are b1, b2, σS,sat, σW,sat and k). However, evaluation 
of the four fitting parameters contained in (62) via fits to data for which the model applies (recall 
that model applicability requires the device to be a qualified device) is at least a partial 
characterization of the device. If the application environment is also an SEU-like (small heavy-
ion fluence) contribution added to a dose-like contribution, this partial characterization should be 
sufficient for risk estimates in the application environment. 
 For a specific example, consider the example device discussed in Section X. Using the 
Table II parameters together with (51b) and (61) give ω = 0.0127 MeV-cm2/mg-krad. Using this 
with other Table II parameters in (62) produces Fig. 3. It was pointed out in [3] that this example 
device has a fairly low TID tolerance and cannot be expected to survive at doses greater than 
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about 40 krads. According to Fig. 3, even 100 krads will have such a small effect that it is 
unlikely to be discernable from experimental scatter. Therefore, even without data to compare to 
the model predictions in Fig. 3, we can conclude that the model cannot be used for this 
application for this example device. Also, although somewhat speculative without data to 
compare to the curves in Fig. 3, we can predict that if an application environment has a low 
enough TID level for this example device to be usable in that environment, then TID will also 
not be a significant contribution to FG charge loss for this example device. 
 
 

 
 

 
 

Fig. 3: Model prediction via (62) with Table II parameters. 
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environment will be represented by a flux or fluence versus LET table, instead of an analytical 
function, so all integrals containing fluence must be evaluated numerically. It is therefore not 
surprising that the required numerical work is much more cumbersome for a mixed environment 
than for a pure spectrum. A number of approximations designed to streamline the number 
crunching are used to reduce the numerical work for the mixed environment. Details are in 
Appendix E, which also includes a numerical routine. Even with these approximations, the 
routine does not run fast enough to be useful for trail-and-error curve fitting, so the routine in 
Appendix C is still needed for that, but the routine in Appendix E can be applied to mixed 
environments while the routine in Appendix C cannot. All of the approximations used for the 
mixed environment are in the conservative direction, meaning that the error associated with each 
approximation tends to make the calculated value of P(CLE) larger than would be obtained from 
an exact calculation. These errors can be made as small as desired by using suitable choices for 
grid points and the number of terms to include in a sum (details are in Appendix E), but the 
penalty is a longer computer run time. This will be discussed again later when some specific 
examples are considered.  

The objective of this section is to explain how to use the code in Appendix E, called 
PCLE_in_space.m, and how to construct input files. This code runs in the Octave (a GNU 
package) platform. The Weibull function is used to represent FG-to-FG variations so the fitting 
parameters used to fit test data are the ones discussed in Section X and are b1, b2, σS,sat, σW,sat, and 
k. It is assumed here that these parameters have already been evaluated via fits to test data using 
the method in Appendix C as illustrated by the example in Section X. The inputs needed by the 
routine in Appendix E consist of these parameters plus data (including two input files) describing 
the environment. The output of the routine is the probability, P(CLE), that a randomly selected 
FG will exhibit a CLE during the fluence exposure defined by the environmental inputs, given 
that the FG was refreshed (all prior charge loss, if any, has been restored) before the start of the 
fluence exposure. Therefore, the relevant fluence is the fluence accumulated since the latest 
refresh. The expected number of CLEs in a collection of FGs, e.g., a flash memory, is this 
probability multiplied by the number of FGs in the collection. Recall the counting convention 
that is used here to define expected numbers. Multiple FGs exhibiting a CLE are counted as 
multiple events regardless of whether they were all produced by the same ion hit or each was 
produced by a different ion hit. 

One of the input files is a two-column table of galactic cosmic ray (GCR) integral flux 
versus LET. Integral flux means that the flux includes all particles having an LET that exceeds a 
specified value. This flux table is most likely to be obtained from CREME96 [13]. The units are 
required to be those used by CREME96. Specifically, LET (first column) is in the units of 
MeV-cm2/g and flux (second column) is in the units of 1/m2-s-sr. Spacecraft shielding and 
planetary magnetic shielding (if any) are built into the input file. The GCR environment is 
regarded as constant in time, so flux is converted into fluence by simply multiplying by the 
number of days of exposure. This number is input via a prompt. The example GCR file, called 
GCR_flux.dat, included in Appendix E represents the GCR environment in interplanetary 
space (no magnetic shielding) with 100 mils of aluminum shielding. It represents the solar 
minimum time period (worst case for GCR) because this representation is typically used as an 
alternative to predicting future levels of solar modulation. Any changes in planetary magnetic 
shielding and/or spacecraft shielding must be made by using CREME96 to create a replacement 
for this data file. 
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The second input file is in the same format as the first, but represents a solar particle 
event. The CREME96 “worst-week flare” is used because there is a simple conversion from flux 
to fluence. The fluence is the flux multiplied by 7.5 days and this conversion is built into the 
code. Other solar particle fluences are treated by expressing them as a multiple or a fraction of 
the fluence from one CREME96 model flare. This number, identified as a “number of flares,” is 
entered via a prompt. The example file, called flare_flux.dat, included in Appendix E 
represents the model flare in interplanetary space (no magnetic shielding) with 100 mils of 
aluminum shielding. Any changes in planetary magnetic shielding and/or spacecraft shielding 
must be made by using CREME96 to create a replacement for this data file. 

Protons and/or electrons trapped in a planetary radiation belt (if relevant) are included in 
“additional dose” that is entered via a prompt. This includes all radiation that is not already 
included in the GCR or flare files with the assumption that these particles can be treated as dose-
like. GCR protons are unlikely to be a concern but flare protons are a concern. We have the 
option of including them either in the flare input file or at the prompt for additional dose (but not 
both because this will count the same particles twice). An advantage of the first choice is that 
these protons will be treated stochastically, whether necessary or not, so we do not have to guess 
as to whether it is appropriate to treat them as dose-like. In contrast, including them as additional 
dose instructs the code to treat them as dose-like. One advantage of the latter choice is that the 
code runs faster because fewer terms are included in a finite sum used to approximate an infinite 
series. Another advantage is that environmental data provided to flight projects typically include 
solar-event protons, added to all other significant contributions to dose, in the dose estimates. 
Such data can be used if protons are not included in the flare data file. The example files, 
GCR_flux.dat and flare_flux.dat in Appendix E, do not include protons. It is therefore 
necessary to include additional dose at the prompt in order to represent solar protons even if all 
other contributions to ionizing dose can be ignored. 

There is a final consideration regarding whether to treat particles as dose-like or 
including them in an input file. We will have a choice for realistic examples of proton or heavy-
ion environments (electrons will be treated as dose-like), but not for academic examples in which 
the expected number of particle hits to an FG (which is H(0)σsat in the equations or c1 in the 
Appendix E code) is several hundred or more. Such a large fluence input via a data file will 
either produce an unacceptably long run time, or cause the code to crash with an Octave-
generated error message stating that a convergence condition was not satisfied. The solution to 
this problem, if the problem is encountered, is to remove the most abundant particles from the 
data file and include them in the dose-like calculation. Fortunately, the same examples that 
require a dose-like calculation, because of large numbers of hits, are the examples for which a 
dose-like calculation is most accurate. 

We now consider two test cases to verify that the code, PCLE_in_space.m in 
Appendix E, is working properly on the user’s computer, and to get an idea of what to expect 
from the code. Both test cases consider a pure spectrum so that results from this code can be 
compared to the more accurate results obtained from the code PCLE_PUR.m in Appendix C. 
The latter code is more accurate when it applies (i.e., when the environment is a pure spectrum) 
because simplifications implied by a pure spectrum make conservative approximations 
unnecessary. Also note that the two codes are executed differently in the Octave command 
window because the latter is a function file. To run PCLE_PUR.m we first assign values (e.g., 
values used in the specific examples given below) in the Octave command window to b1, b2, 
s1 (abbreviated notation for σS,sat), s2 (abbreviated notation for σW,sat), k, L (abbreviated 
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notation for LT), and the fluence H and then enter in the Octave command window the command 
PCLE_PUR(b1,b2,s1,s2,k,L,H). In contrast, PCLE_in_space.m is a routine that 
accepts inputs from prompts and from at least one of two input files, as illustrated by the 
examples. 

To make the first example more specific, suppose the FG parameters are those in Table II 
and the ion LET is 12.4 MeV-cm2/mg, which produced the Cl curve in Fig. 2. Consider, for 
example, the point on the curve produced by a fluence H equal to 106/cm2. Using these inputs 
with PCLE_PUR produces the estimate P(CLE) = 3.0567×10‒9. In order to give the same input 
information to PCLE_in_space.m, we have to compensate for unit conversions. This is done 
by constructing the GCR_flux.dat file to contain two lines which are 

 
1.010E+002,  9.21E+003 
1.240E+004,  9.21E+003 

 
The code interprets these lines to mean that all particles have an LET greater than or equal to 101 
MeV-cm2/g (or 0.101MeV-cm2/mg) because this LET is the first entry and the first entry is 
interpreted by the code to include all particles of interest. The code also interprets these lines to 
mean that the environment contains no particles with an LET greater than 1.24×104 MeV-cm2/g 
(or 12.4 MeV-cm2/mg) because this LET is the last entry and the code interprets the last entry to 
be the largest LET in the environment. For this example, the integral flux is the same on both 
lines, which is interpreted by the code to mean that there are no particles with LET between the 
listed values. Therefore, for this example, the interpretation of the code is that all particles have 
an LET equal to the largest listed value which is 12.4 MeV-cm2/mg. Note that the smaller listed 
LET could be changed to some other number, as long as it is less than the larger listed LET, 
without affecting this interpretation. However, this change would affect grid-point construction 
done by the code and could change some calculated numbers so the discussions below assume 
the specific numbers listed above. The integral flux in the second column is the selected fluence 
(106/cm2 for this example) divided by 108.6 to compensate for unit conversions when entering 1 
at the prompt asking for the number of days of the GCR environment. The complete input to 
PCLE_in_space.m for this example consists of the above two lines in the file 
GCR_flux.dat, any valid entry in the file flare_flux.dat (which is not used for this 
example, but some file, such as the example in Appendix E, is needed so the code will not crash 
while trying to read the file), and inputs to the prompts. The inputs to the prompts are the 
numbers in Table II together with 1-day of GCR, zero-flares, and zero additional dose. The 
output of the code should be PCLE (abbreviated notation for P(CLE)) = 3.9818×10‒9, which is 
close to, but greater than the more accurate estimate (from PCLE_PUR) of 3.0567×10‒9. 
 The next example is the same as the first except that the fluence is increased by two 
orders of magnitude. The only changes made from the first example are to use H = 108/cm2 
(instead of 106) before running PCLE_PUR, and then increasing the flux in the file 
GCR_flux.dat by two orders of magnitude so the two lines now become 

 
1.010E+002,  9.21E+005 
1.240E+004,  9.21E+005 
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 The agreement between PCLE_PUR and PCLE_in_space is not as good for this 
example, with the former giving the more accurate estimate of P(CLE) = 6.8746×10‒7, and the 
latter giving the more conservative estimate of 13.617×10‒7. There is a factor-of-2 disagreement. 
Nearly all of this error is in the PCLE_in_space code and could be improved by using a finer 
grid-point spacing and/or using interpolations instead of upper bounds (see Appendix E). But a 
finer grid-point spacing creates a longer run time (too long), and substituting interpolations for 
upper bounds invalidates the earlier claim that all approximations are conservative. Another 
option, the one used here, is to accept this error in order to have a code with an acceptable run 
time and that guarantees conservatism. Users that give accuracy a higher priority than the 
guarantee of conservatism can modify the code (Appendix E gives suggestions on this), but 
discussions given here refer to the code as it is presented here. To put this factor-of-2 
disagreement in perspective, it should be noted that the example considered is a point on the Cl 
curve in Fig. 2 where the curve is steep enough for calculations to be very sensitive to small 
errors. An over estimate by a factor of 2 might seem more acceptable when viewed this way. 
 The previous examples considered laboratory environments. The next example considers 
a space-radiation environment. The code in Appendix E is the only one that can be used for this 
application, so predictions cannot be tested for accuracy by comparison to predictions from the 
code in Appendix C, but we can rely on the fact that any errors in the calculations will be in the 
conservative direction. For this example, a flash memory will be on a three-year mission in 
interplanetary space (no planetary magnetic protection, but also no radiation belt particles to 
encounter) without any refreshes during that time, so the relevant radiation environment consists 
of all radiation sources encountered during those three years. The time period has a possibility of 
encountering a solar-particle event and environmental experts have informed us that we should 
be prepared for something as severe as one occurrence of the CREME96 model flare at a 1 AU 
distance from the Sun. Using conservatism to compensate for the uncertainty of predicting future 
levels of solar modulation of the GCR environment, we assume the worst-case (solar minimum) 
conditions for the GCR environment even though we must be prepared for possible solar 
activity. The spacecraft has not yet been built, but the present plans do not include heavy mass 
shielding around the flash memory so we will base our estimate (subject to change when more 
information becomes available) on the default assumption of 100 mils of aluminum shielding 
provided by the spacecraft. The two input files, GCR_flux.dat and flare_flux.dat, in 
Appendix E apply to the stated conditions. Note that the LETs in these tables refer to Si when the 
LETs required for the calculations should refer to SiO2. However, this error is insignificant 
compared to the error from the assumption that the encountered space environment will be equal 
to some model prediction, so the input files in Appendix E are good enough for this example. 

Another concern is that these files do not include solar protons, so solar protons must be 
included in a dose-like calculation. We assume, for this example, that environmental experts 
have informed us to be prepared for a radiation dose (from three-years of possible solar activity) 
of 1 krad when the shielding is 100 mils of aluminum. Again, the difference between dose in Si 
and dose in SiO2 is insignificant compared to the error from the assumption that the encountered 
space environment will be equal to some model prediction, so the material that the dose refers to 
is not important here. We will take the dose to be 1 krad. The inputs to PCLE_in_space for 
this example consist of the data files GCR_flux.dat and flare_flux.dat in Appendix E, 
the device parameters in Table II, 1095 days (three years) of GCR, 1 model flare, and an 
additional dose of 1 krad. The returned result should be PCLE = 6.6775×10‒10. In other words, a 
flash memory with 2.21×109 (for example) FGs characterized by the inputs assumed here can be 
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expected to experience a charge-loss event in 1 FG during the space operation. It is interesting to 
consider how this prediction would be changed by omitting the solar protons. The inputs are the 
same as above except that the additional dose is now zero. The returned result should be PCLE = 
6.6542×10‒10, almost the same as the above result of 6.6775×10‒10, indicating that the solar 
protons were not important for this example. However, one example is not enough to reach 
general conclusions, so we should not interpret this observation to mean that solar protons can 
always be ignored when estimating the probability of a charge-loss event.  
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Appendix A: Several Properties of Convolutions 
Let f be any sectionally continuous function satisfying 

1)(,0 allfor 0)(
0

=>≥ ∫
∞

ξξ dfxxf                (A1) 

and let G be given by 
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so G is a decreasing function that satisfies 
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and 
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 Now let GA be any decreasing continuous function that satisfies 

1)0(,0 allfor 1)(0 =≥≤≤ AA GxxG                (A5) 

and let GB be defined by the integral equation 
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The goal is to derive properties of GB implied by given properties of GA. 
 For the first example, suppose it is given that, in addition to (A5), GA also satisfies 
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x
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The goal is to show that GB also has this limit. To prove this assertion, select any ԑ > 0. Existence 
of the integral in (A1) implies that there exists an x1(ԑ) satisfying 
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Also, the limit in (A4) implies that there exists an x2(ԑ) satisfying 
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Similarly, when (A7) applies, there exists an x3(ԑ) satisfying 
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3
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Now let x4(ԑ) be given by 
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and select any number x that is greater than x4(ԑ). Since x > x2(ԑ) we have 
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εξξξξξξξ
εεε 3

1)()()()(0
)()()( 111

<≤≤−≤ ∫∫∫
∞

x
x
x

x
x A dfdfdxGf . 

Also, x > x1(ԑ)+ x3(ԑ), so for any ξ between zero and x1(ԑ) we have x‒ ξ > x3(ԑ), so (A10) applies 
and gives 
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Adding the three inequalities above gives 
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 In other words, for any ԑ > 0 we can find an x4(ԑ) such that the right side of (A6) is 
between zero and ԑ for any x > x4(ԑ). This proves that 
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Using (A11) in a proof by mathematical induction verifies (16c) in the main text. 
 
  



46 

Appendix B: Derivation of (28) 
To shorten the notation we write σ1 instead of σS,sat, σ2 instead of σW,sat, σ (which is σ1+σ2) instead 
of σsat, and H0 instead of H(0). The recurrence formula (14) can be written in this notation as 
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while (25) becomes 
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 It is easy to show from (27a)-(27h) that the C’s and D’s satisfy recurrence relations that 
can be written in the present notation as 
 

[ ] 0,1,... and  ... 0,1,for )()()()( 1,2,110 ,0 ==+=− ++
∞
∫ nmxCxCdxCfH nmnmnm σσξξξσ  

 

[ ] 0,1,... and  ... 0,1,for )()()()( 1,2,110 ,0 ==+=− ++
∞
∫ nmxDxDdxDfH nmnmnm σσξξξσ  

 
A result that will be useful later is obtained by combining the above recurrence formulas with 
(27j)-(27L) to obtain 
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Note that any C’s or D’s with a negative index in (B4) (e.g., the second term in the first square 
bracket on the right side when m = n) is multiplied by zero so it is not necessary to extend the 
definitions of the C’s and D’s to include negative indices. A recurrence formula can be derived 
for the sum that appears in the curly bracket below by using (B4) to obtain 
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Changing the summation index in the first sum on the right, and separating the last term from the 
first sum and the first term from the second sum, and combining the sums that remain gives 
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We now use (27j)-(27L) to write this as 
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Regarding the curly brackets in (B5) as functions of n, we can interpret (B5) as a recurrence 
formula for the curly bracket. 

To prove (28), we first relate the curly bracket in (B5) to the Gn function. This is done by 
noting from (B5) that the curly bracket satisfies the same recurrence formula that is given by 
(B1) for (H0σ)nGn. Furthermore, the curly bracket at n = 1 is (H0σ)G1. This can be shown by 
using (27j) and (27k) to express the curly bracket at n = 1 in terms of C0,0 and D0,0, then use (27a) 
and (27e) to express this in terms of H, and finally use (25a) to complete the proof. We, 
therefore, conclude that the curly bracket is (H0σ)nGn, i.e., 
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 The next step in the proof of (28) uses (27i) and (B6) to write (26) in the present notation 
as 
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The first term on the right will be included in the double sum by including an n = 0 term in the 
outer sum so the above becomes 
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 This is one way to express P(CLE) in terms of the E-functions when ΔqC is given but an 
alternate expression is obtained by combining (B7) with the summation identity 
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Converting back to the original notation produces (28). 
 The G-functions produced by a pure spectrum are easily derived from (B6). Using h(ξ) = 
H0 δ(ξ − LT) (where δ is the Dirac δ-function) and H(ξ) = H0 U(LT − ξ) with (27) gives 
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so (B6) gives 
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Appendix C: A Routine for Fitting (50) to Data 
A routine for calculating P(CLE) via (50) that runs in the Octave (a GNU package) platform is in 
the textbox below. The contents can be typed into a file named “PCLE_PUR.m” (the PUR 
indicates a pure spectrum). This is a function file so the file name must be as stated unless the 
function name is changed consistently. The Weibull function is used to represent bit-to-bit 
variations in the critical charge loss. 
 

PCLE_PUR.m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 This function has seven arguments. The first five, in order, are the fitting parameters 
denoted b1-bar, b2-bar, σS,sat, σW,sat, and k in (50). The sixth argument is the LET denoted LT in 
(50), and the last argument is the fluence denoted H in (50). This function will accept an array 
(a vector) for the fluence so that plots and/or tables of P(CLE) versus fluence can be constructed 
without requiring a loop that reassigns single values to the fluence. The double infinite series in 
(50) is approximated by a finite double sum. The version shown here uses 100 terms in each 
sum, but the user can change these numbers by editing the code. The goal is to obtain adequate 
numerical accuracy without producing excessive CPU time (fitting routines make many calls to 
this function so CPU time becomes an issue). An unfortunate property of (50) is that any set of 
inputs that produce a very small value of P(CLE) are inputs such that the right side of (50) is the 
difference between nearly-equal numbers, so numerical precision becomes an issue. Because of 
the approximation discussed above, calculated values of P(CLE) that are less than 10‒9 are 
changed to zero in the routine, so a returned value of zero is a flag that the actual value is less 
than 10‒9. 

function z=PCLE_PUR(b1,b2,s1,s2,k,L,F); 
  y1=s1.*F; 
  y2=s2.*F; 
  y=y1+y2; 
  SUM_N=0; 
  coefn=1; 
    for n=0:100; 
    SUM_M=0; 
    coefm=1; 
    for m=0:100; 
        argue=(((m./b1)+(n./b2)).*L).^k; 
        SUM_M=SUM_M+coefm.*exp(-argue); 
        coefm=y1.*coefm./(m+1); 
        end 
    SUM_N=SUM_N+coefn.*SUM_M; 
    coefn=y2.*coefn./(n+1); 
    end 
z1=SUM_N; 
z=1-exp(-y).*z1; 
for i=1:length(z); 
  if (z(i)<1E-9) 
  z(i)=0; 
  endif 
end 
endfunction 
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Many software products provide tools for finding best fits to data but we assume here that 
the only tools available to the user are those in the Octave package which is publically available 
at no cost. Two steps are used to find the best fit. The first finds a rough estimate of the fitting 
parameters by performing a global search, via random number generators, for the fitting 
parameters that minimize the error between the fit and data. This is done with two files. The file 
below defines the error between the fit and data and is a function file so the file name must be 
“PCLE_ERR_CRS.m” (the CRS indicates a coarse fit) unless the function name is changed 
consistently. It defines the error between a fit and data by calculating square errors at each data 
point and summing over data points. The error is a relative, or percent, error as opposed to an 
absolute error so the logarithm of the fit is compared to the logarithm of the data. Note that 
PCLE_PUR returns a value of zero when the calculating probability is less than 10‒9, so 1 is 
added to the arguments of the logarithms in PCLE_ERR_CRS to avoid undefined calculations. 
The numbers in the version of the code shown here are unique to the data in Fig. 1, but can be 
changed for other data sets by editing the code. 
 
 

PCLE_ERR_CRS.m 

 
 
 
 The second code used in the first step is called “PCLE_bestfit_CRS.m” and is shown in 
the text box below. It selects fitting parameters at random in a search for parameters that produce 
the smallest error returned by PCLE_ERR_CRS. The numbers assigned to xf(1), … ,xf(5) are 
arbitrary guesses for b1-bar, b2-bar, σS,sat, σW,sat, and k. If the code finds a better set of fitting 
parameters (i.e., that produce a smaller error), it will output those parameters. Each set of fitting 
parameters that are better than all previously found sets are output. The version of the code 
shown here uses (42) instead of a random number generator to assign values to x(3) (which is 
σS,sat) because the Ho data are known to be SEU-like. If this information was not available, this 
assignment statement would be deactivated and the random number assignment would be 
activated. Also, the version of the code shown selects random numbers from relatively narrow 
intervals because iterations were already performed and indicated that the optimum parameters 
will be in these intervals. A more general procedure starts with relatively wide intervals and 

function ERR=PCLE_ERR_CRS(x); 
b1=x(1); 
b2=x(2); 
s1=x(3); 
s2=x(4); 
k=x(5); 
E(1)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,72,1e3))-2.6)^2; 
E(2)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,72,4e6))-6)^2; 
E(3)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,43.7,2e7))-6)^2; 
E(4)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,43.7,1e3))-1.78)^2; 
E(5)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,20,2e3))-0)^2; 
E(6)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,20,1e6))-2.7)^2; 
E(7)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,5.7,1e8))-0.78)^2; 
E(8)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,5.7,1.5e8))-1.23)^2; 
E(9)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,5.7,1e9))-2.4)^2; 
E(10)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,5.7,2e9))-3.7)^2; 
ERR=sum(E); 
endfunction 
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performs several hundred searches (the version of the code shown here performs 300 searches) 
for the optimum fitting parameters. This can be repeated (each run of the same code produces a 
new set of results because random number generators are used) as many times as needed to 
obtain some rough idea of what the optimum parameters are. This information is then used to 
reduce the intervals that the random numbers are selected from, and the runs are repeated using 
the smaller intervals. Continuing this procedure with progressively smaller intervals produces 
estimates for the fitting parameters that are used as the initial guess for the second step. 
 
 

PCLE_bestfit_CRS.m 

 
 
 
 
 
 The second step provides the fine tuning by using a gradient-based search for a local 
minimum in the error measure. The first textbox below is the function that is called and the 

xf(1)=54.9; 
xf(2)=2531; 
xf(3)=1.3e-10; 
xf(4)=1.519e-8; 
xf(5)=7.313; 
Errf=PCLE_ERR_CRS(xf); 
disp(' ') 
printf('Err= %f', Errf) 
disp(' ') 
printf('b1= %f b2= %f s1= %e s2= %e',xf(1),xf(2),xf(3),xf(4)) 
disp(' ') 
printf('k= %f',xf(5)) 
disp(' ') 
for i=1:300 
x(1)=unifrnd(50,70); 
x(2)=unifrnd(2200,2600); 
%x(3)=unifrnd(1.3e-10,2.5e-10); 
x(4)=unifrnd(1.3e-8,1.7e-8); 
x(5)=unifrnd(5,8); 
x(3)=1.3e-10/(1-exp(-(72/x(1))^x(5))); 
Err=PCLE_ERR_CRS(x); 
if (Err<Errf) 
  Errf=Err; 
  xf=x; 
  disp(' ') 
  printf('Err= %f', Errf) 
  disp(' ') 
  printf('b1= %f b2= %f s1= %e s2= %e',xf(1),xf(2),xf(3),xf(4))  
  disp(' ') 
  printf('k= %f',xf(5)) 
  disp(' ') 
endif 
end 
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second textbox is the calling routine that searches for the best fit. The FIN in the file names 
indicates fine tuning. 
 
 

PCLE_ERR_FIN.m 

 
 
 

PCLE_bestfit_FIN.m 

 
  

function ERR=PCLE_ERR_FIN(x); 
b1=100*x(1); 
b2=1000*x(2); 
s1=1E-10*x(3); 
s2=1E-8*x(4); 
k=x(5); 
E(1)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,72,1e3))-2.6)^2; 
E(2)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,72,4e6))-6)^2; 
E(3)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,43.7,2e7))-6)^2; 
E(4)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,43.7,1e3))-1.78)^2; 
E(5)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,20,2e3))-0)^2; 
E(6)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,20,1e6))-2.7)^2; 
E(7)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,5.7,1e8))-0.78)^2; 
E(8)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,5.7,1.5e8))-1.23)^2; 
E(9)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,5.7,1e9))-2.4)^2; 
E(10)=(log10(1+2.21e9*PCLE_PUR(b1,b2,s1,s2,k,5.7,2e9))-3.7)^2; 
ERR=sum(E); 
endfunction 

f=@(x) PCLE_ERR_FIN(x); 
% The function f above requires scaled parameters with scale factors selected 
% to make the minimization routine run better by making the function 
% arguments closer to having equal orders of magnitude. The required scaling is 
% x(1)=b1/100 
% x(2)=b2/1000 
% x(3)=s1*1E10 
% x(4)=s2*1E8 
% x(5)=k 
% The initial guess with this scaling is x0. Lower and upper bounds 
% are lb and ub. 
x0=[0.5312,2.504,1.3,1.318,7.6124]; 
lb=[0.20,1,1,0.1,1]; 
ub=[2,6,4,10,100]; 
[xf,obj,info,iter,nf,lambda]=sqp (x0,f,[],[],lb,ub,100,1e-12); 
Err=obj 
b1=100*xf(1) 
b2=1000*xf(2) 
s1=1E-10*xf(3) 
s2=1E-8*xf(4) 
k=xf(5) 
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Appendix D: Selecting LETs and Fluences for a Complete Characterization 
Suppose a device (e.g., a flash memory) containing a collection of FGs was tested with heavy 
ions using fluences small enough to produce SEU-like behavior. Such data do not provide a 
complete characterization of the device. A complete characterization requires larger fluences at 
the smaller LETs as needed to produce a statistically significant deviation from SEU-like 
behavior. However, before performing such additional tests, we should first look for a more 
quantitative description of “smaller LET” and “larger fluence.” The goal of this discussion is to 
use data obtained from the small-fluence tests to estimate the LETs and fluences that should be 
suitable for the additional, large-fluence, testing. The analysis given here is simplified by 
considering only strong interactions. The justification for this simplification is that the inclusion 
of weak interactions can only produce a further deviation from SEU-like behavior. Therefore, if 
test conditions (LET and fluence) are such that strong interactions alone are enough for a 
deviation from SEU-like behavior, such a deviation can be expected to occur. 
 We begin by selecting some test fluence, denoted HT, and test LET, denoted LT, and 
determine the condition that these parameters should satisfy in order to obtain a complete 
characterization of the collection of FGs. If the required condition is not satisfied by a particular 
selection of LT and HT, it is necessary to make another selection. Let Ntotal denote the total 
number of FGs in the collection and let σCLE(L) denote the per-bit cross section obtained from the 
small-fluence (SEU-like) test data as a function of LET L. This per-bit cross section is obtained 
by dividing the number of counts first by fluence, to obtain a cross section for the collection of 
FGs, and then by Ntotal to convert this cross section to a per-bit cross section. Let Ncounts denote 
the number of counts from the collection of FGs produced by the large-fluence test when the 
fluence is HT and the LET is LT. The fluence is large enough for the device behavior to be 
outside the SEU-like regime if the quantity Ncounts/(HTNtotal) is measurably larger than σCLE(L), 
where measurably larger means that the difference between the quantities is large enough to be 
distinguishable from experimental error. Therefore the fluence must be large enough to satisfy 
 

>− )( TCLE
totalT

counts L
NH

N
σ experimental error   (required),          (D1) 

 
where the error on the right side includes scatter in the data associated with counting statistics. 
The goal now is to predict whether the required condition (D1) will or will not be satisfied by a 
particular choice of the parameters HT and LT. 
 The first step towards the above goal divides the FGs in the collection into groups and 
uses the SEU-like (small-fluence) cross section data to estimate the number of FGs in each 
group. The first group consists of those FGs that require only one strong interaction at an LET LT 
to become deprogrammed. The number of FGs in this group, denoted N1, is estimated by noting 
that the small-fluence cross section for the collection of FGs, which is Ntotal σCLE(L) when the 
LET is L, is the sum of FG cross sections at LET L, summed over all FGs in the collection. At an 
LET of LT, only the FGs in the first group contribute to the cross section because multiple hits 
can be ignored in the small-fluence data. Each of these FGs has a cross section of σS,sat, and there 
are N1 of these FGs, so the sum of FG cross sections summed over FGs in the first group is 
N1σS,sat. This gives 
 

satSTCLEtotal NLN ,1)( σσ = . 
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 The second group consists of those FGs that will become deprogrammed by two strong 
interactions, but not by one strong interaction, at an LET of LT. An FG is in this group if, and 
only if, a single strong interaction produced by an LET of 2LT will deprogram the FG, but a 
single strong interaction at an LET of LT will not. The number of FGs in this group, denoted N2, 
is estimated by noting that the FGs that contribute to the small-fluence cross section for the 
collection of FGs at an LET of 2LT consists of those in the first group plus those in the second 
group. This gives 
 

satSsatSTCLEtotal NNLN ,2,1)2( σσσ += . 
 
 Continuing with this group designation, the nth group consists of those FGs that will 
become deprogrammed by n strong interactions, but not by n ‒ 1 strong interactions, at an LET 
of LT. An FG is in this group if, and only if, a single strong interaction produced by an LET of 
nLT will deprogram the FG, but a single strong interaction at an LET of (n ‒ 1)LT will not. Let Nn 
denote the number of FGs in this group. An obvious extension of the derivation of the above 
equation gives 
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k
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Replacing n with n ‒ 1 in (D2a) and subtracting the resulting equation from (D2a) allows us to 
solve for Nn with the result 
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where we use the convention that σCLE(0) = 0, so that (D2b) will also apply when n = 1. There is 
a maximum value, call it nmax, of the group designator having the property that the group 
numbered nmax contains a nonzero number of FGs, i.e., Nn > 0 when n = nmax, but Nn = 0 when 
n > nmax. This number is determined by the condition that the total number of FGs is Ntotal, which 
gives 
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Furthermore, all groups with larger designations contain zero FGs, so 
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1
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n

k
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 The value of nmax, as well as σS,sat, can be recognized by the saturation of the small-
fluence cross section data. This is seen by combining (D3) with (D2a) to get 
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satSTCLE Ln ,max )( σσ =                      (D4a) 
 

max,  if)( nnLn satSTCLE ≥= σσ .                (D4b) 
 
 We conclude from (D4) that the cross section σS,sat can be estimated from the small-
fluence cross section data as the saturation value (large LET limit) of σCLE(L). Furthermore, 
nmaxLT is the smallest integer multiple of LT that produces the saturation value. 
 Having divided the collection of FGs into groups, we can now express Ncounts as a sum of 
terms given by 
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where Ncounts,n is the number of deprogrammed FGs from the nth group of FGs and produced by a 
fluence HT of LET LT. It is assumed that these numbers of counts are large enough for the 
ensemble interpretation of a probability to be used with these numbers. Specifically, Ncounts,n is 
taken to be equal to the number of FGs in the nth group multiplied by the probability that a 
randomly selected FG from this group will become deprogrammed. This probability is the 
probability that an FG will undergo n or more strong interactions from the fluence HT. Using the 
Poisson distribution for this probability gives 
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where Poisson is the cumulative Poisson distribution function defined by (E4) in Appendix E. 
Substituting (D6) and (D2b) into (D5) gives 
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A summation analog of an integration by parts, using (D4a) and σCLE(0) = 0, allows this to be 
rewritten as 
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 It is possible to write (D7a) in a more compact form, but the penalty is to replace a finite 
sum with an infinite series. This is done by using 
 



56 

!
)(

1),1(1 ,
1

0
,max

max
,

n
H

eHn
n

satST
n

n

H
satST

satST σ
σ σ ∑

−

=

−−=−− oissonP  

!
)(

!
)( ,,

1

0 max

,
max

,,

n
H

e
n

H
ee

n
satST

nn

H
n

satST
n

n

HH satSTsatSTsatST σσ σσσ ∑∑
∞

=

−
−

=

− =












−=  

 
where the last equality was obtained by replacing the exponential function in the large 
parenthesis by a series expansion. Combining this with (D4b) gives 
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so (D7a) can be rewritten as 
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The right side is a sum of positive terms and is greater than the sum of the first two terms, so 
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 The required equations have been derived, so we now consider an example to illustrate 
how the equations are used to answer the question of whether a given choice of LT and HT will 
satisfy (D1). The best choice for LT is the LET that produces the largest value for the ratio 
σCLE(2L)/σCLE(L). Suppose, for this example, that we can find an LT satisfying 
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σ
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 For the example curve labelled “0 krads” in Fig. 3, the condition (D9a) is satisfied for any 
LET in the plotted range up to 20 MeV-cm2/mg. We also use the example device represented in 
Fig. 3 to provide a value for σS,sat, which is 10‒10 cm2. Finally, there are practical considerations 
(beam time) for not wanting to use a fluence larger than 109/cm2, but we are willing to go that 
high with the fluence. Therefore, the remaining inputs for this example are 
 



57 

(example)/cm10,cm10 29210
, == −

TsatS Hσ .           (D9b) 
 
Substituting (D9) into (D8), we find that Ncounts/(HTNtotal) is greater than 5.4σCLE(LT) for this 
example, which gives  
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 Given that the experimental error is small enough so that σCLE(LT) could be measured, 
i.e., σCLE(LT) is greater than the measurement error, we conclude from (D10) that the left side is 
also greater than the measurement error, so the requirement (D1) is satisfied. The example device 
is the same device represented in Figs. 1 and 2, and the conclusion given here for this example is 
that a fluence of 109/cm2 should be enough to produce an experimentally observable deviation 
from SEU-like behavior for any of the tested ions up to an LET of 20 MeV-cm2/mg. This 
deviation is seen in the test data (Fig. 1) only for Ar because that is the only ion tested at such 
large fluences, but we can predict that this deviation would also become observable in the Kr 
data if larger test fluences were used. This agrees with the model prediction in Fig. 2 (derived 
from fits to the Fig. 1 data) showing some curvature in the Kr curve at the larger fluences. 
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Appendix E: A Routine for Calculating P(CLE) in Space Environments 
To calculate P(CLE) in space environments we start with (57) which is repeated below: 
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We also consider the case in which the Weibull function (47) describes FG-to-FG variations in 
the critical charge loss, so  
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Properties implied by these equations that will be useful later are 
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The infinite series in (E1) can be replaced by a finite sum using a conservative 

approximation. This is obtained by using (16a) with the fact that ρ is a normalized density to 
conclude that 
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Using this with (E1) gives 
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where Poisson is the cumulative Poisson distribution function defined by 
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 Note that P(CLE) ‒ F(ΔqD) is less than or equal to the sum of the two curly brackets on 
the right side of (E3), but greater than or equal to the first curly bracket. Therefore, the error 
produced by using the right side of (E3) as an approximation for the left side, which is a 
conservative approximation, is no larger than the second curly bracket. By letting N be large 
enough to make the second curly bracket equal to 10‒12 (for example), the error produced by 
using the right side of (E3) as an approximation for the left side is no greater than 10‒12. 
 To shorten the notation, define the c-coefficients by 
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They can be calculated from the recurrence formula 
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Using this notation, (E3) can be written as 
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Calculation of ΔqD via (52) requires the a-parameters to be known. Also, calculation of 

the G-functions requires the a-parameters to be known because the recurrence formula (15a) 
implicitly contains these parameters via (25b). Replacements for these quantities that can be 
calculated when the b-parameters (recall that b1 ≡ λa1 and b2 ≡ λa2) are known, instead of the 
a-parameters, are ΔqD’and the T-functions defined by 
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where μ is given by (51b). The T-functions are calculated by combining (E8b) with (15a) and 
(25b) and changing integration variables to produce the recurrence formula 
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 To get the T-function sequence started, we combine (E8a) with (25a) to get 
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The next step expresses (E7) in terms of ΔqD’and the T-functions by using (E2c) and (E8) 
together with a change of integration variable to get 
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The infinite upper integration limits on the right side of (E11) can be replaced by finite 

limits. One possible approach utilizes the fact that the maximum LET of any ion is less than 
some upper bound (the upper bound is slightly greater than 100 MeV-cm2/mg), which implies 
that the integral fluence H(L) is zero when L is greater than this finite upper bound. This fact can 
be used to conclude that T1(x) given by (E10) is zero when x is greater than some finite upper 
bound. Unfortunately, the same upper bound for x to produce a nonzero value does not apply to 
T2(x) or T3(x), etc. This can be seen by considering any x satisfying the condition that T1(x) > 0. It 
can be shown from (E9) that this implies that T2(2x) > 0. Therefore, while it is true that for each 
n there is a finite domain of x at which Tn(x) > 0, this domain becomes larger with increasing n. 
This dependence on n is a complication that must be considered when constructing a numerical 
routine that takes advantage of the fact that the maximum LET of any ion is less than some upper 
bound. 

An alternate approach, used here, replaces the infinite upper integration limit on the right 
side of (E11) with a finite limit (the same limit for all n) by using a conservative approximation 
having the property that an upper bound for the error in this approximation can be predicted and 
controlled. Let xmax denote the maximum argument for which Tn(x) will be numerically 
evaluated. Note from (16f) and (E8) that Tn(ξ) ≤ Tn(xmax) when ξ > xmax. This inequality together 
with the fact that the derivative of W1,k is positive gives 
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 The conservative approximation that will be used here uses the right side of (E12) as an 
approximation for the left side. It is conservative because the right side of (E12) is greater than, 
when not equal to, the left side. For the purpose of obtaining a worst-case estimate of the error in 
this approximation, we consider another inequality (not intended to provide an accurate 
approximation) which is  
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The right side of (E12) exceeds the left side by an amount that is not more than the term on the 
far right of (E12). If Tn(xmax) = 0, there is no error. If Tn(xmax) > 0, a worst-case estimate of the 
relative error, or fractional error, is the term on the far right side of (E12) divided by the right 
side of (E13); i.e., 
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 For example, if xmax is selected to satisfy 
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the relative error produced by using the right side of (E12) as an approximation for the left side 
will not exceed 0.0001. 
 The integral on the right side of (E12) must be evaluated numerically and, again, we use a 
conservative approximation. The accuracy of the approximation is controlled by the choice of 
grid points. Select a set of grid points denoted x1, …, xM, with M ≥ 2, which satisfy 
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To shorten the notation, we define 
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The fact that Tn is a decreasing function and the derivative in (E12) is positive implies 
 



62 

∑ ∫∫
= −

∆+=∆+
M

m

x
x Dkn

x
Dkn

m

m
dq

d
dTdq

d
dT

2
,10 ,1

1

max )()()()( ξξ
ξ

ξξξ
ξ

ξ '' WW  

∑ ∫
=

−
−

∆+≤
M

m

x
x Dkmn

m

m
dq

d
dT

2
,11,

1
)( ξξ

ξ
'W  

 
or 
 

∑∫
=

∆+−∆+−
− 



 −≤∆+ −

M

m

qxqx
mn

x
Dkn

k
Dm

k
Dm eeTdq

d
dT

2

)()(
1,0 ,1 1max )()( ''' ξξ

ξ
ξ W .  (E17) 

 
Combining this with (E12) gives 
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 An upper bound for P(CLE), which also serves as an approximation for P(CLE) after the 
Tn,j array has been calculated, is obtained by combining (E18) with (E11) to get 
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 In order to use the right side of (E19) as a conservative estimate of the left side, the 
T-array must be calculated. Again, a conservative approximation is used. The fact that Tn is a 
decreasing function and the square bracket in (E9) is positive implies 
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which applies for each n = 1, 2, …, N and each m = 2, 3, …, M. Changing the integration 
variable and using the fact that the differential fluence h(L) is the negative of the L derivative of 
the integral fluence H(L) gives 
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with a similar equation for the integral containing b2 so the above recurrence formula for the 
T-array becomes 
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 Note that (E20) is used only when m ≥ 2, but it is not needed when m = 1 because the 
convention of taking x1 to be zero and the definition Tn,m ≡ Tn(xm) gives Tn,1 = Tn(0), so (E8b) and 
(16b) give 
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 Another equation that will be useful later is obtained from (E10) and is 
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 Now consider the argument to Tn on the right side of (E20), which is xm ‒ xj with 2 ≤ m ≤ 
M and 2 ≤ j ≤ m. The argument is bracketed by 0 ≤ xm ‒ xj ≤ xM ‒ x2 so x1 ≤ xm ‒ xj < xM. 
Therefore, there is a pair of adjacent grid points having the property that the left (smaller) point 
is less than or equal to xm ‒ xj and the right point is greater than xm ‒ xj. Stated another way, there 
is an integer m’(m, j), a function of m and j, satisfying 
 

1),(),( +<−≤ jmmjmjmm xxxx '' .                 (E21c) 
 
Because Tn(x) is decreasing in x, Tn(xm ‒ xj) is less than or equal to the left grid point value. This 
gives 
 

( ) ),(,),()( jmmnjmmnjmn TxTxxT '' =≤− .              (E21d) 
 
 It should be noted that the most effective way to improve the accuracy of the calculations 
is to use an interpolation, instead of the right side of (E21d), to obtain an estimate of the left side. 
However, doing so would invalidate the claim that all approximations are conservative. Readers 
that would like to give numerical accuracy a higher priority than guaranteed conservatism can 
modify the routine as pointed out later in the discussion under Block 6. Here, we will honor the 
claim that all approximations are conservative by using (E21d) with (E20) to get 
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A conservative approximation uses the right side of (E21e) as an estimate of the left side. 
 There still remains the issue of selecting the grid points x1, …, xM. Flux or fluence data 
for typical space environments are such that the greatest resolution is needed at the smaller 
LETs, and this can be accomplished by a uniform spacing of the positive grid points (which are 
x2, …, xM) on a logarithmic scale. The smallest positive grid point, x2, should be small enough so 
that calculated fluences include all of the particles represented in the flux input files (tabulations 
of flux versus LET). The input files will represent heavy ions and possibly protons. For protons 
we have the option of including them in a separate dose-like calculation or including them in a 
flux input file so they may or may not be included in an input file. It is assumed that electrons 
will be included in a separate dose-like calculation and not included in a flux input file. Let Lmin 
denote the smallest LET found in the flux input files, unless this value is less than 0.0017 
MeV-cm2/mg, in which case we let Lmin = 0.0017 MeV-cm2/mg. The reason for this cutoff is that 
the LET of protons in SiO2 is greater than or equal to 0.0017 MeV-cm2/mg for any proton energy 
greater than some fraction of a keV, so smaller LETs are irrelevant. Selecting x2 in such a way so 
that calculations for both strong interactions and weak interactions include all particles with LET 
greater than or equal to Lmin can be accomplished by selecting x2 to satisfy b1x2 ≤ Lmin and b2x2 ≤ 
Lmin. This condition will be satisfied, with a little margin, by using 
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 Recall that we also have xM = xmax, so we must also select a value for xmax. The right side 
of (E14) can be made to be equal to about 0.0001 (for example) by using 
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After selecting an M ≥ 3, a complete set of grid points can be calculated from (E22a) together 
with 
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where the ratio r is given by 
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 For the example represented by Table II, we have b1 + b2 = 3860 MeV-cm2/mg, k = 
7.643, and D = 0 (so ΔqD’ = 0 which produces the largest xmax), so (E22a) gives xmax = 1.34. If 
protons are included in either one of the input files, we will have Lmin = 0.0017 MeV-cm2/mg and 
(22b) gives x2 = 4.40×10‒7 for this example. The two quantities, x2 and xmax, differ by more than 
six orders of magnitude for this example. But if we let M = 250 (for example), there will be more 
than thirty grid points per decade. The ratio r of adjacent positive grid points, given by (E22d), 
will be about 1.062. This is a fairly fine spacing of grid points on a logarithmic scale, but a finer 
spacing, if desired, can be obtained by using a larger value for M. 

A routine for calculating P(CLE) in space environments, that runs in the Octave (a GNU 
package) platform, is called PCLE_in_space.m in the textbox below. The steps are 
partitioned into blocks that are explained as follows: 

Block 1 first sets the ratio r between adjacent positive grid points to produce forty grid 
points per decade. This can be changed, if desired, by editing the code. Then Block 1 initializes 
vectors and matrices to be scalers with a value of zero. This is done because prior executions of 
Octave might have created larger vectors or matrices having the same names and only some 
matrix elements will be overwritten by the current execution with other obsolete matrix elements 
still in memory. The initialization ensures that the dimensions of vectors and matrices will 
correspond to the current assignments. Then Block 1 reads input data and files. The files are 
assumed to be in the CREME96 format so LET is in the units of MeV-cm2/g and flux is in the 
units of 1/m2-s-sr. Immediately after reading a file as a two-column matrix, the columns are 
separated into two vectors with units changed so LET is in MeV-cm2/mg and flux is in 1/cm2-
day, and some additional data points are inserted to control the way that an interpolation routine 
will extrapolate outside the data range. 

Block 2 constructs flux functions representing the input files (with units converted) via 
interpolation/extrapolation. Extrapolations below the smallest tabulated LET produce the same 
flux assigned to the smallest tabulated LET. Extrapolations above the largest tabulated LET 
produce zero flux. Then the flux functions are used to construct a total fluence function of LET. 

Block 3 assigns the integer N a value that makes the second curly bracket on the right 
side of (E3) less than 10‒12 and constructs the coefficients c1, …, cN. 

Block 4 calculates ΔqD’, denoted QD in the code, from (E8a) and then calculates xmax 
from (E22a). 

Block 5 constructs the grid points. It first finds the smallest nonzero LET value listed in 
the input files (the LET values in the input files are required to be in increasing order but it is 
possible for the first entry to be zero). If the entered number of flares is zero, the minimum LET, 
denoted Lmin, is reset to be the smallest nonzero value in the GCR file. If the entered number of 
days of GCR is zero, the minimum LET is reset to be the smallest nonzero value in the flare file. 
Then Lmin is reset again to 0.0017 MeV-cm2/mg if it was less than that. Then x1 and x2 are 
calculated from D(22b). This value of x2 is compared to xmax to ensure that the grid points are in 
increasing order. If x2 is not less than xmax it is reset to the value xmax/r. The remaining grid points 
are calculated from (E22c) with the same steps also assigning a value to M. Since r was selected 
to produce a specified grid point spacing instead of selected to satisfy xM = xmax, xM will be 
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slightly greater than xmax. The grid point xM is given the role of an updated xmax in later 
calculations. 

Block 6 constructs the T-array by first constructing H1- and H2-arrays to shorten the 
notation in (E21). Then the T-array is constructed from (E21) with (E21e) interpreted as an 
equality. Note that mp in the code is the m’(m, j) satisfying (E21c). As pointed out in the 
discussion under (E21d), readers that would like to give numerical accuracy a higher priority 
than guaranteed conservatism can modify the steps in this block by using an interpolation, 
instead of the right side of (E21d), to obtain an estimate of the left side. However, doing so 
would invalidate the claim that all approximations are conservative. 

Block 7 estimates P(CLE) by treating (E19) as an equality. The inner loop constructs an 
inner sum, denoted inSUM in the code, which is the curly bracket on the right side of (E19). The 
outer loop constructs an outer sum, denoted outSUM in the code, which is denoted the sum in n 
on the right side of (E19). The last step combines all of the terms on the right side of (E19). 

 
PCLE_in_space.m (Page 1) 
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PCLE_in_space.m (page 2) 

% ****BLOCK 1 
r=10^0.025; 
Data1=0; 
Ldata1=0; 
fluxdata1=0; 
Data2=0; 
Ldata2=0; 
fluxdata2=0; 
c=0; 
x=0; 
H1=0; 
H2=0; 
T=0; 
% 
Data1=dlmread("GCR_flux.dat"); 
Ldata1=[0;Data1(:,1)/1000]; 
fluxdata1=[108.6*Data1(1,2);108.6*Data1(:,2)]; 
Ndata1=length(Ldata1); 
Ldata1(Ndata1+1)=Ldata1(Ndata1); 
fluxdata1(Ndata1+1)=0; 
Ldata1(Ndata1+2)=2*Ldata1(Ndata1); 
fluxdata1(Ndata1+2)=0; 
% 
Data2=dlmread("flare_flux.dat"); 
Ldata2=[0;Data2(:,1)/1000]; 
fluxdata2=[108.6*Data2(1,2);108.6*Data2(:,2)]; 
Ndata2=length(Ldata2); 
Ldata2(Ndata2+1)=Ldata2(Ndata2); 
fluxdata2(Ndata2+1)=0; 
Ldata2(Ndata2+2)=2*Ldata2(Ndata2); 
fluxdata2(Ndata2+2)=0; 
% 
NGCR=input("Enter number of days of GCR flux  "); 
Nflare=input("Enter number of flares  "); 
b1=input("Enter b1 in MeV-cm2/mg  "); 
b2=input("Enter b2 in MeV-cm2/mg  "); 
sig1=input("Enter the crosssection for strong interactions in cm2  "); 
sig2=input("Enter the crosssection for weak interactions in cm2  "); 
k=input("Enter the Weibull k parameter (must be > 0)  "); 
D=input("Enter additional dose in krads in SiO2 (must be >= 0) "); 
sig=sig1+sig2; 
% 
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PCLE_in_space.m (page 3) 

%****BLOCK 2 
flux1=@(L) interp1(Ldata1,fluxdata1,L,"extrap"); 
flux2=@(L) interp1(Ldata2,fluxdata2,L,"extrap"); 
H=@(L) NGCR*flux1(L)+7.5*Nflare*flux2(L); 
H0=H(0); 
% 
%**** BLOCK 3 
c1=H0*sig; 
N=1; 
do 
  N++; 
  until ((1-poisscdf(N,c1))<=1e-12) 
  finalN=N 
% 
c(1)=c1; 
for i=1:N-1 
  c(i+1)=c1*c(i)/(i+1); 
  end 
% 
%**** BLOCK 4 
QD=6.25e7*((sig1/b1)+(sig2/b2))*D; 
xmax=(9.22+QD^k)^(1/k)-QD; 
% 
%**** BLOCK 5 
Lmin1=Ldata1(2); 
if (Lmin1<=0) 
  Lmin1=Ldata1(3); 
  endif 
Lmin2=Ldata2(2); 
if (Lmin2<=0) 
  Lmin2=Ldata2(3); 
  endif 
Lmin=Lmin1; 
if (Lmin>Lmin2) 
  Lmin=Lmin2; 
  endif 
if (NGCR<=0) 
  Lmin=Lmin2; 
  endif 
if (Nflare<=0) 
  Lmin=Lmin1; 
  endif 
if (Lmin<0.0017) 
  Lmin=0.0017; 
  endif 
x(1)=0; 
x(2)=Lmin/(b1+b2); 
if (x(2)>=xmax) 
  x(2)=xmax/r; 
  endif 
% 
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Two example input data files are in the text boxes below. These are abbreviations of 
CREME96 output files, abbreviated by including only one out of three data points to reduce the 
file length. This abbreviation is not essential and the complete CREME96 output files (but with 
headers deleted) can be used if desired. The first file, called GCR_flux.dat, is a table of LET 
(first column) versus galactic cosmic ray (GCR) flux (second column). The units are those used 
in CREME96 output files so LET is in MeV-cm2/g (instead of the more customary 
MeV-cm2/mg) and flux is in 1/m2-s-sr. This example data file represents the GCR environment 
in interplanetary space (no planetary magnetic shielding) during a solar minimum time period 
(the worst-case time period for GCR) with 100 mils of aluminum spacecraft shielding. Any 

M=2; 
do 
  M++; 
  x(M)=r*x(M-1); 
  until (x(M)>=xmax) 
  finalM=M 
% 
% ****BLOCK 6 
for m=1:M 
  H1(m)=H(b1*x(m))*sig1/c1; 
  H2(m)=H(b2*x(m))*sig2/c1; 
  T(1,m)=H1(m)+H2(m); 
  end 
% 
for n=1:N 
  T(n,1)=1; 
  end 
% 
for n=1:N-1 
  for m=2:M 
    T(n+1,m)=T(1,m); 
    for j=2:m 
      mp=lookup(x,x(m)-x(j)); 
      T(n+1,m)=T(n+1,m)+T(n,mp)*(H1(j-1)-H1(j)+H2(j-1)-H2(j)); 
      end 
    end 
  end 
  % 
  %****BLOCK 7 
  outSUM=0; 
  for n=1:N 
    EM=exp(-(x(M)+QD)^k); 
    inSUM=T(n,M)*EM; 
    for m=2:M 
      Em=exp(-(x(m-1)+QD)^k)-exp(-(x(m)+QD)^k); 
      inSUM=inSUM+T(n,m-1)*Em; 
      end 
    outSUM=outSUM+c(n)*inSUM; 
    end 
  PCLE=2-exp(-QD^k)-poisscdf(N,c1)+exp(-c1)*outSUM 
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changes in planetary magnetic shielding and/or spacecraft shielding must be made by using 
CREME96 to create a replacement for this data file. Protons are not included so the smallest 
LET listed in the table is 101 MeV-cm2/g (or 0.101 MeV-cm2/mg). The second file, called 
fare_flux.dat, is a table of LET versus flux in the same format and in the same units used 
for the first file, but the flux now refers to the worst-week solar flare model used in CREME96. 
As with the GCR example, this applies to interplanetary space (no planetary magnetic shielding) 
at 1 AU distance from the Sun and with 100 mils of aluminum spacecraft shielding. Any changes 
in planetary magnetic shielding and/or spacecraft shielding must be made by using CREME96 to 
create a replacement for this data file. Protons are not included in this file, so the smallest LET 
listed in the table is 101 MeV-cm2/g (or 0.101 MeV-cm2/mg), but solar protons cannot be 
ignored and must therefore be included in a dose-like calculation. 
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    GCR_flux.dat (page 1)       GCR_flux.dat (page 2)         GCR_flux.dat (page 3) 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  1.010E+002,  2.047E+001 
  1.046E+002,  2.011E+001 
  1.083E+002,  1.827E+001 
  1.121E+002,  1.685E+001 
  1.161E+002,  1.588E+001 
  1.202E+002,  1.511E+001 
  1.245E+002,  1.446E+001 
  1.289E+002,  1.389E+001 
  1.335E+002,  1.339E+001 
  1.382E+002,  1.290E+001 
  1.431E+002,  1.247E+001 
  1.481E+002,  1.209E+001 
  1.534E+002,  1.173E+001 
  1.588E+002,  1.141E+001 
  1.644E+002,  1.111E+001 
  1.703E+002,  1.056E+001 
  1.763E+002,  1.014E+001 
  1.825E+002,  9.789E+000 
  1.890E+002,  9.486E+000 
  1.957E+002,  9.213E+000 
  2.026E+002,  8.948E+000 
  2.098E+002,  8.661E+000 
  2.172E+002,  8.425E+000 
  2.249E+002,  8.213E+000 
  2.329E+002,  8.019E+000 
  2.411E+002,  7.744E+000 
  2.496E+002,  7.197E+000 
  2.585E+002,  6.873E+000 
  2.676E+002,  6.611E+000 
  2.771E+002,  6.385E+000 
  2.869E+002,  6.130E+000 
  2.971E+002,  5.905E+000 
  3.076E+002,  5.717E+000 
  3.185E+002,  5.548E+000 
  3.297E+002,  5.282E+000 
  3.414E+002,  4.891E+000 
  3.535E+002,  4.640E+000 
  3.660E+002,  4.437E+000 
  3.790E+002,  4.254E+000 
  3.924E+002,  4.086E+000 
  4.063E+002,  3.940E+000 
  4.207E+002,  3.807E+000 
  4.356E+002,  3.644E+000 
  4.510E+002,  3.496E+000 
  4.669E+002,  3.375E+000 
  4.835E+002,  3.265E+000 
  5.006E+002,  3.151E+000 
  5.183E+002,  3.054E+000 
  5.367E+002,  2.966E+000 
  5.557E+002,  2.861E+000 
  5.753E+002,  2.772E+000 
  5.957E+002,  2.693E+000 
  6.168E+002,  2.607E+000 
  6.386E+002,  2.529E+000 
  6.612E+002,  2.462E+000 
  6.847E+002,  2.359E+000 
  7.089E+002,  2.273E+000 
  7.340E+002,  2.203E+000 
  7.600E+002,  2.133E+000 
  7.869E+002,  2.073E+000 
  8.147E+002,  2.019E+000 
  8.436E+002,  1.939E+000 
  8.734E+002,  1.881E+000 
  9.044E+002,  1.822E+000 
  9.364E+002,  1.767E+000 
  9.695E+002,  1.721E+000 
  1.004E+003,  1.646E+000 

  1.039E+003,  1.594E+000 
  1.076E+003,  1.532E+000 
  1.114E+003,  1.480E+000 
  1.154E+003,  1.331E+000 
  1.195E+003,  1.117E+000 
  1.237E+003,  9.923E-001 
  1.281E+003,  8.961E-001 
  1.326E+003,  8.174E-001 
  1.373E+003,  7.381E-001 
  1.421E+003,  6.746E-001 
  1.472E+003,  6.198E-001 
  1.524E+003,  5.710E-001 
  1.578E+003,  5.271E-001 
  1.634E+003,  4.883E-001 
  1.692E+003,  4.528E-001 
  1.752E+003,  4.198E-001 
  1.814E+003,  3.895E-001 
  1.878E+003,  3.616E-001 
  1.944E+003,  3.359E-001 
  2.013E+003,  3.121E-001 
  2.084E+003,  2.896E-001 
  2.158E+003,  2.693E-001 
  2.234E+003,  2.500E-001 
  2.314E+003,  2.322E-001 
  2.395E+003,  2.157E-001 
  2.480E+003,  2.004E-001 
  2.568E+003,  1.861E-001 
  2.659E+003,  1.728E-001 
  2.753E+003,  1.603E-001 
  2.851E+003,  1.488E-001 
  2.951E+003,  1.381E-001 
  3.056E+003,  1.280E-001 
  3.164E+003,  1.187E-001 
  3.276E+003,  1.102E-001 
  3.392E+003,  1.021E-001 
  3.512E+003,  9.463E-002 
  3.637E+003,  8.766E-002 
  3.765E+003,  8.126E-002 
  3.899E+003,  7.520E-002 
  4.037E+003,  6.957E-002 
  4.180E+003,  6.446E-002 
  4.328E+003,  5.957E-002 
  4.481E+003,  5.515E-002 
  4.640E+003,  5.094E-002 
  4.804E+003,  4.704E-002 
  4.974E+003,  4.347E-002 
  5.150E+003,  4.002E-002 
  5.332E+003,  3.696E-002 
  5.521E+003,  3.415E-002 
  5.716E+003,  3.151E-002 
  5.919E+003,  2.908E-002 
  6.128E+003,  2.679E-002 
  6.345E+003,  2.468E-002 
  6.570E+003,  2.278E-002 
  6.802E+003,  2.097E-002 
  7.043E+003,  1.931E-002 
  7.293E+003,  1.761E-002 
  7.551E+003,  1.627E-002 
  7.818E+003,  1.503E-002 
  8.095E+003,  1.390E-002 
  8.382E+003,  1.283E-002 
  8.678E+003,  1.185E-002 
  8.985E+003,  1.094E-002 
  9.304E+003,  1.007E-002 
  9.633E+003,  9.251E-003 
  9.974E+003,  8.520E-003 
  1.033E+004,  7.838E-003 
 

  1.069E+004,  7.204E-003 
  1.107E+004,  6.608E-003 
  1.146E+004,  6.043E-003 
  1.187E+004,  5.480E-003 
  1.229E+004,  5.007E-003 
  1.272E+004,  4.574E-003 
  1.318E+004,  4.155E-003 
  1.364E+004,  3.787E-003 
  1.412E+004,  3.423E-003 
  1.462E+004,  3.095E-003 
  1.514E+004,  2.821E-003 
  1.568E+004,  2.567E-003 
  1.623E+004,  2.328E-003 
  1.681E+004,  2.101E-003 
  1.740E+004,  1.897E-003 
  1.802E+004,  1.706E-003 
  1.866E+004,  1.528E-003 
  1.932E+004,  1.360E-003 
  2.000E+004,  1.202E-003 
  2.071E+004,  1.053E-003 
  2.144E+004,  9.061E-004 
  2.220E+004,  7.836E-004 
  2.299E+004,  6.659E-004 
  2.380E+004,  5.482E-004 
  2.464E+004,  4.430E-004 
  2.552E+004,  3.438E-004 
  2.642E+004,  2.450E-004 
  2.735E+004,  1.467E-004 
  2.832E+004,  1.432E-005 
  2.933E+004,  9.475E-006 
  3.036E+004,  2.330E-006 
  3.144E+004,  1.200E-006 
  3.255E+004,  9.016E-007 
  3.370E+004,  7.442E-007 
  3.490E+004,  6.317E-007 
  3.613E+004,  5.555E-007 
  3.741E+004,  4.876E-007 
  3.874E+004,  4.346E-007 
  4.011E+004,  3.854E-007 
  4.153E+004,  3.415E-007 
  4.300E+004,  3.037E-007 
  4.452E+004,  2.704E-007 
  4.610E+004,  2.416E-007 
  4.773E+004,  2.158E-007 
  4.942E+004,  1.917E-007 
  5.117E+004,  1.689E-007 
  5.298E+004,  1.486E-007 
  5.485E+004,  1.298E-007 
  5.680E+004,  1.122E-007 
  5.881E+004,  9.607E-008 
  6.089E+004,  8.199E-008 
  6.304E+004,  6.845E-008 
  6.528E+004,  5.825E-008 
  6.759E+004,  4.901E-008 
  6.998E+004,  4.050E-008 
  7.246E+004,  3.291E-008 
  7.502E+004,  2.610E-008 
  7.768E+004,  2.039E-008 
  8.043E+004,  1.516E-008 
  8.328E+004,  1.034E-008 
  8.622E+004,  5.631E-009 
  8.928E+004,  2.475E-009 
  9.244E+004,  3.964E-010 
  9.571E+004,  2.650E-010 
  9.910E+004,  1.604E-010 
  1.026E+005,  2.339E-011 
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   flare_flux.dat (page 1)     flare_flux.dat (page 2)       flare_flux.dat (page 3) 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  1.010E+002,  1.802E+004 
  1.046E+002,  1.721E+004 
  1.083E+002,  1.644E+004 
  1.121E+002,  1.568E+004 
  1.161E+002,  1.491E+004 
  1.202E+002,  1.418E+004 
  1.245E+002,  1.346E+004 
  1.289E+002,  1.277E+004 
  1.335E+002,  1.209E+004 
  1.382E+002,  1.143E+004 
  1.431E+002,  1.081E+004 
  1.481E+002,  1.021E+004 
  1.534E+002,  9.633E+003 
  1.588E+002,  9.070E+003 
  1.644E+002,  8.542E+003 
  1.703E+002,  8.040E+003 
  1.763E+002,  7.561E+003 
  1.825E+002,  7.105E+003 
  1.890E+002,  6.663E+003 
  1.957E+002,  6.253E+003 
  2.026E+002,  5.865E+003 
  2.098E+002,  5.499E+003 
  2.172E+002,  5.144E+003 
  2.249E+002,  4.818E+003 
  2.329E+002,  4.511E+003 
  2.411E+002,  4.215E+003 
  2.496E+002,  3.944E+003 
  2.585E+002,  3.689E+003 
  2.676E+002,  3.444E+003 
  2.771E+002,  3.220E+003 
  2.869E+002,  3.010E+003 
  2.971E+002,  2.808E+003 
  3.076E+002,  2.625E+003 
  3.185E+002,  2.452E+003 
  3.297E+002,  2.288E+003 
  3.414E+002,  2.139E+003 
  3.535E+002,  1.994E+003 
  3.660E+002,  1.865E+003 
  3.790E+002,  1.738E+003 
  3.924E+002,  1.626E+003 
  4.063E+002,  1.516E+003 
  4.207E+002,  1.416E+003 
  4.356E+002,  1.323E+003 
  4.510E+002,  1.234E+003 
  4.669E+002,  1.154E+003 
  4.835E+002,  1.077E+003 
  5.006E+002,  1.005E+003 
  5.183E+002,  9.379E+002 
  5.367E+002,  8.775E+002 
  5.557E+002,  8.200E+002 
  5.753E+002,  7.655E+002 
  5.957E+002,  7.147E+002 
  6.168E+002,  6.673E+002 
  6.386E+002,  6.231E+002 
  6.612E+002,  5.819E+002 
  6.847E+002,  5.431E+002 
  7.089E+002,  5.054E+002 
  7.340E+002,  4.714E+002 
  7.600E+002,  4.399E+002 
  7.869E+002,  4.095E+002 
  8.147E+002,  3.822E+002 
  8.436E+002,  3.555E+002 
  8.734E+002,  3.309E+002 
  9.044E+002,  3.080E+002 
  9.364E+002,  2.864E+002 
  9.695E+002,  2.659E+002 
  1.004E+003,  2.468E+002 

  1.039E+003,  2.290E+002 
  1.076E+003,  2.120E+002 
  1.114E+003,  1.962E+002 
  1.154E+003,  1.812E+002 
  1.195E+003,  1.671E+002 
  1.237E+003,  1.539E+002 
  1.281E+003,  1.413E+002 
  1.326E+003,  1.294E+002 
  1.373E+003,  1.179E+002 
  1.421E+003,  1.069E+002 
  1.472E+003,  9.589E+001 
  1.524E+003,  8.407E+001 
  1.578E+003,  6.570E+001 
  1.634E+003,  6.287E+001 
  1.692E+003,  6.010E+001 
  1.752E+003,  5.741E+001 
  1.814E+003,  5.485E+001 
  1.878E+003,  5.234E+001 
  1.944E+003,  4.994E+001 
  2.013E+003,  4.764E+001 
  2.084E+003,  4.540E+001 
  2.158E+003,  4.327E+001 
  2.234E+003,  4.119E+001 
  2.314E+003,  3.922E+001 
  2.395E+003,  3.731E+001 
  2.480E+003,  3.547E+001 
  2.568E+003,  3.374E+001 
  2.659E+003,  3.204E+001 
  2.753E+003,  3.044E+001 
  2.851E+003,  2.889E+001 
  2.951E+003,  2.742E+001 
  3.056E+003,  2.602E+001 
  3.164E+003,  2.466E+001 
  3.276E+003,  2.338E+001 
  3.392E+003,  2.213E+001 
  3.512E+003,  2.096E+001 
  3.637E+003,  1.983E+001 
  3.765E+003,  1.875E+001 
  3.899E+003,  1.773E+001 
  4.037E+003,  1.673E+001 
  4.180E+003,  1.581E+001 
  4.328E+003,  1.489E+001 
  4.481E+003,  1.403E+001 
  4.640E+003,  1.318E+001 
  4.804E+003,  1.236E+001 
  4.974E+003,  1.157E+001 
  5.150E+003,  1.074E+001 
  5.332E+003,  1.009E+001 
  5.521E+003,  9.465E+000 
  5.716E+003,  8.859E+000 
  5.919E+003,  8.278E+000 
  6.128E+003,  7.703E+000 
  6.345E+003,  7.159E+000 
  6.570E+003,  6.661E+000 
  6.802E+003,  6.162E+000 
  7.043E+003,  5.661E+000 
  7.293E+003,  5.037E+000 
  7.551E+003,  4.686E+000 
  7.818E+003,  4.378E+000 
  8.095E+003,  4.087E+000 
  8.382E+003,  3.806E+000 
  8.678E+003,  3.542E+000 
  8.985E+003,  3.287E+000 
  9.304E+003,  3.035E+000 
  9.633E+003,  2.776E+000 
  9.974E+003,  2.573E+000 
  1.033E+004,  2.380E+000 

  1.069E+004,  2.196E+000 
  1.107E+004,  2.021E+000 
  1.146E+004,  1.850E+000 
  1.187E+004,  1.670E+000 
  1.229E+004,  1.525E+000 
  1.272E+004,  1.393E+000 
  1.318E+004,  1.263E+000 
  1.364E+004,  1.142E+000 
  1.412E+004,  1.012E+000 
  1.462E+004,  9.011E-001 
  1.514E+004,  8.247E-001 
  1.568E+004,  7.527E-001 
  1.623E+004,  6.824E-001 
  1.681E+004,  6.123E-001 
  1.740E+004,  5.577E-001 
  1.802E+004,  5.061E-001 
  1.866E+004,  4.580E-001 
  1.932E+004,  4.121E-001 
  2.000E+004,  3.686E-001 
  2.071E+004,  3.269E-001 
  2.144E+004,  2.852E-001 
  2.220E+004,  2.512E-001 
  2.299E+004,  2.189E-001 
  2.380E+004,  1.874E-001 
  2.464E+004,  1.569E-001 
  2.552E+004,  1.263E-001 
  2.642E+004,  9.471E-002 
  2.735E+004,  5.912E-002 
  2.832E+004,  3.901E-003 
  2.933E+004,  2.120E-003 
  3.036E+004,  4.108E-004 
  3.144E+004,  1.624E-004 
  3.255E+004,  1.039E-004 
  3.370E+004,  7.796E-005 
  3.490E+004,  6.081E-005 
  3.613E+004,  5.054E-005 
  3.741E+004,  3.986E-005 
  3.874E+004,  3.356E-005 
  4.011E+004,  2.732E-005 
  4.153E+004,  2.320E-005 
  4.300E+004,  2.001E-005 
  4.452E+004,  1.748E-005 
  4.610E+004,  1.556E-005 
  4.773E+004,  1.386E-005 
  4.942E+004,  1.227E-005 
  5.117E+004,  1.077E-005 
  5.298E+004,  9.346E-006 
  5.485E+004,  7.943E-006 
  5.680E+004,  6.542E-006 
  5.881E+004,  5.210E-006 
  6.089E+004,  4.187E-006 
  6.304E+004,  3.447E-006 
  6.528E+004,  2.986E-006 
  6.759E+004,  2.596E-006 
  6.998E+004,  2.259E-006 
  7.246E+004,  1.930E-006 
  7.502E+004,  1.626E-006 
  7.768E+004,  1.350E-006 
  8.043E+004,  1.082E-006 
  8.328E+004,  8.085E-007 
  8.622E+004,  4.945E-007 
  8.928E+004,  2.471E-007 
  9.244E+004,  2.000E-008 
  9.571E+004,  1.082E-008 
  1.026E+005,  0.000E+000     
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Appendix F: Symbols, Acronyms, and Definitions 
 

Symbols 
mostly in order of appearance 

(See Acronyms and Definitions for additional explanations) 

L, LT A value of LET. The subscript emphasizes that LT is the LET used for a heavy-ion 
test. Without the subscript, it is more generic and might refer to a natural space 
environment. 

δq, δQ The upper case is the charge loss from a single ion hit as a statistical random 
variable. The lower case is a value of this random variable. 

S(L,δq) A set of points associated with a selected FG. It is the set of points in the device 
plane having the property that a normal-incident ion hit at any of these points, by 
an ion having LET L, produces a charge loss that exceeds δq in the selected FG. 
Each FG in a collection of FGs has its own set of these points.  

σ(L,δq) The area of the set S(L,δq). It is the cross section associated with a selected FG for 
a normal-incident ion having LET L to produce a charge loss that exceeds δq in the 
selected FG. 

σsat Called the saturation cross section, this is the limit of σ(L,δq) as δq → 0. 
H(L), 
h(L) 

H(L) is the irradiation fluence consisting of all ions having an LET greater than L, 
while h(L) is the negative of the L derivative of H(L). 

Δq, ΔQ The upper case is the charge loss accumulated over all ion hits as a statistical 
random variable. The lower case is a value of this random variable. 

P(*), 
P(*|*) 

The first function is a generic probability function and its argument is any set of 
outcomes or any designation of a set of outcomes. For example, the probability 
that ΔQ exceeds Δq can be denoted P(ΔQ > Δq). The second function is a generic 
conditional probability function and has two arguments. The first is any set of 
outcomes or any designation of a set of outcomes. The second argument is a given 
condition. For example, the probability that ΔQ exceeds Δq, given that there were 
n ion hits, can be written as P(ΔQ > Δq | # hits = n) or more compactly as P(ΔQ > 
Δq | n) when the text explains the meaning of the more compact notation. In 
particular, P(CLE) is the probability of a charge-loss event and the goal of this 
work is to calculate this probability for a given radiation environment. 

f, G1, Gn These functions are defined by (15) for the general case and by (25) and (15a) for 
the FG charge-loss model used here. The only role of the function f is to construct 
the G-functions. The significance of the G-functions is their roles in (36) and (57). 

ΔqC, ΔQC The upper case is the critical charge loss as a statistical random variable. The 
lower case is a value of this random variable. 

σS,sat, 
σW,sat, σsat 

The first two are the normal-incident saturation cross sections for a selected FG for 
strong interactions and weak interactions, respectively. The sum of these is σsat. 

a1, a2 Defined by the condition that the charge loss from one strong interaction is LET 
divided by a1, and the charge loss from one weak interaction is LET divided by a2. 

U(x) Unit step function defined by U(x) = 1 when x > 0 and U(x) = 0 when x ≤ 0. 
Cm,n, 
Dm,n, Em,n 

Unlike the G-functions that can be defined in a more general context, the C-, D-, 
and E-functions are definable only in the context of the FG charge-loss model used 
here. In this context, they are defined by (27). The only purpose of the C- and D-
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functions is to construct the E-functions. The significance of the E-functions is 
their role in (28), which reduces to (34) when the environment is a pure spectrum. 

σCLE Cross section, per FG, for a CLE under SEU-like conditions. It is experimentally 
defined for a large collection of FGs exposed to a fluence small enough to produce 
SEU-like behavior. The cross section is the number of CLE counts divided by 
fluence and then divided again by the number of FGs in the collection. 

D, ΔqD D is the dose in SiO2 and can be calculated by (46). ΔqD is the FG charge loss 
produced by this dose and can be calculated from (52). 

ρ, F, k, λ The first two are the probability density function and cumulative distribution 
function, respectively, for the critical charge loss. These functions refer to an 
arbitrary distribution in (36) through (45), but refer to the Weibull distribution with 
shape parameter k and scale parameter λ in (47) and all later equations. 

b1, b2 The b-parameters are defined by (49). The physical significance of b1 is that it is a 
measure of the sensitivity of FGs to CLEs via strong interactions, with a smaller 
value of b1 implying greater sensitivity. The parameter b2 has the same 
interpretation for weak interactions that b1 has for strong interactions. 

 
 

Acronyms 
in alphabetical order 

(See Definitions for additional explanations) 

CLE Charge loss event. 
FET Field-effect transistor. 
FG Floating gate. 
LET Linear energy transfer. 
SEE Single-event effect. 
SEU Single-event upset. 
TID Total ionizing dose. 
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Definitions 
in alphabetical order 

(See Acronyms for additional explanations) 

Actual charge loss See “Prompt charge loss.” 
Charge loss See “Prompt charge loss.” 
Charge loss event A user-defined event characterized by the charge stored in an FG 

crossing some threshold value via prompt charge loss. A frequently 
cited example is the deprogramming of an initially programmed 
(charged) FG in a flash memory. 

Critical charge loss The charge loss needed to produce a user-defined charge loss event. A 
frequently-cited example is the charge loss needed to deprogram an 
initially programmed (charged) FG in a flash memory. 

Dose-like An FG, or a collection of FGs, exhibits dose-like behavior when the 
number of ion hits needed to produce a CLE is large enough to be 
approximately deterministic, i.e., can be approximated by the statistical 
average. This can occur only when the LET is small enough so that a 
large number of hits are needed for a CLE. The model prediction 
applicable to dose-like behavior is (45). (See, also, “SEU-like.”) 

Effective charge 
loss 

See “Prompt charge loss.” 

Prompt charge loss The loss of FG charge that occurs immediately after a hit from an 
ionizing particle. An actual FG charge loss is from a direct hit to the FG 
(a strong interaction). An effective charge loss is any combination of 
actual charge loss and charge trapping in a nearby oxide (a weak 
interaction) that has the same effect on a charge-sensing circuit as an 
actual charge loss. 

Pure spectrum An ion radiation environment is a pure spectrum when all ions have the 
same LET. This is a typical laboratory environment used for heavy-ion 
testing. 

SEU-like A collection of FGs exhibits SEU-like behavior when nearly all FGs 
that underwent a CLE received only one ion hit. This can be recognized 
in test data by the number of CLE counts being proportional to fluence. 
Given that the LET is large enough so that counts can be produced by 
single hits, this behavior can still only occur when the fluence is 
sufficiently small, so this behavior is also known as “small-fluence” 
behavior. The model prediction applicable to SEU-like behavior is (42) 
when there is no added dose, and by (62) when there is added dose. 
(See, also, “Dose-like.”) 

Small fluence See “SEU-like.” 
Strong interaction Occurs when an ion strikes an FG and the effective charge loss is an 

actual FG charge loss. 
Weak interaction Occurs when an ion strikes a nearby oxide resulting in charge trapping 

in the oxide that has the same effect on a charge-sensing circuit as an 
actual FG charge loss. 
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