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Abstract:

Since advancing technology has been producing smaller structures in electronic circuits, the
floating gates in modern flash memories are becoming susceptible to prompt charge loss from
ionizing radiation environments found in space. A method for estimating the risk of a charge-loss
event is given.
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I. Introduction
The floating gates (FGs) in flash memory devices are subject to two known effects produced by
radiation environments, such as the ion environments found in space. One, which is not the topic
of this report, is a radiation-induced leakage current (RILC) [1]. This effect reduces the data
retention time of the floating gates. For applications in which data refreshes are possible, this
effect can be mitigated by sufficiently frequent refreshes.

The topic of this report is the other effect, which is a prompt (i.e., occurs immediately
after an ion hit) effective charge loss of the floating gate. The term “effective” is used here
because there are at least two physical mechanisms that contribute to this. One is an actual
charge loss discussed by Cellere et al. [2]. The other is a partial compensation of the FG charge
by charge created in a nearby oxide which was discussed by Guertin ef al. [3]. The charge state
of an FG is experimentally determined by the threshold voltage of a field-effect transistor (FET)
surrounding the FG, but a voltage shift cannot distinguish an actual charge loss from charge
compensation', so an effective charge loss refers in this report to any combination of actual loss
and compensation that produces a shift in the threshold voltage. Until recently, a prompt FG
charge loss was less of a concern compared to single event effects in the control circuitry.
However, the FG charge loss is a major concern in some of the more recent technologies that
rely on smaller amounts of charge stored in the FG.

The goal of this report is to construct a model for this charge loss that is simple enough to
be analytically tractable but still close enough to reality to serve as a data-fitting tool that, when
fitted to laboratory test data, predicts the risk of an FG becoming deprogram by a given radiation
environment. It is important to note that either kind of charge loss (actual or partial
compensation) can be restored by erasing and then reprogramming the memory [2, 3. Therefore,
excluding RILC and total ionizing dose (TID) effects in other circuit elements, the irradiation
history prior to the most recent erase and program operation is not relevant.

An important issue that must be addressed is that FG charge loss (“effective” will be
tacitly assumed whenever no clarification is explicitly given) is cumulative. Test data in [3] were
obtained by exposing a flash memory device to a variety of test ions characterized by linear
energy transfer (LET), and a variety of fluences. Prior to exposure, the FGs were programmed
(charged). After each exposure, the FGs were monitored to determine which ones lost enough
charge to be sensed by the circuity as being deprogrammed (uncharged).? Plots in [3] of the
number of deprogrammed FGs versus fluence indicate that a single ion hit is enough to
deprogram an FG at the largest tested LETs, but multiple hits are needed at the smaller LETs.
Since multiple hits are sometimes required, this situation is not the classic single-event effect
(SEE). For SEE, cross sections are experimentally defined to be the number of counts divided by
fluence and can be measured in a laboratory, then used to predict SEE rates in a given space
environment. The concept of an interaction cross section will be used in this analysis (as
explained in the next section) but, as pointed out in [3], a cross section for charge-loss events is
not well defined. Specifically, an event cross section cannot be calculated by simply dividing the
number of deprogrammed FGs by the tested fluence because this ratio is not a constant but,
instead, increases with increasing fluence. The reason is that irradiation effects are additive so

! Sometimes a distinction can be made by investigating the time profile of the voltage shift [3], but the analysis
given here will not require such measurements.

2 We are discussing single-level cells having only two possible logic states. For multi-level cells there are several
kinds of events that can occur. An example is a cell initially in the most highly-charged logic state that loses enough
charge to be in any one of the lower-charged logic states.



the probability of an FG becoming deprogrammed by the next ion hit depends on whether it was
already exposed to prior irradiation (unlike the classic SEE problem in which past history is
quickly forgotten so the present environment is the only concern). On the other hand, this
situation is also not the classic TID effect. While TID is cumulative, the classic situation
involves such large numbers of particle hits that these numbers are close enough to statistical
averages to be deterministic instead of stochastic. That is not the situation for an FG that can be
deprogrammed by one or a few ion hits. This is a micro-dose problem that requires a custom-
made statistical analysis to interpret laboratory test data in such a way that mission risk estimates
can be made. Such an analysis is given in this report.

Definitions and explanations of symbols and acronyms are included in the main text but
can also be found in Appendix F. This appendix also explains the significance of various
quantities and can serve as a summary of this work.



I1. Interaction Cross Sections
Until Section XII, all ion hits are tacitly assumed to be at normal incidence and the hit location is
described by two coordinates: x and y. Directional effects will be discussed in Section XII. The
concept of a cross section begins with the concept that the FG charge loss produced by a given
ion species and energy depends on where the ion hits the physical structure. In this context, the
physical structure consists of the FG itself together with any oxide (or other) materials that are
close enough to the FG to be relevant. To be more specific, we assume that, for the selected ion
species and energy, there is some function W(x,y) satisfying

oqg=W(x,y),

where dq is the charge loss produced by one hit to the selected location. The symbol ¢ is used to
emphasize a single hit, while A will be used in later sections for cumulative charge loss. Note
that the function ¥ is unique to the selected ion species and energy. To make the above equation
more general we include another argument in the W function, call it L, that completely
characterizes the ion species and energy in such a way that the function W is completely
determined by this one parameter. The equation then becomes

oq=W(L,x,y). (1)

The charge loss from one hit is then determined by specifying the L-value and hit
location of the ion. The most obvious convenient choice for L is the ion LET, although this
choice has some limitations. The limitations are due to the fact that different ions with the same
LET can produce different track structures. The radial track structure is significant in two ways.
The first is its effect on the yield function that determines the number of electron-hole pairs
liberated in an oxide that survive the prompt recombination [4]. It was argued in [2] that this is
not important when considering an actual charge loss of an FG, but it might still be relevant
when the charge loss is an affective charge loss produced from the charging of a nearby oxide. A
second significance occurs in devices small enough for the ion-track width to be comparable to
or larger than the geometric sizes of the ultra-small physical structures associated with some of
the more modern FGs. Note that the (x,y) in (1) is a point; the hit location of the ion. It does not
include a track width. The track width is implicitly contained in the function . lons that
produce wider tracks can have hit locations further from a physical structure and still affect that
structure, so the W function is more spread out for wider tracks. If different ions with the same
LET produce different track widths, then LET is not enough information to specify the W
function. However, until future work finds a better choice for L that is as (or almost as)
convenient to work with as LET, we will take L to be the LET.

A simplifying assumption that is essential to this analysis is that the function # does not
depend on whether there were previous ion hits. This assumption is clearly wrong because it
does not predict any saturation. If the same function W applies to all hits and the charge loss is
cumulative, the total charge loss would increase without bound as the number of hits increases
without bound. In reality, the total charge loss will not exceed the charge initially stored in the
FG. This will be a large error for an overkill exposure, i.e., an exposure that produces more than
enough hits needed to deprogram the FG. However, conservatism in the model representation of
an overkill exposure is not relevant to the ability of the model to predict the probability of the FG
becoming deprogrammed. If the existence of a well-defined function W satisfying (1) is an



adequate approximation up to the point that the cumulative charge loss is enough to deprogram
the FG, the model can still serve its intended purpose. The approximation of treating the W
function as independent of irradiation history might be called a small perturbation approximation
because it is expected to be accurate for a selected ion hit if the accumulated charge loss from all
prior hits (prior to the selected hit, but after the most recent erase-and-program operation) is
small compared to the initial charge stored in the FG.

The W function is used to define a cross section. We now interpret dq as an independent
variable and define the corresponding sensitive region, a set of points denoted S(L,dg), to be
those points (x,y) satisfying W(L,x,y) > dq. In other words, an ion with LET L will produce a
charge loss that exceeds dqg if, and only if, it hits the region S(L,0q). The cross section denoted
o(L,0q) is defined to be the area of S(L,dq).

Recall that the W function accounts for track width, so the cross section o(L,d¢q) can
exceed the geometric area of a physical structure by an amount that accounts for track width.
However, hits that are sufficiently far from the FG will have no effect on the selected FG, so the
cross section o(L,dq) (which increases with decreasing dg) has a finite value in the limit as dg —
0", where the “+” superscript means that the approach to zero is from above. However, there is a
complication. It is conceivable that the saturation value could be different for different LETs, or
even for different ions having the same LET. For example, there might be a hit location (x,))
such that a hit at this point by an ion that produces a narrow track has no effect, while an ion that
produces a wider track results in a nonzero charge loss. The saturation cross section would then
be larger for the wide-track ions than for the narrow-track ions. An analysis that allows for
different ions to have different saturation cross sections would lead to a discontinuity in a
probability function discussed in the next section, and this is a mathematical nuisance. It is an
avoidable nuisance because there is a simple way to work around this. Referring to the two-ion
comparison just given, all we have to do is assign to the narrow-track ion a charge loss that is too
small to have any physical significance, but still greater than zero to avoid a mathematical
nuisance. In this model, if there is any LET such that a hit at a point (x,y) produces a greater-
than-zero charge loss, then any ion that hits this point will produce some greater-than-zero
charge loss, although it might be too small to have any physical significance. In other words, in
this model, the set of points (x,y) satisfying W(L,x,y) > 0 is the same set for all L. The saturation
sensitive region, denoted Sy, is defined to be this set of points, and the saturation cross section,
denoted o4, 1s defined to be the area of Sy4:. Using this model and these definitions, an ion hit
produces a nonzero charge loss if, and only if; it hits the region Sy., regardless of LET. We also
have

lim o(L,6q) =0y, forallL>0. )
aq—0"

The above discussions refer to a single isolated FG; isolated except for the presence of
oxide structures close enough to the FG for charge trapping in the oxide to affect the effective
charge loss of the FG. We now consider a device containing a collection of FGs. Each FG has its
own set of points S(L,0q), call the set S1(L,0q) for FG #1 and S>(L,0q) for FG #2. It is possible
that a single ion hit can affect both FGs so the two sets have some points in common; i.e., the



sets overlap.® The set Si(L,dq) is defined to be the set of hit locations that produce a charge loss
exceeding dg in FG #1 regardless of whether this ion hit does or does not affect any other FGs.
The expected number of these events in FG #1 is the expected number of hits to the set Si(L,0q),
which is the area of Si1(L,0q) (the cross section) multiplied by fluence. Similarly, the expected
number of these events in FG #2 is the area of S2(L,0q) (the cross section) multiplied by fluence.
The sum of these expected numbers is obtained by multiplying the sum of the cross sections by
fluence. This is true regardless of whether the two sets, S1(L,0q) and S>(L,0q), have any overlap,
but this counting convention counts the number of events, not the number of ion hits. For
example, if one ion hit produces an event in both FG #1 and FG #2, the count is 2 (for two
events), not 1 (for one ion hit). This counting convention is convenient, and will be mentioned
again in Section XII when ion trajectories at angles are discussed, because the number of counts
summed over a collection of FGs is obtained from the sum of cross sections regardless of
whether there is or is not overlap. If there is overlap, the sum of cross sections will be larger than
the area of the union of the point sets.

3 A distinction will be made later (Section VI) between weak and strong interactions. We do not expect overlapping
sets for strong interactions from normal incident ion hits when FGs are laterally separated (i.e., not one above
another), but there might be overlap for weak interactions.



I11. The Single-Hit Sample Space
Consider two geometric regions, Ssa: and S4, with respective areas g,q: and A. The region Sy
contains all points that are contained in Ss... Let H(L) denote the integral irradiation fluence; the
fluence that includes all ions in the environment having an LET that exceeds L. The fluence at
each L is assumed to be spatially homogeneous over the region Sy, which is defined to mean that
any portion of S4 has the same probability of being hit by an ion of a given LET as any other
portion having the same area. We take A4 to be large enough so that the number of hits to this area
is large enough so that the number of hits can accurately (in terms of fractional or percent error,
we are not concerned with absolute error here) be represented by the statistical average number
of hits, which is the total fluence H(0) times the area A. Note that 4 is an artificial parameter in
the sense that it will not appear in the final results, but it provides a convenient way to derive
those results. We now consider a set of randomly selected ions where random refers to both hit
location (within the region S4) and LET (with probability determined by relative abundances of
different ions in the environment). The expected (statistical average) number of ions that
individually produce a charge loss exceeding dq is denoted Ni(6Q0>dq). The upper case 6Q
denotes a statistical variable while the lower case dg denotes a value of a variable. The subscript
1 emphasizes that these are single particle events. This expected number is given by

Ni(30 > 8) = [ " h(L)o(L.5g)dL,

where (L) is the differential fluence and is the negative of the L derivative of H(L) (the negative
sign is needed to produce a positive differential fluence). Similarly, the expected number of hits
(including all LETSs) to the region Sy is given by

N (hits to Sg) = H(0)O gy
while the exact (in terms of fractional error in the large-A4 limit) number of hits to Sy is
Niotar =H(0) 4.

Note that whether or not 60 > dq is a “yes or no” condition so the binomial distribution,
which gives the probability of N; successes in Ny tries, applies. For this distribution, the
probability for a single hit to produce a success (i.e., the probability of a success from a single
try) is the expected number of successes divided by M. Therefore, the probability that a single,
randomly selected ion (from the population that hits the region S4 and has the LET distribution
implied by A(L)), produces a charge loss that exceeds dg is given by

o MD)o(L.sp)dL, ©

Pl'(5Q>5¢I)=H(:))AJ.

where the prime distinguishes P1/ from another probability that refers to another sample space
discussed later. Similarly,



B (hitto S,,) = Jj” . 4)

Note that a single randomly selected ion that produces a charge shift must also hit the
region Ssas, SO

R'(60 > 87) = (30 > & and hit 10 Syy) -
Using the definition of conditional probability to rewrite the right side gives
P"(00>089)=P'"(00 > g | hitto Sg,;) B (hitto Sgy) » (5)

where P17 (00 > dq | hit to Ss) is a conditional probability; the probability that the ion hit will
produce a charge loss that exceeds dq, given that this ion hit the region Ss.:. Combining (3) and
(4) with the above gives

“WL)o(L,5q)dL . (6)

. 1
R'(8Q > & | hit t0 Sgq) = ————[

H(0)og,

Note that the area 4 does not explicitly appear on the right side of (6). This area still has
an implicit role in that it defines fluence, which is actually a macroscopic quantity. By letting 4
be large enough so that Ny is large enough to have a definite (instead of stochastic) value, the
fluence can be defined by dividing N by A. The fluence is homogeneous when any portion of
S4 has the same probability of being hit by an ion of a given LET as any other portion having the
same area. By combining these equal probabilities with a definite value of N, Wwe have
calculated the probability that a small portion of S4 will be hit, even if that portion is too small
for a large number of hits, and this makes a connection between a macroscopic fluence and
microscopic statistics. However, when the meaning of fluence is understood, the area 4 has no
further role in this analysis.

Having calculated the conditional probability in (6), we can use this to assign
probabilities to events in a different sample space. This sample space is the set of all possible
outcomes allowed by the condition that there is exactly one ion hit to the region Ss.. The ion can
have any LET with probability determined by relative abundances of different ions in the
environment. This sample space is a subset of the larger sample space (in which there were Nosu
hits to a macroscopic region S4) that the conditional probability in (6) applies to. Therefore, the
probability, denoted P1(6Q > dq), that a randomly selected hit will produce a charge loss
exceeding dq in this sample space is given by

goh(L) o(L,5q)dL. 7)

Pl(aQ>5q)=H(ﬁj
sat

To shorten the notation, we define F by

F(oq) =R (60 < ). (8)



The direction of the inequality was selected to satisfy the usual convention for a cumulative
probability distribution, that F(dq) increases with increasing dg. Note that the condition 60 > 0 is
implied for this sample space because, as discussed in the previous section, any ion hit to the
region Sy, produces a greater-than-zero charge loss. Using this fact with (8), we conclude that
F(0) is defined and equal to zero, as is the limit of F(dq) as dg — 0", so F(dq) is continuous at dq
= 0. Note that the conditions 6Q > dg and 0Q < dg are mutually exclusive and all-inclusive, so (8)
can be written as

o LYo (L,8g)dL ©)

1
F(5q)—1—Pl(5Q>5q)—l—mj

where the second equality used (7). As a consistency check, note that (2) and (9) produce
agreement with the earlier statement that F(dg) — 0 as g — 0.
The probability density function associated with F, denoted f, is given by

_d _ 1 d (o
S (@)= 5 F o) == [y ML oL gL (10a)
Integrating (10a) while using F(0) = 0 gives
%
o fGdx=F(). (10b)

In particular, because F(dg) — 1 as 0g — o, we have the normalization condition

_[gof(x)dle. (10c)

The cumulative probability function and the probability density for the single-hit sample
space given by (9) and (10a) are the essential results derived in this section.



IV. The Sample Space for n Hits
This sample space considered in this section is the set of all possible outcomes allowed by the
condition that there is exactly » ion hits to the region Ss... As with the single-hit sample space,
any of the # ions can have any LET, independently of each other, with the probability
distribution for an LET assignment determined by the relative abundances of different ions in the
environment. The probability function for this sample space is denoted P,, where the n subscript
denotes the sample size. The quantity of interest here is the sum of charge losses summed over

the particle hits. To shorten the notation, the cumulative probability function for this sum is
denoted £, defined by

Fu(Aq) = Py(A,0 < Ag). (11a)

where Aq is an arbitrarily selected number, and the random variable A,Q is defined to be the sum
of random variables given by

A,Q= Z5Qk , (11b)

k=1

where dQx is the charge loss from the k" hit. Note that, when n =1, F, is the function F in the
previous section and A,Q is 6Q.

The cumulative probability function F, can be calculated from a recurrence relation that
contains the single-hit probability density f'that was already calculated in the previous section.
The recurrence relation derived in [5], expressed in the notation used here, is

F,.1(Aq) = Igof(x)Fn(Aq—x)dx forn=1,2,... (12)

Having listed (12), we have no further need to conform to the convention in (6) in which
a cumulative probability function is increasing. It will be more convenient in the next section to
work with the function G, defined by

G,(Aq)=P,(A,,0>Aq)=1-F,(Aq) forn=1,2,... (13)

Using (13) to substitute for F, in (12) and using the fact that f'is a normalized probability density
shows that G, satisfies the recurrence relation

G,.1(Aq) = I;Of(x)Gn(Aq—x)dx forn=1,2,.... (14)

The infinite integration limit in (14) is often convenient for analytical investigations (e.g.,
in Sections VI and VII) but a finite integration limit is more convenient when the goal is to
evaluate the integrals numerically. A finite integration limit is obtained by noting from (13) that
Gu(x)=11fx <0, so Gu(x— &) = 1 if £ > x. This property allows (14) to be written as



Gpi1 ()= G (D) + [ f(E)Gy(x-&)de

:Gl(x)+.[;f(x—§)Gn(§)d§ forn=1,2,..., (15a)

where the second equality was obtained by changing integration variables, and G is given, via
9), by

“h(L)o(L,x)dL. (15b)

Gi(x)=1-F () =1-F(x)= -

H(0)0 g4
As a reminder, fis given by

d 1 d o
f(X)——EGI(X)——ma 0 h(L)O'(L,X)dL (150)

and satisfies
[, /(©de=1-G(x). (15d)

From the probability interpretation of G, given by (13), it is evident that the following
conditions apply:

0<G,(x)<G,1(x)<1 forallx>0andalln=1,2,... (16a)
lim G,(x)=G,(0)=1 foralln=1,2,.. (16b)
x—0

lim G,(x)=0 foralln=1,2,... (16¢)

X—>0
lim G,,(x)=1 forallx>0. (16d)

n—>0

G,(x)=1 forallx<0Oandalln=1,2,... (16e)
If —oo<x; <xy <oothenG,(x;)>G,(x,) forallm=1,2,.... (16f)

All of the properties listed in (16) can be shown to be consistent with (15). Each
inequality in (16a) is most easily proven from (15) by mathematical induction while recognizing
that a larger integrand on the right side of (15a) produces a larger left side. The property (16b) is
evident from inspection of (15a) while recognizing that G1(0) = 1. Verification of the property
(16¢) is postponed to the next paragraph because some discussion is needed. The property (16d)
is seen to be consistent with (15) by using (15d) to conclude that (15a) is satisfied when G+1(x)
and G,(¢) are both replaced by 1. Property (16¢) is seen to be consistent with (15a) by noting that
a negative x produces an integration interval in (15a) on which /=0, so (15a) gives Gn+1(x) =

10



Gi(x) = 1. Because of this property, numerical integrations utilizing the recurrence relation (15a)
are needed only when x > 0. To show that property (16f) is consistent with (15a) we must first
show that (16f) applies when n = 1. Recall from Section II that the cross section o(L,dq) is the
area of S(L,0q), which is the set of points (x,y) satisfying W(L,x,y) > dg. This implies that (L,
0q1) = o(L, 6q2) when dq1 < dq2. This fact, together with (15b), while noting that 4(L) > 0, implies
(16f) when n = 1. To establish (16f) forn =2, 3, ... , we use (15a) to get

Gt (1) = G2+ [ F(E) Gy ~ )l =
G+ [ F(©)Gy (1 =O)dE = [ 2 F(§) Gy (x1 —§)dé

When x1 < x2 we can use (16e) in the integral on the far right and then use (15d) to get

Go1(0) = G () + [ 7 F(€) Gy (1 =§)dE = [ 7 (£)dE = Gi(x)+ [ 7 £(6) Gy vy =€) dE

The last step uses the above equation in a simple proof by mathematical induction to establish
(16f) forn=2,3,....

Property (16c¢) requires some discussion because its validity requires the function G to
have this property. This was already tacitly assumed in the statement above (10c) (note that F' =
F1=1- Gy, so the statement that F' — 1 is equivalent to G1 — 0). This is clearly correct for any
real case because the ion LETs in any real environment are limited to a finite range (the upper
integration limit in (3) can still be infinite because the flux is zero at LETs larger than contained
in the environment), and any finite LET can only produce a finite charge loss even at the worst
possible hit location, so there is some maximum charge loss, call it dgmax, satisfying Gi(dg) = 0
when 0q > dgmax. However, models sometimes use simplifying approximations that might not
agree with all aspects of reality. We assume that any approximation that might be used for the
function f'will satisfy (10c), which implies that G satisfies (16c¢). It is shown in Appendix A that
(15) then implies (16c¢) for each n.

It is interesting to consider expected values for the sample spaces. For the single-hit
sample space, the expected value of d¢q, denoted < 6Q >, is defined by

(50) = j:’x f(x)dx . (17a)

For the sample space consisting of # hits, the expected value of the accumulated charge loss is
denoted E,[AQ] and defined by

Eq[AQ]= [ % fy(x)dx, (17b)

where the probability density f, is defined by
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fn(x>z—diGn(x>. (18)
X

It is well known from statistics that
E,[AQ]=n{50). (19)

As a check for consistency, note that (19) can be derived from (15). This is shown in Appendix
A.

Note the competing limits in (16c) and (16d). Because of this, a value of Ag that is large
enough to satisfy G.(Ag) = 0 depends on how large # is. A larger n requires a larger Aq for the
approximation to apply. Similarly, a value of n that is large enough to satisty G.(Ag) = 1 depends
on how large Agq is. A larger Ag requires a larger » for the approximation to apply. We can get
some additional information by taking the limit as #» and Ag increase together. It can be shown
from (15) that

lim G, (nog) =

n—>®0

1 if &g <(og) 20)
0

it og>(5)
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V. A Generic Micro-Dose Model
This section presents an analysis applicable to any micro-dose problem that can be adequately
modeled from the assumptions stated in previous sections when 60 is given some appropriate
physical interpretation (e.g., a transistor threshold voltage shift) for a single-ion hit, and the
quantity of interest is the sum over hits denoted AQ. Assumptions that are more specific to the
case in which AQ is the sum of effective charge losses of an FG will be used in the next section.
We will continue to use “charge loss” terminology in this section, but the results derived here
can also be applied to other physical interpretations of AQ.

The analysis begins in the same way as the analysis in Section III began, but the
macroscopic area 4, which receives a large enough number of hits for this number to be certain
to be close to the statistical average, is replaced by the microscopic area oy.. The sample space
considered in this section is defined by a specified homogeneous fluence 4(L), but the area oy, is
allowed to be small enough so that the number of hits to the region S5« must be treated as a
random variable. The equation that replaces (5) when the number of hits is a random variable is

P(AQ > Agq) =D P(AQ > Aq|n) P(n), (21)

n=l1

where P(AQ > Ag | n) is the probability that the accumulated charge loss exceeds an arbitrary
value Ag, given that Sy received exactly » hits, and P(n) is the probability that Sy, received
exactly #n hits. The conditional probability P(AQ > Ag | n) is the function G,(Aq) defined by (13)
for the sample space in which S, received exactly » hits. Also, the probability P(n) is related to
the expected number of hits, which is H(0)osas, by the Poisson distribution given by

P = [HO) 050 ]" expl- HO) 0. )

Making these substitutions into (21) gives

o0

PAQ > Ag) = expl- H(0) 012G (80) [HO) 5 ]" . (23)

n=1""

where G,(Aq) is calculated from either (14) or (15a), with fand G obtained from (15b) and
(15¢). If an event is defined by the condition that the accumulated charge loss exceeds some
critical value, call it Agc, then the probability for an event is P(AQ > Aqc).

An interesting limiting case is when Ag approaches zero. Using (16b), the sum becomes a
series expansion for exp[H(0)os.] —1, so the probability becomes 1—exp[—H(0)osa]. This is
recognized (via the Poisson distribution) to be the probability of one or more ion hits to the
region Ssa, Which is the expected result.
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VI. Specializing to Floating Gate Prompt Charge Loss
In order to continue with the results derived in the previous section, we must put some
information into the cross section o(L,0q) that reflects the specific case of interest. The case
considered here is the prompt effective charge loss of an FG.

The first approximation used here is the assumption that, for any given hit location, the
charge loss from an ion hit is proportional to the ion LET.* This approximation clearly fails
when the charge loss is sufficiently large because the approximation does not predict any
saturation; i.e., the predicted charge loss increases without bound as the LET increases without
bound. In reality, the charge loss cannot exceed the charge initially stored in the FG. Therefore,
this approximation is in the category of a small-perturbation approximation discussed in Section
II. However, as pointed out in that discussion, if the approximation is adequate up to the point at
which the charge loss becomes overkill, then the approximation is useful for this analysis. This
approximation implies that the cross section for a given LET to produce a given charge loss is
the same as the cross section for twice that LET to produce twice that charge loss. More
generally, the quantities L and dg should appear in the function o(L,d¢g) only in the combination
Lloq.

An important observation from Cellere ef al. in [6] is that there are at least two distinct
physical mechanisms contributing to charge loss. One, called the strong interaction here,
produces a relatively large charge loss from a single ion hit but has a small enough cross section
so that a relatively small number of hits are expected. Data in [6] indicate that the cross section
for this event is equal to the geometric area of the FG, which is consistent with the assertion in
[6] that this event occurs when an ion strikes the FG and the effective charge loss is an actual
charge loss. A characteristic of this interaction is that each ion hit (when all ions have the same
LET) to this region produces nearly the same charge loss. The other interaction, called the weak
interaction here, generally produces a smaller effective charge loss from a single-ion hit but can
still be important because of a larger number of interactions due to a larger cross section. This
weak interaction produces the secondary effects discussed in [6] and might be the same as the
partial compensation (via the charging of a nearby oxide) discussed by Guertin et al. in [3].

The model used here regards the region Sy as being made up of two non-overlapping
portions. One, denoted Ss,sas, 1 the region at which ion hits to this region produce strong
interactions. This region is assumed to be the FG. The other region, denoted Sw;sas, 1s the region
at which ion hits to this region produce weak interactions. The area of Ss . is denoted 0,54 and is
assumed to be the FG area. The area of Swsqr 1s denoted ow sqr and satisfies ow sar + 05.5ar = Osar.
The region Ss(L,0q) is that portion of Ss,s« at which a hit by an ion with LET L produces a charge
loss exceeding dg via a strong interaction (the only possible interaction for this region) and the
area of this region is the cross section denoted os(L,0q). The region Sw(L,dq) is that portion of
Sw sar at which a hit by an ion with LET L produces a charge loss exceeding dg via a weak
interaction (the only possible interaction for this region) and the area of this region is the cross
section denoted ow(L,0q).

The strong interaction cross section is approximated by assuming that all ion hits, at a
given LET, to the region Ss(L,0q) produce the same charge loss. With the charge loss assumed to
be proportional to the LET, the charge loss divided by LET is a constant, denoted 1/a1,” for all

4 Recall that the cross section refers to normal incident hits so a dependence on the angle of the ion track is not
discussed here. It will be discussed later in Section XII.

3 Stated another way, the charge loss from a strong interaction is the LET divided by a;. A small value of a; implies
that a small LET is enough to produce a given charge loss.
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hits to this region. This constant is an adjustable fitting parameter if there is not enough available
information for it to be known. No hit to the region Ss(L,0q) will produce a charge loss greater
than dq if dq is greater than L/a, but a hit anywhere to the region Ss(L,d¢g) will produce a charge
loss greater than dq if dq is less than L/ai. Therefore, the strong interaction cross section is the
step function given by

O-S,sat if 5q<L/a1

(24a)
0 if og>L/a

US(La§Q) = {

Since the model is intended to be only a data fitting tool, analytical simplicity is given a
higher priority than physical accuracy so we treat the weak interactions in the same way as the
strong interactions. Specifically, the cross section for weak interactions is approximated by
another step function, given by

GW,sat if &<L/Clz

(24b)
0 if &g>Llay

Ow (L,&q) = {

where ow s and a; are two more adjustable fitting parameters, having the same interpretations
for weak interactions that the parameters o5, and a1 have for strong interactions. It should be
noted that the use of a step function is not a new idea for curve-fitting applications. Specifically,
for SEE rate calculations, the RPP model explained in [7] is not physically correct (because
charge collection is not as simple as predicted by a sensitive volume model [8]), but the
integrated RPP model (the IRPP model) constructed from the RPP model by including a
statistical distribution of critical charges has been successful enough to be the most commonly
used model for SEE rate calculations. The reason is that a suitably selected statistical distribution
of critical charges (usually a Weibull function with some adjustable parameters) is able to
compensate for error in the physical model. Similarly, error in the simplifying assumption (24b)
can be at least partially compensated by a suitably selected statistical distribution of critical
charge losses. The inclusion of a statistical distribution of critical charge loss will be done for the
general case later in Section VIII, while data discussed later in Section X indicate that a Weibull
function is the best choice, but for the present discussion, it is enough to know that errors in the
physical model used in this section can be at least partially compensated by introducing some
adjustable fitting parameters in later sections. With this simplified model, the total cross section
is the sum given by

o(L,0q)=0og(L,09)+ow(L,0), Osat = OS.sat T OW sat - (24¢)

To calculate the probability in (23), we must calculate the functions G,. We start with G
by using (15b) with (24) to get

H(al x)O-S,sat + H(aZ X)GW,sat

Gt = H(0) 0wy

(25a)

and (15¢) gives
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ay h(ay x)os sur +ay h(ay x) oW sa

/)= H(0) 0y

(25b)

The remaining functions G2, Gs, ..., are calculated from (25) together with either (14) or
(15a). These calculations require that the four parameters ai, a2, 055, and ow,se: be known. When
known, numerical values can be assigned to Ag and then the probability P(AQ > Ag) can be
calculated from (23).

A “charge loss event” (CLE) is defined by the condition that the accumulated effective
charge loss exceeds some critical value, call it Agc. For example, the critical value might be the
value at which the device circuitry signals that the FG has become deprogrammed. Or, the
critical value might be the value at which the threshold voltage shift in a surrounding FET
exceeds one volt (or some other amount selected by an experimenter measuring threshold
voltage shifts). The probability of a CLE, denoted P(CLE), is the probability given by (23)
evaluated at Aq = Agc when Agc > 0. However, a modification needed to treat the case of a
negative-critical-charge loss is needed and can be understood after explaining the meaning of a
negative-critical-charge loss. A critical-charge loss that is negative is interpreted to mean that
prior to any irradiation the FG charge was already too small for the FG to be sensed as being in
the charged (programmed) state. A charge-loss event is experimentally recognized by the charge
state, so this FG will be experimentally identified as having undergone a CLE prior to any
irradiation. In other words, any FG with a negative AQc (i.e., any FG that was insufficiently
charged prior to irradiation) is regarded as having already undergone a CLE prior to any
irradiation. The probability of a CLE in this FG is 1, regardless of the amount of irradiation. The
modification of (23) evaluated at Aq = Agc needed to produce this result is

o0
P(CLE) = exp|[- H(0) asm]{w—ch) + Z%Gn (Agc) [H(0) o4 ]" } (26)
n=1""

where U is the unit step function defined by U(x) = 1 when x > 0 and U(x) = 0 when x < 0. This
produces the desired result because, if we take the limit as Agc approaches zero from above and
use (16b), we find that the curly bracket becomes a series expansion for exp[H(0)osa:] —1, so the
probability becomes 1-exp[—H(0)asa]. This can be recognized (via the Poisson distribution) to be
the probability of one or more ion hits to the region Ssa;, which is the expected result. However, if
Aqc is negative, the step function contributes and this, together with (16e), implies that the curly
bracket is a series expansion for exp[H(0)aosa], so the probability becomes 1, which is the
required result.

Eq. (26) can be used as is for numerical calculations if the numerical routine starts with
(25) and then numerically evaluates one of the integrals in (15a) to obtain G2, G3, etc. Numerical
integrations are needed only when x > 0 because of (16¢). But (26) has a disadvantage from the
point of view of analysis because the dependence of P(CLE) on o554 OF 0w,sar 1S Obscured by an
implicit dependence contained in G,. An equation that is more useful for analysis is one that
explicitly shows the dependence on as,sa and ow,ser. Such an equation can be obtained by first
defining Cp,n(x), D n(x), and Ep, »(x) by

Co,0(x)=H(a x) (27a)
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® oo Ho
Con0=[ [, h(}/l)..h(yn)H(al{x—%Ddﬂ...d;f,} foralln=1,2,.. (27b)

Cm’o(x)Ejgo...j(joh(cfl)..h(fm)H(al{x—wail...dcfm forallm=1,2,... (27c)

ay
Cipp(x)=

[ H )R-, )H(al [x— Sltetom 1ttty Ddgl...dgmdyl...dyn

al an
forallm=1,2,... andalln=1,2,... (27d)

DO,O (x) = H(d2 x) (276)

0 oo +.
Dop(x)=[, [, h(71)---h(7n)H£a2 [x—u ]d}q...d}/n foralln=1,2,... (27

a

Dm,o(x)Ej(:o...j;oh(fl)...h(ém)H(az[x—m} dé..dé, forallm=1,2,.. (27g)

ay
Dm,n (x)=
o roo +ot +ot
[ hED - E )y ) H | x = i Sm 71 Yn \ag,..dé, dy,..dy,
0 0 aj a,

forallm=1,2,... andalln=1,2,... (27h)
Epo(x)=U(-x) (271)
Eyp(x)=Dgy,-1(x) foralln=1,2,.. (27)
Epo(x)=Cpto(x) forallm=1,2,... (27k)

Ep,(X)=——C, 1 ,(x)+——D, (x) forallm=1,2,... andalln=1,2,... (27L)
’ m+n ’ m+n ’

The parameters defined by (27) are constructed from the environmental fluence,
evaluated at arguments that depend on a1 and a> which describe FG sensitivities, but do not
depend on the cross sections s OF ow,sar. It 1s shown in Appendix B that (26) can be written as

0

|
P(CLE) = exp[— H(0) O_sat] z —Em,n (Aqc) US,satm JW,satn . (28)

In!
—
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VII. An FG in a Pure Spectrum

An advantage of testing a device with heavy ions at a particle accelerator is that a single-ion
species and energy can be selected so that all particles that hit the device during a beam run have
the same LET. This is classified here as a pure spectrum. Two derivations of P(CLE) produced
by a pure spectrum are considered here. The first does not start with (28) because the
simplifications provided by a pure spectrum provide a fairly simple derivation when starting
from first principles. This derivation has the advantage of being easy to follow, but a
disadvantage is that it does not easily generalize to more complex spectra (e.g., a superposition
of two pure spectrums). The second derivation uses (28) to derive the same conclusion that was
produced by the first derivation.

A derivation from first principles goes back to (21) and replaces it with

P(AQ >Aq)= ) P(AQ > Aq|m,n) Ps(m) Py (n), (29)

m,n=0
where P(AQ > Aq | m,n) is the probability that the accumulated charge loss exceeds Ag, given
that Ss, . received exactly m hits and Sw,sa received exactly » hits, Ps(m) is the probability that

Ss.sa received exactly m hits, and Pw(n) is the probability that Sw,s. received exactly # hits. The
latter probabilities are obtained by changing (22) into

Pg(m) = %[H 08 sat ]m exp[— H O8,sat ]’ By (n) = %[H oW sat ]n exp[— H O-W,Sat]’ (302)

where H is the beam fluence. To evaluate the conditional probability in (29), let L7 denote the
LET of the test ion. From the definitions of a1 and a2 given in the previous section, m hits to Ss s
and » hits to Sws« produce a definite value for the accumulated charge loss given by

AQ:[ﬂ+i)LT,

a ap

so the conditional probability is given by

1 if Ag< (ﬂ+iJLT

a, a
P(AQ > Agq | m,n) = b = U{[ﬂ-lrijLT —AC]J ; (30b)
) m n ay  a
0 if Ag=> (—+—JLT
ap a2

where U is the unit step function defined by

1 if x>0

. 31a
0 if x<0 (31a)

U(x) = {

18



We also define U-bar, the compliment of the unit step function, for later use by

(7() 1-U(x) 0 if x>0
x)=1-U(x)= .
1 if x<0

We often (e.g., when evaluating integrals containing continuous functions) do not have to make a
distinction between U-bar(x) and U(—x), but a distinction is needed when the discontinuous point
at x = 0 has some significance. Substituting (30) into (29) gives

(31b)

P(AQ > Aq) = exp[_Hasat] i 1 U((ﬂ"_ijl’T _AQJ [H GS,sat]m[H GW,sat]n - (32a)

I'n!
m.n=0 m'!n! ay an

A CLE occurs when Ag = Agc. Evaluating the above probability at this point gives

P(CLE) = expl-H o] Y, — U((Lijh—chJ[Has,sat]”’[H oW sa]” - (320)

I n!
m,nzOm'n' al an

The results in (32) are useful for revealing some properties, such as the behavior of
P(CLE) when Hoy,, is small enough for the infinite series to be approximated by the first few
non-vanishing terms, but the infinite series is not convenient for most numerical calculations. For
the purpose of numerical calculations, it is convenient to replace the infinite series by an
expression containing a finite sum. This is done by expressing the exponential function as a
power series to get

1= exp[— H oy ]exle OS sat Jexle OW sat J =

0
1
exp[_HGsat] e [H GS,sat]m [H GW,sat]n (33)
oo M1
and combine this with (32) to get
P(AQ > Aq) =
o0 1 —
l—exp[—HO'Sm] z : 'U((ﬂ+i]LT —Aq] [Has,sat]m[H O'W,sat]n , (34a)
m,n=0 m:.n:. a an
P(CLE) =
0 1 —
l—exp[—Hasat] Z ‘ 'U((ﬂJrleT —chj [HUS’Sat]m[HO'W,Sm]n . (34b)
m,n=0 m:n. al an

U-bar is zero when m and/or n are sufficiently large, so only a finite number of terms contribute
to the sums on the right sides of (34). Note that U-bar can be omitted from the right sides of (34)
by imposing suitable restrictions on the summation indices. But including U-bar with an
unrestricted sum, instead of omitting U-bar and using a restricted sum, is more convenient for the
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analysis in the next section. As a check for consistency, note that a positive Aq that is sufficiently
close to zero results in only the m = n = 0 term contributing to the double sum in (34a), so the
probability becomes 1—exp[—Hos.]. This can be recognized (via the Poisson distribution) to be
the probability of one or more ion hits to the region Sy, which is the expected result.

The second derivation of (32b), which implies (34b), requires only two steps because this
derivation utilizes (28). The first step uses 4(¢) = H(0)o(¢ — Lr) (where 6 is the Dirac o-function)
and H(¢) = HO)U(Lr — &) with (27) to get

mLly nly _

E,, ,(x)=H(0)™"" U(
’ aj ap

xJ forallm=0,1,2,... andalln =0,1,2,....

The second step substitutes this result into (28) to obtain (32b).
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VIII. FG-to-FG Variations
The previous sections considered an FG characterized by well-defined values for each of the
parameters ai, az, os,sar, Ow,sar, and Agc. These parameters may or may not be known, but they are
still well defined in the sense that they are not random variables. The only random variables
previously considered were the numbers of ion hits to various regions. However, data in [6]
show that, even without any irradiation, there is a significant spread in the threshold voltages
associated with different FGs in a flash memory. The model used here attributes this spread to
variations of Agc among different FGs. The interpretation of a probability is now extended to
include randomness in the selection of an FG, so the critical-charge loss becomes another
random variable and is denoted AQc. The probability calculated from (26) is now interpreted as a
conditional probability. The notation that will now be used for this probability is P(CLE | AQc =
Aqc) and is the probability of a charge-loss event, given that the critical-charge loss is equal to
Agc. The probability of a CLE is constructed from this conditional probability from

P(CLE) =" P(CLE|AQC = &) p(&)d¢, (35)

where p(¢) is the probability density for the critical charge loss to equal £. This probability
density is presently unspecified because any one of a number of distributions might be
considered. A definite choice (a Weibull function) will be made for an example in Section X and
we will use this choice in later sections, but the analysis in this section will be versatile enough
to allow other choices to be made. The integration limits in (35) include negative values of the
critical charge loss so that we will be allowed (though not required) to consider critical-charge-
loss distributions that include negative values of the critical-charge loss. The meaning of a
negative value was explained in Section VI. As a reminder, a negative-critical-charge loss means
that the initial FG charge was not sufficient for the FG to be sensed as being in the programmed
(charged) state. Such an FG will satisfy the experimental definition of having undergone a CLE,
regardless of the amount of irradiation it was exposed to.

One expression for P(CLE | AQc = Aqc) is the right side of (26). Using this expression
with (35) gives

P(CLE) =exp[- H(0) 4 ]#(0) +

exp[-H(0) 05y ] ﬂ [ (cf)p(éf)dﬁ} [H(0) o5 ]",  (36)

=1

where Fis the cumulative distribution function for the critical-charge loss and satisfies

Fx)=[" p(&)ds. (37)

Note that the first term on the right side of (36) is the probability of a CLE given that
there are no ion hits. The exponential coefficient is the probability of zero hits while FO0) is the
fractional number of FGs with negative-critical-charge losses, which are the only FGs that can
produce a CLE when there are no hits. The remainder of the right side of (36) represents FGs
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with negative- or positive-critical-charge losses and that received one or more hits to produce a
CLE.

An alternate expression for P(CLE | AQc = Agc), applicable only to the FG model used
here, is the right side of (28). Using this expression with (35) gives

o0

P(CLE) = exp|- H(0) 5] m%,[wam,n(é)p(f)df} Osa” W sai - (39)

m,n=0""

Finally, we consider a pure spectrum. For this case, we can express P(CLE | AQc = Aqc)
as the right side of (32b) or as the right side of (34b), so that (35) gives

P(CLE) =

< [HO'S,sat]m[HO'W,sat]n ‘F( (ﬂ n
m!n!

exp[-H o] D) + —] LT] (pure spectrum)  (39a)

m,n=0 dap 4z

P(CLE) =

wcobno § beselloally (2. 2]

I'n!
m.n=0 m:n. aj an

(pure spectrum) .  (39b)

Eq. (392) is less cumbersome than (39b) and also more easily reveals analytical
properties of some limiting cases (as seen in the next section). However, it has a disadvantage
from the point of view of numerical evaluations because it is not obvious, when the case
considered is not a limiting case, which terms need to be included in a sum in order to make a

finite sum accurately approximate the double infinite series. A more useful equation from this
point of view is (39b).
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IX. Limiting Cases for FGs in a Pure Spectrum
The model is a function of two independent variables (fluence and LET) that already contains
four fitting parameters (a1, a2, 0s,sa, and ow,sa) Without counting any parameters that might be
contained in the distribution function . It would be useful to find constraints that allow one or
more of these parameters to be calculated in terms of the remaining parameters. Such constraints
are available if experimental test data includes LETs large enough to produce “SEU-like”
behavior and/or LETs small enough to produce “dose-like” behavior. SEU-like behavior occurs
when the LET is large enough for a single, strong interaction to produce a CLE. This can be
recognized in experimental data by a straight line with unit slope in a plot of counts versus
fluence at the selected LET (this is a sufficient, but not necessary, condition). Dose-like behavior
occurs when the LET is small enough so that the number of ion hits required to produce a count
is large enough to be approximated by the statistical average number of hits. This leaves FG-to-
FG variations as the only source of randomness. Simplifications available for each of these two
extremes are given in the two subsections below.

A. SEU-Like

The ultimate extreme of SEU-like behavior occurs when the LET is so large that even
one weak interaction can produce a count, but we assume here that this extreme has not been
reached. Instead, we assume that a count is produced by one strong interaction. We also assume
that the fluence needed to produce a statistically meaningful number of strong interactions is
small enough so that the number of weak interactions is unimportant for those few unfortunate
FGs that experienced a strong interaction. The accumulated weak interactions being unimportant
compared to one strong interaction means that the expected number, denoted <n>, of weak
interactions is small enough to satisfy

1o
aj an

so that the dominate terms in the sum on the right side of (39a) are from those values of n

satisfying
T( (LAjLT]w(ﬁLT].
ap a2 a

Using this approximation for all non-negligible terms on the right side of (39a) gives

o0 m 0 n
P(CLE) ~ exp[—Ho-Sm] Z M(F(ELTJ Z [H O-W,'Sat] .
m=0 a - Jpo n!

Recognizing the sum in n as a power series expansion for exp[-How,sa:], and using the fact that
Osat = OS,sat + Ow,sat, the above approximation can be written as
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© |Ho m
P(CLE) ~ exp|-H 05 4 | S %T&ﬂ LTJ (SEU-like).  (40)
m=0 : 1

At this point it is necessary to recognize the distinction between probability and expected
numbers. For the classic SEU problem, the expected number of upsets is proportional to fluence
and increases without bound as the fluence increases without bound (we are considering the case
in which upsets are reset so that multiple upsets are possible). In contrast, a probability cannot
exceed 1 and, therefore, is not proportional to fluence. An approximate proportionality is
obtained when the fluence is small enough to make the expected number small enough to make
the probability approximately equal to the expected number. We, therefore, confine our attention
to this small-H limit. In this limit, the exponential function in (40) is replaced by 1 and only the
first two terms in the sum are retained. The result is

Ly

P(CLE) ~#(0)+[H o 50 ]T(
aj

j (SEU -like,small H). (41)

The first term on the right side of (41) represents those FGs that were insufficiently
charged prior to irradiation. If these can be neglected, only the second term remains. We assume
this to be the case so a cross section for a CLE (a function of LET and experimentally defined to
be counts divided by fluence for the selected LET) becomes a useful quantity because it is
independent of the fluence. This per-bit cross section is denoted here as ocrr and is defined to be
the number of CLE counts (summed over FGs) divided by fluence (for a device cross section)
and then divided by the number of FGs in the device (to convert to a per-bit cross section).
Recognizing the probability on the left side of (41) as the number of counts divided by the
number of FGs in the device, a change in notation writes this approximation as

OCLE ® OS.sar T(L—T] (SEU -like, small /). (42)
ai

B. Dose-Like

We now consider the opposite extreme case of small LET so that the fluence needed to
produce a statistically significant number of counts is large enough to make the number of ion
hits to a given device region large enough to be approximated by the statistical average number
of hits. For this application it is helpful to regard the right side of (39a) as a weighted average of
the quantity

Q{ (ﬂ + ij LT] (the averaged quantity) (43)
a  az

with a normalized (because the sum in m and n from zero to infinity is 1) weight factor given by
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] [H OS, sat ]m [H OW ,sat ]n
m!n! '

weight factor = exp[— Hogy (44)

When H is sufficiently large (the case assumed here), a plot of the weight factor in (44) versus m
or n produces a peak at m = Hos su: and n = How sar, With the weight factor having much smaller
values at other values of m or n. Summations using this weight factor are (when H is sufficiently
large) analogous to integrals containing Dirac delta functions. The weighted average of the
quantity in (43) can then be approximated by the value of this quantity evaluated at m = Hos sar
and n = How s« Using this approximation, (39a) becomes

HGS,sat + HO_W,sat
ai 2)

P(CLE) » T( ( JLT] (dose-like),

which can also be written as

OS sat + OW sat
a) aj

NCLE = Nbil T( ( jH LT} (dOSG - hke) B (45)

where Ncir 1s the number of bits in the device that experienced a CLE, and Ny, is the total
number of bits in the device. If the irradiation is measured by ionizing dose instead of fluence
and LET, it is convenient to use

4
HLT=6.25><10 MeVD, (46)
rad - mg

where D is the dose in SiO; (the LET should also be in SiO;) and the numerical coefficient is a
unit conversion factor where MeV/rad-mg is a designator of the units.
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X. An Example
Before considering a specific example of model fitting, some general caveats should be
reviewed. The theory in the previous sections used at least two approximations that are in the
category of small-perturbation approximations. They are guaranteed to fail if an FG charge loss
is sufficiently large. However, if this failure does not occur until the charge loss is enough to be
overkill (more than enough to deprogram the FG), the approximations are suitable for predicting
the risk of deprogramming. Also, if the fitting parameters in the cross section are somehow
known a priori, the small-perturbation approximations used here, but applied to conditions
outside their scope, are conservative (i.e., they overestimate the risk of deprogramming) when
they are not accurate. The problem case is that in which the fitting parameters are selected to fit
test data produced by overkill-irradiation exposures. The model would then tend to
underestimate the risk of deprogramming in milder radiation environments and this situation
should be avoided. Therefore, test data used to evaluate fitting parameters should contain a
minimum amount of overkill. Fits should be made only to those data sets in which the number of
deprogrammed FGs is much less than the total number of FGs exposed to the irradiation.

An advantage of testing a device with heavy ions at a particle accelerator is that a single
ion species and energy can be selected so that all particles that hit the device during a beam run
have the same LET. This is also true for protons if direct ionization is the most important effect
from protons. However, if proton-induced reaction products have an important role, these
reaction products would have to be included as part of the heavy-ion environment, which would
be distributed over a range of LETs. Therefore, the same simplification assumed here for heavy
ions, that all particles have the same LET, can also be used when interpreting proton test data
only if direct ionization can be assumed to be the most important effect from protons.

The device (e.g., a flash memory) is assumed to contain a large enough number of FGs to
be treated as a statistical ensemble, in the sense that an experimental measure of the probability
of a CLE is the fractional number of FGs that exhibit a CLE. Stated another way, the number of
CLEs (called “counts” here) is the probability of a CLE multiplied by the number of FGs in the
device. An experimental data set consists of a plot or table of the number of counts versus
irradiation fluence, with one plot or table for each of several ion LETs.

The specific example considered here is the data set taken from [3] and reproduced in
Fig. 1 (Fig. 2 will be discussed later). The LETs in the Fig. 1 legend were recalculated, via SRIM
[9], for SiO; and are 5.7 MeV-cm?*/mg for Ar at 25 MeV/amu, 41 MeV-cm?/mg for Xe at 25
MeV/amu, 43.7 MeV-cm?/mg for Br at 3.5 MeV/amu, and 72 MeV-cm?/mg for Ho at 15
MeV/amu. Note that the LET in the legend for Xe (angle) was calculated from the cosine law
which does not apply to FGs [11]. The true effective (to compensate for an angular dependence)
LET is expected to be only slightly greater than 41. Also, these LETs are incident LETs, which
should be adequate for all of the long-range ions. The exceptional case is Br at 3.5 MeV/amu.
Tests were performed in air [3] and the ions must also pass through some device material before
reaching an FG, so the LET of Br at the FG location will be different than the incident LET.
However, even a considerable reduction of energy will cause the LET to change only slightly,
making it somewhere between the incident value of 43.7 MeV-cm?/mg and the Bragg peak value
of 44.7 MeV-cm?/mg.

The first observation from Fig. 1 is that the Ho data, the Br data, the Xe (angle) data, and
the Xe (normal incident) data each produce a straight line with unit slope. It will be seen later
that these straight lines might not persist indefinitely with increasing fluence, but they clearly
apply to the tested fluences. Therefore, over the range of fluences represented by the test data,
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we can define CLE cross sections for each of these ions. Dividing counts by fluence and dividing
by the number of bits in the device (about 2.21 Gbits) to convert to a per-bit cross section
produces Table I. Note that the largest event cross section in Table I is comparable to (perhaps a
little larger than to account for track radius) the physical area of the FG (about 0.1um % 0.1 um),
indicating that a count is produced by a single, strong interaction.
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Fig. 1: Counts versus fluence, for each of several LETs, taken from [3]. The LETs in the figure legend were
recalculated for SiO; and are Ar 5.7, Kr 20, Xe 41, Br 43.7, and Ho 72. Note that the LET in the legend for Xe
(angle) was calculated from the cosine law which does not apply to FGs. The true effective LET is expected to be
slightly greater than 41.

TABLE I: CROSS SECTIONS AND LETS FOR THE SEU-LIKE DATA IN FIG. 1

Ton Ho Br Xe (angle) Xe (normal incidence)
Ly 72 Between Effective is slightly 41
(MeV-cm?/mg) 43.7 and 44.7 greater than 41
ocie (cm? per bit) | 1.3x1071° 2.3x107!! 1.2x107! 2.0x1071
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Fig. 2: The curves are fits and the parenthesis in the curve labels are the LETs in SiO». The points in this figure are
the ones used to determine the fitting parameters. The Ar points are reproductions of data points in Fig. 1. The other
points are not, but were selected so that a good fit to these points will also be a good fit to the data points in Fig. 1
for the indicated ion.

TABLE II: FITTING PARAMETERS USED TO CONSTRUCT FIG. 2

b , by ) 08, sat OW,sat
(MeV-cm?/mg) (MeV-cm?/mg) (cm?) (cm?) k
49.0 3811 1.10x10°10 7.21x107° 7.643

Fig. 2 is a fit to the Fig. 1 data and the objective of the remainder of this section is to
explain how Fig. 2 was constructed and then discuss its implications. The first step is to select
the cumulative distribution function that will be used to represent FG-to-FG (a.k.a., bit-to-bit)
variations of the critical charge loss. Several choices were tried with the data in Fig. 1. The first
one that was tried is a normal distribution. Unfortunately, any choice for the standard deviation
that was able to fit the Ar data would predict an unrealistically large number of FGs that were
already deprogrammed prior to any irradiation (i.e., had insufficient initial charges). The next set
of distributions that were tried were student-t distributions with various numbers of degrees of
freedom. Unfortunately, these all produced the same problem as the normal distribution.
Specifically, any combination of standard deviation and number of degrees of freedom that was
able to fit the Ar data would predict an unrealistically large number of FGs that had insufficient
initial charges. This problem can be avoided by using the beta distribution because a
characteristic of this distribution is that the random variable is confined to a finite interval. This
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confinement is physically reasonable for the critical charge loss if there is no physical
mechanism for charging with a reverse polarity, and there is an upper bound to the charging
voltage. However, it was discovered that, at least for the data in Fig. 1, the best fit obtainable
from the beta distribution is indistinguishable from the best fit obtainable from the Weibull
distribution, even though the Weibull distribution has fewer adjustable parameters (here we are
counting independent parameters that remain after redundant parameters are combined with a;
and a2). The Weibull distribution will be used here so that Fis given by

T(x)z{l—exp[—(x//l)k] ifx>0 @7
0 ifx<0

where £ is the shape parameter and / is the scale parameter. This gives

k
1—?((E+L]LTJ:exp —(mL—T+nL—TJ , (48)
a;  ap by by

where b1 and b, are defined by
blEal/l, b2 Eazﬂ. (49)

Substituting (48) into (39b) gives

P(CLE)=1-exp[-Hoy,] >’ +n

m,n=0 bl bz

o [HGS’Sat]m[HO-W,Sa[]n exp —{m Ly L_Tjk . (50)
m!n!

The final fitting parameters are b1, b2, 0s,sar, Ow,sar, and k. The physical interpretation of
the h-parameters can be understood if we recall that the a-parameters were defined in such a way
so that the ion LET divided by a; is the charge loss from one strong interaction. Using this fact
together with (49) we conclude that the LET divided by b is this charge loss divided by 4. But 4
is a characteristic value of the critical-charge loss,® i.e., the charge loss needed to produce a CLE.
Therefore a small value of b; implies that a small LET is enough to make the charge loss exceed
the critical-charge loss via a strong interaction. In other words, b1 is a measure of the sensitivity
of the FGs to CLEs via strong interactions, with a smaller value of b1 implying greater
sensitivity. The parameter b, has the same interpretation for weak interactions that b1 has for
strong interactions.

Note that the scale parameter 4 is not required to be known if b1 and b, replace a1 and a»
as fitting parameters but there is a penalty for 4 being unknown. The penalty is that if the
b-parameters are evaluated by fitting test data produced by a laboratory radiation environment,

6 If there were no FG-to-FG variations (which is the large-k limit in (47) and produces a step function) A would be
the critical-charge loss. With FG-to-FG variations in the critical-charge loss, 4 is the value of the critical-charge loss
that is exceeded by only about 37% (which is 1/e converted to percent) of the FG population.
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these same parameters can be used to predict the CLE probability in a different (application)
radiation environment only if the statistical distribution of critical-charge losses is the same in
both environments. In other words, biasing conditions and the amount of charge loss that defines
a CLE must be the same in the laboratory as in the application. To make these statements
intuitively clear, consider the special case in which all FGs have the same critical-charge loss
Agc. For this special case, we would have b1 = aiAgc and b2 = axAgc. If b1 (for example) is
determined via fits to data under laboratory conditions without any knowledge of Agc, then ai
and Agc are individually undermined, it is only the product aiAgc that has been determined. This
same product can be assumed when making predictions for an application only if biasing
conditions and the definition of a CLE are such that Agc is the same under application conditions
as it was under laboratory conditions.

We now revisit the data in more detail. Note that the LET of the Xe ions is very different
than the LET of the Kr ions (41 for Xe in SiO2 compared to 20 MeV-cm?/mg for Kr), but the Xe
(normal incident) data in Fig. 1 is essentially the same as the Kr data. The model cannot account
for this because it assumes that LET is an adequate description of an ion. Furthermore, the Br
LET (43.7 MeV-cm?*/mg in SiO») is nearly the same as the Xe LET so the model cannot account
for the wide separation between the Xe (normal incident) data and the Br data in Fig. 1. We will,
therefore, not attempt to fit the Xe (normal incident) data. The data used to estimate the fitting
parameters are from Ho, Br, Kr, and Ar. Using the method in Appendix C for this data set
produces the fitting parameters in Table II. With these parameters evaluated, the model can then
make predictions for all ions, including those not used to determine the fitting parameters (such
as Xe and Cl), and the results are shown in Fig. 2. Note that the model gives a conservative
representation of the Xe (normal incident) data, but a fairly good representation of the other ions.

A noticeable characteristic of the curves in Fig. 2 is that those curves that do not resemble
straight lines are concave upward. This is also seen in the Ar data points in Fig. 1. There are at
least two tendencies for this behavior. The first requires bit-to-bit variations, but does not require
weak interactions. For illustration, consider an LET such that some bits can be upset by two (for
example) strong interactions, but most require three. At small fluences, only the first population
of bits significantly contributes to the counts. However, as the fluence increases so that the
probability of three hits increases, the main contribution is now from the second population. A
straight-line extrapolation of the small-fluence behavior would properly describe the first
population. However, the actual number of counts reflects an increasing contributing bit
population and, therefore, increases faster with increasing fluence than this straight-line
extrapolation. A second tendency requires weak interactions, but does not require bit-to-bit
variations. For illustration, consider an LET such that a CLE requires three (for example) strong
interactions when there is no contribution from the weak interactions. At small fluences, there is
little help from the weak interactions so the probability of a CLE is the probability of three or
more strong interactions. However, as the fluence increases the number of weak interactions
increases and reaches a point (at some sufficiently large number) at which only two strong
interactions must be added to the weak interactions to produce a CLE. A straight-line
extrapolation of the small-fluence behavior would properly describe the case in which there are
no weak interactions. However, the actual number of counts reflects the fact that, at some
sufficiently large fluence, the weak interactions reduces the number of strong interactions
required for a CLE, so the actual number of counts increases faster with increasing fluence than
this straight-line extrapolation.
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XI. Including a Dose Contribution
A radiation environment containing a mixture of LETSs requires some complex calculations and
this will be mentioned again in the next section. In particular, a radiation environment that is a
sum, or superposition, of two environments cannot be treated by analyzing the two environments
independently. However, there is a special case in which adding one radiation environment to
another does not add significant complexity to the calculation of P(CLE). This occurs when the
environment to be added is dose-like. This means that the fluence is large enough so that the
number of hits to an FG is large enough to become deterministic, i.e., it can be approximated by
the statistical average and can be described in terms of TID. Here we consider the case in which
the radiation environment is a TID contribution added to a heavy-ion contribution. Bagatin ef al.
[10], pointed out that the effective FG charge loss, measured by an FET threshold voltage shift,
produced by an ion hit added to TID exposure is less than the sum of charge loss from the ion hit
alone (no TID) plus charge loss from TID alone (no ion hit) [10]. The explanation was in terms
of the lowering of the electric field in the cells exposed to TID, due to charge loss, which
translates into a smaller charge loss from the heavy-ion strike [10]. An approximation that
ignores this effect is in the category of a small perturbation approximation discussed in Section
II. Such approximations have been used throughout the development of the model. Fortunately, a
model that is intended only to be a data fitting tool is not required to precisely agree with all
aspects of reality because fitting parameters that produce fits to data are fitting parameters that
partially compensate for errors in the physical assumptions. The simple model used here will
have to rely on this partial compensation for errors because it does not explicitly account for the
above effect.

The number of strong interactions produced by a pure dose-like spectrum is the cross
section ossa for a strong interaction multiplied by the fluence. Recall from Section VI that a; is
defined by the condition that the charge loss from one strong interaction from an LET L is L/a;.
Similar considerations apply to weak interactions so the charge loss from a mixed dose-like
environment, denoted Agp, is given by

w© [, o [
Agp = =05 sahp(L)dL+ [ "0y s hp(L)dL,
0 a 0 a

where /p is the differential in LET fluence for the dose-like environment. The ionizing dose D
from the dose-like environment is defined by

,uD:J.(:OLhD(L)dL, (51a)

where u is a unit conversion factor given by

_6.25x107 MeV

, 51b
krad - mg (16)

U

where a krad, like LET, is measured in SiO». The charge loss now becomes
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(o3 O
Agp = ( S,sat + W ,sat ],UD . (52)
ai a

A. The General Addition Formula

The simplification provided by the dose-like property of an environmental contribution
becomes clear after deriving a more general addition formula. Suppose a radiation environment
is represented by a differential fluence 4444(L) added to another differential fluence 4(L) so the
total differential fluence Ar(L) is given by hr(L) = h(L) + haaa(L). Let P(AQr> Aq) be the
probability that the charge loss will exceed Ag when the radiation environment is 47, P(AQ > Aq)
is this probability when the environment is /, and P(AQuqs > Aq) is this probability when the
environment is /4q44. The first probability can be expressed as

P(AQr > Aq) = [ P(AOr > Aq| AQ = 5){—%P(AQ > 5)}15,

where the square bracket is the probability density for the charge loss from the environment 4 to
be ¢, and the conditional probability P(AQr> Ag | AQ = &) is the probability that the charge loss
from the environment /7 will exceed Ag given that the charge loss from the environment 4 is ¢.
Given this condition, the charge loss from the environment 47 will exceed Aq if and only if the
charge loss from the environment /.44 exceeds Ag — ¢ so

P(AQr > Aq| AQ = &) = P(AQyqq > Ag = &)

and the equation for P(AQr > Ag) becomes
P(AQr > Aq) = [ P(AQqqq > Ag =) {—%P(AQ > 5)}!«5. (53)

B. The Addition Formula when a Contribution is Dose-Like

A simplification occurs when the added environment /.44 is the dose-like environment
hp. The added charge loss is deterministic so

1 if Ag<Agqp
P(AQp > Ag) = .

0 if Ag>Aqp
and combining this with (53) when AQuaa is AQp gives

1 if Ag<Agqp

. . (54)
P(AQ>Aq—Aqp) if Aq>Aqp

P(AQr > Aq) = {

Using (23) to rewrite the right side gives
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1 if Ag<Agqp
P(AQr > Aq) = “ 1 . . (59)
expl- H(0) 0] Y.~ Gn(Aq=Aqp) [H(0) 05 ]"  if Ag>Agp

n=1n'

Note that the G-functions in (55) are constructed from the fluence 4, not A7, via (15a) and
(25). When the critical charge loss Agc is positive, the probability of a CLE given that the critical
charge loss is Agc is P(AQr > Aq) evaluated at Ag = Agc. The lower expression in (55) is not
used when Ag is negative (because it cannot exceed Agp) so it is not necessary to add a unit step
function to the sum in the lower expression in (55) as was done in (26). The result is

1 if £<Agqp
P(CLE| A =&)= s , (56
(CHEIA0C = D™ ol 0013 G- bap) [HO) 0 " 12> 2gp"
n=1""
so (35) gives
P(CLE) =F(Aqp) +expl- H(0)ogq Y ﬂ | ;’;D Gn(&~Aqp) p(&) drs} [H(0) o0 ]"-
n=1 ""°

A change in the integration variable produces an equivalent result given by

0 1 I

P(CLE)=F(Aqp) +expl-H(0) oy |3 ;[ J, Gu©p(c+ A@)dsz} [H(0) 551", (57)
n=1 """

where Agp is given by (52). Recall that the G-functions are constructed from the fluence /4, so the

addition of a dose-like environment does not change these functions.

C. Adding a Dose-Like Contribution to a Pure SEU-Like Spectrum

A particular application of (57) is the case in which a dose-like environment is added to a
pure spectrum that produces an SEU-like response. This might be able to provide an alternate
testing methodology as discussed later. Before discussing an alternate methodology we first
explain why an alternate methodology might be desired. This explanation begins with a
discussion of the original methodology which produced the data (Fig. 1) for the example in
Section X. Recall that very large fluences (10°/cm? or more) were used at the smallest LETs to
produce some of the points in Fig. 1. These fluences are much larger than expected from a space
radiation environment. For SEE testing, it is typical for test conditions to use fluences much
larger than expected from a space environment in order to obtain data having enough statistical
significance for reliable risk estimates, but a heavy-ion fluence of 10°/cm? is extreme even from
the point of view of standard SEE test procedures. It might be argued that a laboratory fluence
should not be required to exceed an application fluence by more orders-of-magnitude than
needed to obtain the statistical significance required for a risk estimate. But a counter-argument
points out that if an application radiation environment is different than the laboratory
environment, a device must be completely characterized in order to use test data to make
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predictions for the application environment. For the case of prompt charge loss in FGs (at least
for the example in Section X), a very large fluence at the smaller LETs is needed to completely
characterize the device. A smaller fluence will either produce no counts or exhibit SEU-like
behavior because the only FGs observed are those that require only one hit to produce a CLE.
The FGs that require multiple hits to produce a CLE do not become observable in the test data
until the fluence is large enough so that a statistically significant number of these FGs receive
multiple hits. Though not observable at small fluences, information about these FGs is still
needed in order to use laboratory data to predict device response in a different environment,
hence the need for very large fluences at the smaller LETs when all testing is done with heavy
ions. Appendix D gives a recommendation on how to select LETs and fluences for a complete
characterization.

Motivated by a desire to use smaller heavy-ion fluences, small enough to produce SEU-
like behavior, an alternate test method might be considered. This method exposes a set of devices
to various levels of ionizing dose after programming but before (and without refreshes)
performing heavy-ion tests. If the model is valid under these test conditions, it can be used to
obtain at least a partial characterization of the device from such test data (as explained later).
Unfortunately there is a very serious limitation regarding model applicability to this test method.
The model is intended to describe FG charge loss but not TID effects in the sensing circuits.’
Therefore the model applies only to qualified devices, which are devices having the property that
there is some dose level large enough to produce an observable FG charge loss but still small
enough to negligibly affect the sensing circuits. In other words, the FGs must be more
susceptible to TID than the sensing circuits. Given that a qualified device (e.g., a test structure
designed for this purpose) has been found, model validity would be tested by showing that the
same model parameters used to fit a complete set of heavy-ion data (the type of data illustrated in
Fig. 1 that includes fluences large enough to extend outside the SEU-like behavior) will also
produce a fit to the data obtained from the alternate test method. Unfortunately, a qualified
device that was tested by both methods has not yet been found in the literature. Data from the
alternate test method are given in [10] for an example device but heavy-ion data at fluences large
enough to extend beyond the SEU-like behavior are not given. Therefore no example
comparisons with data can be given here. Determining which, if any, commercial devices (e.g.,
flash memories) are qualified devices is a topic for future work, and determining whether model
predictions are correct for these devices is also a topic for future work. What is given below is
the model prediction that is to be compared to data in future work.

To derive the model prediction of how TID should be expected to influence SEU-like
(i.e., small-fluence) heavy-ion test data, it is necessary to add a dose-like environment to a pure
spectrum in the model. Recall that the G-functions in (57) are constructed from the fluence that
is added to the dose contribution, with the former fluence being a pure spectrum in this analysis.
The G-functions for a pure spectrum were calculated in Appendix B with the result (in Appendix
B notation) given by (B9b). This gives

" The meaning of a sensing circuit for a NAND flash memory is as follows. A read operation copies a page of data
from the memory into a page buffer. Individual bit states are read by assessing the page buffer. The sensing circuit
includes all circuit elements that participate in this operation. In addition, the threshold voltage of an FET within the
memory is compared to a reference voltage. The sensing circuit also includes the comparator and the circuit that
produces this reference voltage.
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n.:

Z ( os.sat)” (O sa)"” { (ZQ—ILTJFMLT?LAQDJ—T(AQD)}

m'( - ap

where the H on the right side is the heavy-ion test fluence. Combining this with (57) gives

P(CLE) =F(Agp) +

— m n-m
eXP Hcsat z Z m'(n— )'( S,Sat)m(GW,sat)n m|:(F[ZLT +—LT +AqD]—(F(AqD):|.

n=l m=0 a

The same arguments that converted (39a) into (42) applied to the above equation gives

P(CLE)=#(Aqp)+H O'S,sa{‘f’(L—T
ai

+AQD]_(F(AQD)}’

which can also be written as

P(CLE)=(1-H 05 4 JF(Aqp) + H 05 a1 qr[L—T +Aq DJ (SEU - like plusdose) . (58)

ai

The terms in (58) have physical interpretations. The expected number of strong
interactions in a randomly selected FG from the heavy-ion testing is Hosse. The quantity F(Agp)
is the probability that an FG had already produced a CLE, i.e., already failed, from the dose
exposure prior to the heavy-ion testing. This quantity is multiplied by 1 — Hossas, instead of 1, in
the first term on the right side of (58) so that the first term will include only that subset of
already-failed FGs that received no strong interactions during the heavy-ion test. In other words,
the first term does not include any FGs that did receive a strong interaction during the heavy-ion
test. This is appropriate because all such FGs are included in the second term on the right side of
(58). However, a simple approximation can be used. A fluence small enough to produce SEU-
like behavior is small enough for the number of FGs that received multiple strong interactions to
be negligible compared to the number that received a single strong interaction. This implies that
the test fluence is small enough so that the expected number of strong interactions in a randomly
selected FG is much less than 1, i.e., Hos s << 1. The approximation for (58) becomes

Ly
P(CLE)~F(Aqp)+ H o 54 (F[ + AqDJ (SEU -like plus dose) . (59)
aj

The cross section for a charge-loss event, denoted ocik, is defined here to be number of
additional CLEs (where additional means those above the pure dose contribution, i.e., produced
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during the heavy-ion testing) divided by the additional test fluence H (again, additional means
the fluence applied after the dose exposure, i.e., applied during the heavy-ion testing). This is
P(CLE) — #(Agp) divided by the test fluence so (59) gives

L .
OCLE =05 sat T[—TJrAqD] (SEU -like plus dose) .
a

Note that Agp is calculated from (52) so the above equation can also be written as

(O-S,sat + OW sat

] Y7, DJ (SEU - like plus dose) .
ay an

Ly
OCLE =08, sat ¥ a_ +
1

Specializing to the case in which Fis the Weibull function in (47), and defining the h-parameters
by (49), the above equation now becomes

L o o
T+( S,sat+ W ,sat

k
— SEU -like plus d . (60
b h b ijJ ( ike plusdose) . (60)

OCLE =08 sar 1 —€xp —(

Note that the two fitting parameters b> and ow,s.: appear only in a specific combination,
which allows us to reduce the number of fitting parameters. One way to do this is to define @ by

b
0= (O-S,sat +b_10W,sat J‘u ) (61)
2
so that (60) can be written as

LT +wD

k
5 J (SEU -like plus dose) . (62)
1

OCLE =08, sat 1—exp _(

The fact that (62) contains only four fitting parameters (which are b1, @, o5a, and k)
means that no amount of test data in which (62) applies will be enough to uniquely determine all
five of the original fitting parameters (which are b1, b2, s sa1, ow,sar and k). However, evaluation
of the four fitting parameters contained in (62) via fits to data for which the model applies (recall
that model applicability requires the device to be a qualified device) is at least a partial
characterization of the device. If the application environment is also an SEU-like (small heavy-
ion fluence) contribution added to a dose-like contribution, this partial characterization should be
sufficient for risk estimates in the application environment.

For a specific example, consider the example device discussed in Section X. Using the
Table II parameters together with (51b) and (61) give @ = 0.0127 MeV-cm?/mg-krad. Using this
with other Table II parameters in (62) produces Fig. 3. It was pointed out in [3] that this example
device has a fairly low TID tolerance and cannot be expected to survive at doses greater than
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about 40 krads. According to Fig. 3, even 100 krads will have such a small effect that it is
unlikely to be discernable from experimental scatter. Therefore, even without data to compare to
the model predictions in Fig. 3, we can conclude that the model cannot be used for this
application for this example device. Also, although somewhat speculative without data to
compare to the curves in Fig. 3, we can predict that if an application environment has a low
enough TID level for this example device to be usable in that environment, then TID will also
not be a significant contribution to FG charge loss for this example device.

ID-ID

10-11

10-12

10-13

10-14

Cross Section (cm2/FG)

10-15

10-16

10-1?
100 101 102
LET in Si02 (MeV-cm2,/mQq)

Fig. 3: Model prediction via (62) with Table II parameters.
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XII. CLE Probabilities in Space Environments
We now consider a space environment. Such environments are typically better approximated as
being isotropic instead of unidirectional, so directional effects requires some discussion. The
direction of an ion trajectory relative to the normal to the device plane is important for some
kinds of single-event effects involving charge collection at some device node from an ion track
(such as SEU in an SRAM) and test data for such cases are typically presented in the cosine-law
format. In this format, fluence is measured in the device plane instead of a plane perpendicular to
the ion beam (the former fluence is equal to the latter multiplied by the cosine of the incident
angle) and the ion LET is reported as an effective LET (which is the actual LET divided by the
cosine of the incident angle). The cosine law applies when data points from different incident
angles belong to a common cross section (counts divided by fluence) versus LET curve when
this plotting format is used. Even for the older device technologies in which feature sizes are
large enough for an ion track to be regarded as infinitely thin, the cosine law is still an
approximation that breaks down when the incident angle approaches 90 degrees. When a device
is so highly scaled so that the geometric dimensions of device structures are comparable to the
track diameter, the cosine law fails completely and device susceptibility becomes more isotropic.
An isotropic approximation might be more accurate for some track diameters than others, but the
assumption used here is that FGs susceptible to charge loss events are physically small enough
for susceptibility to be approximately isotropic, i.e., approximately independent of the direction
of the ion trajectory. This assumption is consistent with the experimental data presented by
Cellere et al. [11] showing that an individual cell response does not depend on incident angle.
Investigators that want to test this assumption for a particular device of interest should note that
the cosine law plotting format is not useful if the goal is to determine whether device
susceptibility is approximately isotropic. To make that determination by comparing data taken at
different incident angles, fluence should be measured in a plane perpendicular to the beam and
LET should be the actual ion LET. It was pointed out in [11] that directional effects do become
important if the concern is whether a single ion hit can produce a CLE in multiple FGs because a
grazing angle hit can do that. However, it is assumed here that the only concern is the expected
number of CLEs in an array of FGs and that a CLE in each of two (for example) FGs produces a
count of 2 even if they were both produced by the same ion hit. When using this counting
convention, the expected number of counts in an array of FGs is the sum of the expected
numbers for each FG in the array (as opposed to counting the ion hits that produced one or more
CLESs) so each FG can be considered independently and all directional effects can be ignored.
Other motives for using the above counting convention, in the context of SEU, are discussed in
[12] and in Appendix B.

A significant complication to address is that space environments contain mixtures of
different LETs. The numerical work needed to calculate the probability of a CLE is much more
cumbersome for a mixed environment than it was for the pure-spectrum case that was used to fit
data in Section X (the routine for a pure spectrum, called PCLE PUR.m, is in the first textbox in
Appendix C). In particular, we cannot simply calculate expected numbers of CLEs separately for
different environmental components and then add these expected numbers to obtain the expected
number for an environment consisting of the sum of these components. We can do this for the
extreme case of SEU-like behavior, but in the opposite extreme of dose-like behavior it is the
argument to 7 on the right side of (45), rather than the Nc.£ on the left side, that is summed over
environmental components. Worse yet, a more general case is somewhere between SEU-like and
dose-like so neither simplification applies. To make the situation still worse, a space radiation
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environment will be represented by a flux or fluence versus LET table, instead of an analytical
function, so all integrals containing fluence must be evaluated numerically. It is therefore not
surprising that the required numerical work is much more cumbersome for a mixed environment
than for a pure spectrum. A number of approximations designed to streamline the number
crunching are used to reduce the numerical work for the mixed environment. Details are in
Appendix E, which also includes a numerical routine. Even with these approximations, the
routine does not run fast enough to be useful for trail-and-error curve fitting, so the routine in
Appendix C is still needed for that, but the routine in Appendix E can be applied to mixed
environments while the routine in Appendix C cannot. All of the approximations used for the
mixed environment are in the conservative direction, meaning that the error associated with each
approximation tends to make the calculated value of P(CLE) larger than would be obtained from
an exact calculation. These errors can be made as small as desired by using suitable choices for
grid points and the number of terms to include in a sum (details are in Appendix E), but the
penalty is a longer computer run time. This will be discussed again later when some specific
examples are considered.

The objective of this section is to explain how to use the code in Appendix E, called
PCLE in space.m, and how to construct input files. This code runs in the Octave (a GNU
package) platform. The Weibull function is used to represent FG-to-FG variations so the fitting
parameters used to fit test data are the ones discussed in Section X and are b1, b2, 0s,5at, OW,sar, and
k. It is assumed here that these parameters have already been evaluated via fits to test data using
the method in Appendix C as illustrated by the example in Section X. The inputs needed by the
routine in Appendix E consist of these parameters plus data (including two input files) describing
the environment. The output of the routine is the probability, P(CLE), that a randomly selected
FG will exhibit a CLE during the fluence exposure defined by the environmental inputs, given
that the FG was refreshed (all prior charge loss, if any, has been restored) before the start of the
fluence exposure. Therefore, the relevant fluence is the fluence accumulated since the latest
refresh. The expected number of CLEs in a collection of FGs, e.g., a flash memory, is this
probability multiplied by the number of FGs in the collection. Recall the counting convention
that is used here to define expected numbers. Multiple FGs exhibiting a CLE are counted as
multiple events regardless of whether they were all produced by the same ion hit or each was
produced by a different ion hit.

One of the input files is a two-column table of galactic cosmic ray (GCR) integral flux
versus LET. Integral flux means that the flux includes all particles having an LET that exceeds a
specified value. This flux table is most likely to be obtained from CREME96 [13]. The units are
required to be those used by CREMED96. Specifically, LET (first column) is in the units of
MeV-cm?/g and flux (second column) is in the units of 1/m?-s-st. Spacecraft shielding and
planetary magnetic shielding (if any) are built into the input file. The GCR environment is
regarded as constant in time, so flux is converted into fluence by simply multiplying by the
number of days of exposure. This number is input via a prompt. The example GCR file, called
GCR flux.dat, included in Appendix E represents the GCR environment in interplanetary
space (no magnetic shielding) with 100 mils of aluminum shielding. It represents the solar
minimum time period (worst case for GCR) because this representation is typically used as an
alternative to predicting future levels of solar modulation. Any changes in planetary magnetic
shielding and/or spacecraft shielding must be made by using CREME96 to create a replacement
for this data file.
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The second input file is in the same format as the first, but represents a solar particle
event. The CREME96 “worst-week flare” is used because there is a simple conversion from flux
to fluence. The fluence is the flux multiplied by 7.5 days and this conversion is built into the
code. Other solar particle fluences are treated by expressing them as a multiple or a fraction of
the fluence from one CREME96 model flare. This number, identified as a “number of flares,” is
entered via a prompt. The example file, called flare flux.dat, included in Appendix E
represents the model flare in interplanetary space (no magnetic shielding) with 100 mils of
aluminum shielding. Any changes in planetary magnetic shielding and/or spacecraft shielding
must be made by using CREME96 to create a replacement for this data file.

Protons and/or electrons trapped in a planetary radiation belt (if relevant) are included in
“additional dose” that is entered via a prompt. This includes all radiation that is not already
included in the GCR or flare files with the assumption that these particles can be treated as dose-
like. GCR protons are unlikely to be a concern but flare protons are a concern. We have the
option of including them either in the flare input file or at the prompt for additional dose (but not
both because this will count the same particles twice). An advantage of the first choice is that
these protons will be treated stochastically, whether necessary or not, so we do not have to guess
as to whether it is appropriate to treat them as dose-like. In contrast, including them as additional
dose instructs the code to treat them as dose-like. One advantage of the latter choice is that the
code runs faster because fewer terms are included in a finite sum used to approximate an infinite
series. Another advantage is that environmental data provided to flight projects typically include
solar-event protons, added to all other significant contributions to dose, in the dose estimates.
Such data can be used if protons are not included in the flare data file. The example files,

GCR_ flux.dat and flare flux.dat in Appendix E, do not include protons. It is therefore
necessary to include additional dose at the prompt in order to represent solar protons even if all
other contributions to ionizing dose can be ignored.

There is a final consideration regarding whether to treat particles as dose-like or
including them in an input file. We will have a choice for realistic examples of proton or heavy-
ion environments (electrons will be treated as dose-like), but not for academic examples in which
the expected number of particle hits to an FG (which is H(0)asa in the equations or c1 in the
Appendix E code) is several hundred or more. Such a large fluence input via a data file will
either produce an unacceptably long run time, or cause the code to crash with an Octave-
generated error message stating that a convergence condition was not satisfied. The solution to
this problem, if the problem is encountered, is to remove the most abundant particles from the
data file and include them in the dose-like calculation. Fortunately, the same examples that
require a dose-like calculation, because of large numbers of hits, are the examples for which a
dose-like calculation is most accurate.

We now consider two test cases to verify that the code, PCLE in space.min
Appendix E, is working properly on the user’s computer, and to get an idea of what to expect
from the code. Both test cases consider a pure spectrum so that results from this code can be
compared to the more accurate results obtained from the code PCLE PUR.m in Appendix C.
The latter code is more accurate when it applies (i.e., when the environment is a pure spectrum)
because simplifications implied by a pure spectrum make conservative approximations
unnecessary. Also note that the two codes are executed differently in the Octave command
window because the latter is a function file. To run PCLE PUR.m we first assign values (e.g.,
values used in the specific examples given below) in the Octave command window to b1, b2,
s1 (abbreviated notation for gssar), s2 (abbreviated notation for ow,sa:), k, L (abbreviated
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notation for L7), and the fluence H and then enter in the Octave command window the command
PCLE PUR(bl,b2,sl,s2,k,L,H).Incontrast, PCLE in space.mis aroutine that
accepts inputs from prompts and from at least one of two input files, as illustrated by the
examples.

To make the first example more specific, suppose the FG parameters are those in Table II
and the ion LET is 12.4 MeV-cm?/mg, which produced the Cl curve in Fig. 2. Consider, for
example, the point on the curve produced by a fluence H equal to 10%/cm?. Using these inputs
with PCLE_PUR produces the estimate P(CLE) = 3.0567x10~°. In order to give the same input
information to PCLE_in space.m, we have to compensate for unit conversions. This is done
by constructing the GCR_flux.dat file to contain two lines which are

1.010E+002, 9.21E+003
1.240E+004, 9.21E+003

The code interprets these lines to mean that all particles have an LET greater than or equal to 101
MeV-cm?/g (or 0.101MeV-cm?/mg) because this LET is the first entry and the first entry is
interpreted by the code to include all particles of interest. The code also interprets these lines to
mean that the environment contains no particles with an LET greater than 1.24x10* MeV-cm?*/g
(or 12.4 MeV-cm?/mg) because this LET is the last entry and the code interprets the last entry to
be the largest LET in the environment. For this example, the integral flux is the same on both
lines, which is interpreted by the code to mean that there are no particles with LET between the
listed values. Therefore, for this example, the interpretation of the code is that all particles have
an LET equal to the largest listed value which is 12.4 MeV-cm?/mg. Note that the smaller listed
LET could be changed to some other number, as long as it is less than the larger listed LET,
without affecting this interpretation. However, this change would affect grid-point construction
done by the code and could change some calculated numbers so the discussions below assume
the specific numbers listed above. The integral flux in the second column is the selected fluence
(10%/cm? for this example) divided by 108.6 to compensate for unit conversions when entering 1
at the prompt asking for the number of days of the GCR environment. The complete input to
PCLE in space.m for this example consists of the above two lines in the file

GCR flux.dat, any valid entry in the file flare flux.dat (which is not used for this
example, but some file, such as the example in Appendix E, is needed so the code will not crash
while trying to read the file), and inputs to the prompts. The inputs to the prompts are the
numbers in Table II together with 1-day of GCR, zero-flares, and zero additional dose. The
output of the code should be PCLE (abbreviated notation for P(CLE)) = 3.9818x10~%, which is
close to, but greater than the more accurate estimate (from PCLE_PUR) of 3.0567x10°.

The next example is the same as the first except that the fluence is increased by two
orders of magnitude. The only changes made from the first example are to use H = 10%/cm?
(instead of 10°) before running PCLE_PUR, and then increasing the flux in the file
GCR_flux.dat by two orders of magnitude so the two lines now become

1.010E+002, 9.21E+005
1.240E+004, 9.21E+005
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The agreement between PCLE_ PUR and PCLE_in space is not as good for this
example, with the former giving the more accurate estimate of P(CLE) = 6.8746x1077, and the
latter giving the more conservative estimate of 13.617x107". There is a factor-of-2 disagreement.
Nearly all of this error is in the PCLE in space code and could be improved by using a finer
grid-point spacing and/or using interpolations instead of upper bounds (see Appendix E). But a
finer grid-point spacing creates a longer run time (too long), and substituting interpolations for
upper bounds invalidates the earlier claim that all approximations are conservative. Another
option, the one used here, is to accept this error in order to have a code with an acceptable run
time and that guarantees conservatism. Users that give accuracy a higher priority than the
guarantee of conservatism can modify the code (Appendix E gives suggestions on this), but
discussions given here refer to the code as it is presented here. To put this factor-of-2
disagreement in perspective, it should be noted that the example considered is a point on the Cl
curve in Fig. 2 where the curve is steep enough for calculations to be very sensitive to small
errors. An over estimate by a factor of 2 might seem more acceptable when viewed this way.

The previous examples considered laboratory environments. The next example considers
a space-radiation environment. The code in Appendix E is the only one that can be used for this
application, so predictions cannot be tested for accuracy by comparison to predictions from the
code in Appendix C, but we can rely on the fact that any errors in the calculations will be in the
conservative direction. For this example, a flash memory will be on a three-year mission in
interplanetary space (no planetary magnetic protection, but also no radiation belt particles to
encounter) without any refreshes during that time, so the relevant radiation environment consists
of all radiation sources encountered during those three years. The time period has a possibility of
encountering a solar-particle event and environmental experts have informed us that we should
be prepared for something as severe as one occurrence of the CREME96 model flare ata 1 AU
distance from the Sun. Using conservatism to compensate for the uncertainty of predicting future
levels of solar modulation of the GCR environment, we assume the worst-case (solar minimum)
conditions for the GCR environment even though we must be prepared for possible solar
activity. The spacecraft has not yet been built, but the present plans do not include heavy mass
shielding around the flash memory so we will base our estimate (subject to change when more
information becomes available) on the default assumption of 100 mils of aluminum shielding
provided by the spacecraft. The two input files, GCR flux.dat and flare flux.dat,in
Appendix E apply to the stated conditions. Note that the LETs in these tables refer to Si when the
LETs required for the calculations should refer to SiO,. However, this error is insignificant
compared to the error from the assumption that the encountered space environment will be equal
to some model prediction, so the input files in Appendix E are good enough for this example.

Another concern is that these files do not include solar protons, so solar protons must be
included in a dose-like calculation. We assume, for this example, that environmental experts
have informed us to be prepared for a radiation dose (from three-years of possible solar activity)
of 1 krad when the shielding is 100 mils of aluminum. Again, the difference between dose in Si
and dose in SiO; is insignificant compared to the error from the assumption that the encountered
space environment will be equal to some model prediction, so the material that the dose refers to
is not important here. We will take the dose to be 1 krad. The inputs to PCLE_in space for
this example consist of the data files GCR flux.dat and flare flux.dat in Appendix E,
the device parameters in Table II, 1095 days (three years) of GCR, 1 model flare, and an
additional dose of 1 krad. The returned result should be PCLE = 6.6775x107'. In other words, a
flash memory with 2.21x10° (for example) FGs characterized by the inputs assumed here can be
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expected to experience a charge-loss event in 1 FG during the space operation. It is interesting to
consider how this prediction would be changed by omitting the solar protons. The inputs are the
same as above except that the additional dose is now zero. The returned result should be PCLE =
6.6542x1071°, almost the same as the above result of 6.6775x107'°, indicating that the solar
protons were not important for this example. However, one example is not enough to reach
general conclusions, so we should not interpret this observation to mean that solar protons can
always be ignored when estimating the probability of a charge-loss event.
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Appendix A: Several Properties of Convolutions

Let f'be any sectionally continuous function satisfying

f(x)=0 forallx>0, jff(g)dg:l (A1)

and let G be given by
G(x) = | : £(&)dé forallx>0, (A2)

so G is a decreasing function that satisfies

100 =—LG(x) forall x>0 (A3)
dx
and
0<G(x)<1 forallx>0, G(0)=1, lim G(x)=0. (A4)
X—>0

Now let G4 be any decreasing continuous function that satisfies
0<Gy(x)<1 forallx=0, G,4(0)=1 (AS5)

and let G be defined by the integral equation
G(x) =G+ [ ()G (x—E)dE. (A6)

The goal is to derive properties of Gp implied by given properties of G4.
For the first example, suppose it is given that, in addition to (A5), G4 also satisfies

lim G4(x)=0 (for the present example). (A7)

X—>0

The goal is to show that Gz also has this limit. To prove this assertion, select any £ > 0. Existence
of the integral in (A1) implies that there exists an xi(¢) satisfying

o0 1
0< jxl(g)f(g)d§<§g. (A8)

Also, the limit in (A4) implies that there exists an x»(¢) satisfying

0<G(x)< %3 forall x > x5 (¢). (A9)
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Similarly, when (A7) applies, there exists an x3(¢) satisfying

0<Gy(x)< %8 for all x > x3(&) (for the present example) . (A10)

Now let x4(¢) be given by
x4(£) = max{x, (), (&) + x3(&)}

and select any number x that is greater than x4(¢). Since x > x2(¢) we have

0£G(x)<%g.

Also, x > x1(¢) and G4 satisfies (A5), so

X X 0 1
0< jxl(g)f(é)GA(x—i)dg‘ < jxl(g)f(g) dé < le(g)f(g)dg <5e
Also, x > x1(£)+ x3(¢), so for any ¢ between zero and x1(¢) we have x— &> x3(¢), so (A10) applies
and gives

x1(&)

0< [ f@ G- ardz e @ ds <o) F@aE =

Adding the three inequalities above gives

x1(&)

06+ [ SOCsx-de+ [ 1EGx-Ods < o Teris

or

0SG@)+ [ f(§Gax-E)de <.

In other words, for any £ > 0 we can find an x4(¢) such that the right side of (A6) is
between zero and ¢ for any x > x4(¢). This proves that

if lim G (x)=0 then lim Gy(x)=0. (A11)

X—>0 X—>0

Using (A11) in a proof by mathematical induction verifies (16¢) in the main text.
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Appendix B: Derivation of (28)

To shorten the notation we write o1 instead of o554, 02 instead of ow,sar, o (Which is o1+02) instead
of osa, and Ho instead of H(0). The recurrence formula (14) can be written in this notation as

(Ho0)"" Gy ()= [ [Hoo F @ Hoo ' Gy (x - E)]ag forn=1.2... @D

while (25) becomes
Hyo Gy(x) = H(a) x)oy + H(a; x)o, (B2)
Hyo f(x) =ay h(a) x)oy +ay hlay x)o. (B3)

It is easy to show from (27a)-(27h) that the C’s and D’s satisty recurrence relations that
can be written in the present notation as

j . [Hoo f(E)]Cppn(x—=E)dE =01 Cppy1 y(x)+ 03 Cpypy1(x) form=0,1,... andn=0,1,...

0
jo [Hoaf(f)]Dm’n (x=8)d§ =01 Dy n(x)+ 03 Dy i1 (x) form=0,1,... andn=0,1,...

A result that will be useful later is obtained by combining the above recurrence formulas with
(277)-(27L) to obtain

0
[ Hoo fOIEpnm(x=&)dé =

m n—m
o1 [; Conp—m (X) + TDmH,n—m—l (x)} +

oy [%Cm_lan_m_’_l (x)+ " ;m Doy n—m (x)} forn=1,2,... andm=0,1,.,n. (B4)

Note that any C’s or D’s with a negative index in (B4) (e.g., the second term in the first square
bracket on the right side when m = r) is multiplied by zero so it is not necessary to extend the
definitions of the C’s and D’s to include negative indices. A recurrence formula can be derived
for the sum that appears in the curly bracket below by using (B4) to obtain

*® 4 n! m__ n—-m _
J.o [Hoaf(ff)]{mzzlomal op) Em,n—m(x—ff)}dﬁ—
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n
n! 1 _m| m n—m
Z O-lm O-2n ;Cm,n—m(x)+TDm+1,n—m—1(x) +

n
n! m __ n—m+l| M n—m
E — 0] 0y —Cpp—m+1(X)+ Dyp-m(x)| forn=12,..
oo M (n—m)! n n

Changing the summation index in the first sum on the right, and separating the last term from the
first sum and the first term from the second sum, and combining the sums that remain gives

0 z ! m __ n—m n n
jo [Hoaf(f)]{gomﬁl ep) Em,n—m(x—é:)}dizfﬁ +1Cn,0(x)+52 1Dy, () +

n !
S "0 M i Cpy 1 (¥ + (n=m 1) Dy (0)] forn=12,..

o
oyml(n—m+1)!

We now use (27))-(27L) to write this as

n

® n! m__ n—-m
jo [Hon(f)]{mZ::Omfﬁ op) Em,n—m(x—f)}déz

n
n+l n+l (n+1)! m __ n+l-m
1" Ep0(0)+0" By (0)+ Y ————0o"'o E

o (n+1-m)!

mn+1-m (x) forn=12,..

or

n+1
n+1)! 1—
{ Z ¥O_lm02n+ mEm,n+l—m (x)} =

m:Om!(n+1—m)!

0 c ! m_ n—-m
jo [Hyo f(g)]{mgomal oy Em’n_m(x—f)}dé forn=12,. (BS5)

Regarding the curly brackets in (B5) as functions of n, we can interpret (B5) as a recurrence
formula for the curly bracket.

To prove (28), we first relate the curly bracket in (B5) to the G, function. This is done by
noting from (B5) that the curly bracket satisfies the same recurrence formula that is given by
(B1) for (Hoo)"Gy. Furthermore, the curly bracket at n = 1 is (Hoo)G1. This can be shown by
using (27j) and (27k) to express the curly bracket at n = 1 in terms of Co,0 and Do o, then use (27a)
and (27e) to express this in terms of H, and finally use (25a) to complete the proof. We,
therefore, conclude that the curly bracket is (Hoo)"Gy, 1.e.,

n
(Hpo)"' G, (x)= ),

m=0

n!

m'(n—_m)'almo-zn—mEm’n_m (x) forn=12,... (B6)
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The next step in the proof of (28) uses (271) and (B6) to write (26) in the present notation
as

o0 n

H, _

e OO-P(CLE) :EO,O(AQC)"‘ Z Z 1m0'2n mEm,n—m (ch) .
n=1

m'(n m)!

The first term on the right will be included in the double sum by including an » = 0 term in the
outer sum so the above becomes

1

m!(n—m)!

P(CLE)=e 107 i i

n=0 m=0

O-lmo-zn_mEm,n—m (ch) . (B7)

This is one way to express P(CLE) in terms of the E-functions when Agc is given but an
alternate expression is obtained by combining (B7) with the summation identity

ﬁMS

o n
= Z ZAm,n—m
n=0 m=0

to obtain

_ 1
P(CLE)=e HO"Z 2 ——01"02"Epn(Aqc) - (BS)
n=0 m=0

Converting back to the original notation produces (28).
The G-functions produced by a pure spectrum are easily derived from (B6). Using 4(&) =
Ho o(& — Lr) (where ¢ is the Dirac d-function) and H(E) = Ho U(Lr — &) with (27) gives

L L
Epp(x)= Hy"™" U[m—T + 25T j (pure spectrum) (B9a)

ay aj

so (B6) gives

n ' m n—m _
G,(x)= ”—[ﬂj (QJ U(m Lr + (n=m)ly _ X j (pure spectrum) . (B9b)
o al an
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Appendix C: A Routine for Fitting (50) to Data

A routine for calculating P(CLE) via (50) that runs in the Octave (a GNU package) platform is in
the textbox below. The contents can be typed into a file named “PCLE_PUR.m” (the PUR
indicates a pure spectrum). This is a function file so the file name must be as stated unless the
function name is changed consistently. The Weibull function is used to represent bit-to-bit
variations in the critical charge loss.

PCLE_PUR.m

function z=PCLE PUR(bl,b2,s1,s2,k,L,F);
yl=sl.*F;
y2=s2.*F;
y=yl+y2;
SUM N=0;
coefn=1;
for n=0:100;
SUM M=0;
coefm=1;
for m=0:100;
argue=(((m./bl)+(n./b2)).*L) . "k;
SUM M=SUM M+coefm.*exp (-argue) ;
coefm=yl.*coefm./ (m+1) ;
end
SUM N=SUM N+coefn.*SUM M;
coefn=y2.*coefn./ (n+l);
end
z1=SUM N;
z=l-exp(-y).*zl;
for i=l:1length(z);
if (z(1)<1lE-9)
z (i)=0;
endif
end
endfunction

This function has seven arguments. The first five, in order, are the fitting parameters
denoted bi-bar, ba-bar, o5sar, oW sat, and k in (50). The sixth argument is the LET denoted L7 in
(50), and the last argument is the fluence denoted H in (50). This function will accept an array
(a vector) for the fluence so that plots and/or tables of P(CLE) versus fluence can be constructed
without requiring a loop that reassigns single values to the fluence. The double infinite series in
(50) is approximated by a finite double sum. The version shown here uses 100 terms in each
sum, but the user can change these numbers by editing the code. The goal is to obtain adequate
numerical accuracy without producing excessive CPU time (fitting routines make many calls to
this function so CPU time becomes an issue). An unfortunate property of (50) is that any set of
inputs that produce a very small value of P(CLE) are inputs such that the right side of (50) is the
difference between nearly-equal numbers, so numerical precision becomes an issue. Because of
the approximation discussed above, calculated values of P(CLE) that are less than 10~ are
changed to zero in the routine, so a returned value of zero is a flag that the actual value is less
than 107,
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Many software products provide tools for finding best fits to data but we assume here that
the only tools available to the user are those in the Octave package which is publically available
at no cost. Two steps are used to find the best fit. The first finds a rough estimate of the fitting
parameters by performing a global search, via random number generators, for the fitting
parameters that minimize the error between the fit and data. This is done with two files. The file
below defines the error between the fit and data and is a function file so the file name must be
“PCLE_ERR CRS.m” (the CRS indicates a coarse fit) unless the function name is changed
consistently. It defines the error between a fit and data by calculating square errors at each data
point and summing over data points. The error is a relative, or percent, error as opposed to an
absolute error so the logarithm of the fit is compared to the logarithm of the data. Note that
PCLE_PUR returns a value of zero when the calculating probability is less than 107, so 1 is
added to the arguments of the logarithms in PCLE_ERR CRS to avoid undefined calculations.
The numbers in the version of the code shown here are unique to the data in Fig. 1, but can be
changed for other data sets by editing the code.

PCLE_ERR_CRS.m

function ERR=PCLE ERR CRS (x) ;

bl=x(1);

b2=x(2);

sl=x(3);

s2=x(4);

k=x(5) ;

E(1)=(1ogl0(1+2.21e9*PCLE PUR(b1l,b2,s1,s2,k,72,1e3))-2.6)"2;
E(2)=(1logl0(1+2.21e9*PCLE PUR (bl,b2,s1,s2,k,72,4e6))-6)"2;
E(3)=(1logl0(1+2.21e9*PCLE _PUR (bl,b2,s1,s2,k,43.7,2e7))-6)"2;
E(4)=(1ogl0(1+2.21e9*PCLE PUR(b1l,b2,s1,s2,%,43.7,1e3))-1.78)"2;
E(5)=(1ogl0(142.21e9*PCLE PUR(b1l,b2,s1,s2,k,20,2e3))-0)"2;
E(6)=(1ogl0(1+2.21e9*PCLE PUR(b1l,b2,s1,s2,%k,20,1e6))-2.7)"2;
E(7)=(1logl0(1+2.21e9*PCLE PUR (bl,b2,s1,s2,k,5.7,1e8))-0.78)"2;
E(8)=(1logl0(1+2.21e9*PCLE PUR (bl,b2,s1,s2,k,5.7,1.5e8))-1.23)"2;
E(9)=(1ogl0(1+2.21e9*PCLE PUR(b1l,b2,s1,s2,%k,5.7,1e9))-2.4)"2;
E(10)=(logl0(1+2.21e9*PCLE PUR(bl,b2,s1,s2,k,5.7,2e9))-3.7)"2;
ERR=sum (E) ;

endfunction

The second code used in the first step is called “PCLE_bestfit CRS.m” and is shown in
the text box below. It selects fitting parameters at random in a search for parameters that produce
the smallest error returned by PCLE_ERR CRS. The numbers assigned to xf(1), ... ,xf(5) are
arbitrary guesses for bi-bar, br-bar, s sa;, owsar, and k. If the code finds a better set of fitting
parameters (i.e., that produce a smaller error), it will output those parameters. Each set of fitting
parameters that are better than all previously found sets are output. The version of the code
shown here uses (42) instead of a random number generator to assign values to x(3) (which is
os,sar) because the Ho data are known to be SEU-like. If this information was not available, this
assignment statement would be deactivated and the random number assignment would be
activated. Also, the version of the code shown selects random numbers from relatively narrow
intervals because iterations were already performed and indicated that the optimum parameters
will be in these intervals. A more general procedure starts with relatively wide intervals and
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performs several hundred searches (the version of the code shown here performs 300 searches)
for the optimum fitting parameters. This can be repeated (each run of the same code produces a
new set of results because random number generators are used) as many times as needed to
obtain some rough idea of what the optimum parameters are. This information is then used to
reduce the intervals that the random numbers are selected from, and the runs are repeated using
the smaller intervals. Continuing this procedure with progressively smaller intervals produces
estimates for the fitting parameters that are used as the initial guess for the second step.

PCLE bestfit CRS.m

54.9;

2531;

1.3e-10;

=1.519e-8;

xf(5)=7.313;
Errf=PCLE_ERR_CRS (xf) ;

disp(' ")

printf ('Err= $f', Errf)

disp(' ")

printf ('bl= $f b2= %f sl= %e s2= %e',xf(1l),xf(2),x£(3),xf(4))
disp(' ")

printf('k= $f',xf(5))

disp(' ")

for 1=1:300

x (1)=unifrnd (50, 70);

X (2)=unifrnd (2200, 2600) ;
$x(3)=unifrnd(1.3e-10,2.5e-10);
x(4)=

x(5)

xf (1)
xf (2)
xf (3)
xf (4)

(4)=unifrnd(l1.3e-8,1.7e-8);
(5)=unifrnd(5,8);
x(3)=1.3e-10/(l-exp (- (72/x (1)) "x(5)));
Err=PCLE_ERR_CRS (x) ;
if (Err<Errf)

Errf=FErr;

xf=x;

disp(' ")

printf ('Err= $f', Errf)

disp(' ")

printf ('bl= $f b2= $f sl= %$e s2= %e',xf(1l),xf(2),xf(3),xf(4))

disp(' ")

printf ('k= $f',xf(5))

disp(' ")
endif
end

The second step provides the fine tuning by using a gradient-based search for a local
minimum in the error measure. The first textbox below is the function that is called and the
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second textbox is the calling routine that searches for the best fit. The FIN in the file names
indicates fine tuning.

PCLE_ERR_FIN.m

function ERR=PCLE ERR FIN(x);
b1=100*x (1) ;
b2=1000*x(2) ;
s1l=1E-10*x(3);
s2=1E-8*x (4)
k=x(5) ;
E(1)=(logl0(1+2.21e9*PCLE PUR(b1l,b2,s1,s2,k,72,1e3))-2.6)"2;
2)=(1logl0(1+2.21e9*PCLE_PUR(bl,b2,sl,s2,k,72,4e6))-6)"2;
3)=(1ogl0(1+2.21e9*PCLE_PUR (bl,b2,s1,s52,k,43.7,2e7))-6)"2;
4)=(1ogl0(1+2.21e9*PCLE PUR (bl,b2,s1,s2,k,43.7,1e3))-1.78)"2;
5)=(1ogl0(1+2.21e9*PCLE PUR (bl,b2,s1,s2,k,20,2e3))-0)"2;
6)=(1ogl0(1+2.21e9*PCLE PUR(b1l,b2,s1,s2,%,20,1e6))-2.7)"2;
7)=( ( (

8)=( ( (

9)=( (

’

=(logl0(1+2.21e9*PCLE PUR(bl,b2,sl1,s2,k,5.7,1e8))-0.78)"2;

=(logl0(1+2.21e9*PCLE PUR(bl,b2,s1,s2,k,5.7,1.5e8))-1.23)"2;
=(logl0 (1+2.21e9*PCLE PUR(bl,b2,s1,s2,k,5.7,1e9))-2.4)"2;

E(10)=(logl0(1+2.21e9*PCLE PUR(bl,b2,s1,s52,k,5.7,2e9))-3.7)"2;

ERR=sum (E) ;

endfunction

PCLE bestfit FIN.m

f=0Q (x) PCLE _ERR FIN(x);

The function f above requires scaled parameters with scale factors selected
to make the minimization routine run better by making the function
arguments closer to having equal orders of magnitude. The required scaling is
x(1)=b1/100

x(2)=b2/1000

x(3)=s1*1E10

X (4)=s2*1E8

x (5)=k

The initial guess with this scaling is x0. Lower and upper bounds

are lb and ub.

x0=[0.5312,2.504,1.3,1.318,7.61247;

1b=[0.20,1,1,0.1,17;

ub=[2,6,4,10,100];

[xf,obj,info,iter,nf, lambdal=sqgp (x0,f, [],[]1,1lb,ub,100,1e-12);
Err=o0bj

b1=100*xf (1)

b2=1000*xf (2)

s1l=1E-10*xf (3)

s2=1E-8*xf (4)

k=xf (5)

A 00 00 O° o° o° 90 d° oe

o

52



Appendix D: Selecting LETs and Fluences for a Complete Characterization

Suppose a device (e.g., a flash memory) containing a collection of FGs was tested with heavy
ions using fluences small enough to produce SEU-like behavior. Such data do not provide a
complete characterization of the device. A complete characterization requires larger fluences at
the smaller LETSs as needed to produce a statistically significant deviation from SEU-like
behavior. However, before performing such additional tests, we should first look for a more
quantitative description of “smaller LET” and “larger fluence.” The goal of this discussion is to
use data obtained from the small-fluence tests to estimate the LETs and fluences that should be
suitable for the additional, large-fluence, testing. The analysis given here is simplified by
considering only strong interactions. The justification for this simplification is that the inclusion
of weak interactions can only produce a further deviation from SEU-like behavior. Therefore, if
test conditions (LET and fluence) are such that strong interactions alone are enough for a
deviation from SEU-like behavior, such a deviation can be expected to occur.

We begin by selecting some test fluence, denoted Hr, and test LET, denoted Lz, and
determine the condition that these parameters should satisfy in order to obtain a complete
characterization of the collection of FGs. If the required condition is not satisfied by a particular
selection of Lt and Hr, it is necessary to make another selection. Let Ny denote the total
number of FGs in the collection and let ocz£(L) denote the per-bit cross section obtained from the
small-fluence (SEU-like) test data as a function of LET L. This per-bit cross section is obtained
by dividing the number of counts first by fluence, to obtain a cross section for the collection of
FGs, and then by N;oa to convert this cross section to a per-bit cross section. Let Neounss denote
the number of counts from the collection of FGs produced by the large-fluence test when the
fluence is Hr and the LET 1s L7. The fluence is large enough for the device behavior to be
outside the SEU-like regime if the quantity Neounss/(HrNrwowi) 1s measurably larger than ocre(L),
where measurably larger means that the difference between the quantities is large enough to be
distinguishable from experimental error. Therefore the fluence must be large enough to satisfy

Neownts ocrg (Ly) >experimental error (required), (D1)
Hy Nyogal

where the error on the right side includes scatter in the data associated with counting statistics.
The goal now is to predict whether the required condition (D1) will or will not be satisfied by a
particular choice of the parameters Hr and Lr.

The first step towards the above goal divides the FGs in the collection into groups and
uses the SEU-like (small-fluence) cross section data to estimate the number of FGs in each
group. The first group consists of those FGs that require only one strong interaction at an LET L7
to become deprogrammed. The number of FGs in this group, denoted N1, is estimated by noting
that the small-fluence cross section for the collection of FGs, which is Ny ocre(L) when the
LET is L, is the sum of FG cross sections at LET L, summed over all FGs in the collection. At an
LET of Lz, only the FGs in the first group contribute to the cross section because multiple hits
can be ignored in the small-fluence data. Each of these FGs has a cross section of o5, and there
are N1 of these FGs, so the sum of FG cross sections summed over FGs in the first group is
Ni0ssar. This gives

Nyotai ocLe (L) = Ny OS sat

53



The second group consists of those FGs that will become deprogrammed by two strong
interactions, but not by one strong interaction, at an LET of L7. An FG is in this group if, and
only if, a single strong interaction produced by an LET of 2Lz will deprogram the FG, but a
single strong interaction at an LET of L7 will not. The number of FGs in this group, denoted Na,
is estimated by noting that the FGs that contribute to the small-fluence cross section for the
collection of FGs at an LET of 2L7 consists of those in the first group plus those in the second
group. This gives

Niotal OCLE (2LT) =N OS sat T Ny OS sat-

Continuing with this group designation, the n™ group consists of those FGs that will
become deprogrammed by #n strong interactions, but not by n — 1 strong interactions, at an LET
of L7. An FG is in this group if, and only if, a single strong interaction produced by an LET of
nLr will deprogram the FG, but a single strong interaction at an LET of (n — 1)L will not. Let N,
denote the number of FGs in this group. An obvious extension of the derivation of the above
equation gives

n
Niotal OcLE(MLT) = 0§ 51 ZNk forn=1,2,.... (D2a)
k=1

Replacing n with n — 1 in (D2a) and subtracting the resulting equation from (D2a) allows us to
solve for N, with the result

Ly )- -1 L
N, = Ny ocL(n T)GSUCLE((" )Lr) forn=1,2, ... (D2b)
,sat

where we use the convention that oc.£(0) = 0, so that (D2b) will also apply when n = 1. There is
a maximum value, call it #max, of the group designator having the property that the group
numbered 7max contains a nonzero number of FGs, i.e., N, > 0 when n = nimax, but N, = 0 when

n > nmax. This number is determined by the condition that the total number of FGs is Ny, which
gives

nmax
ZNk = Nyotal - (D3a)
k=1
Furthermore, all groups with larger designations contain zero FGs, so
n
D Ne=Npwr  iTn>np,y. (D3b)

k=1

The value of nmax, as well as o554, can be recognized by the saturation of the small-
fluence cross section data. This is seen by combining (D3) with (D2a) to get
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ocrLE (Mmax L1) = 08, sat (D4a)
ocrp(nly)= OS sat ifn2np,y. (D4b)

We conclude from (D4) that the cross section as,s. can be estimated from the small-
fluence cross section data as the saturation value (large LET limit) of ocz£(L). Furthermore,
nmaxL7 18 the smallest integer multiple of L7 that produces the saturation value.

Having divided the collection of FGs into groups, we can now express Neounss as a sum of
terms given by

n max

N counts = ZNcounts,n > (D5)

n=1

where Neounsn is the number of deprogrammed FGs from the #n™ group of FGs and produced by a
fluence Hr of LET Lr. It is assumed that these numbers of counts are large enough for the
ensemble interpretation of a probability to be used with these numbers. Specifically, Necounssn 1S
taken to be equal to the number of FGs in the n'™ group multiplied by the probability that a
randomly selected FG from this group will become deprogrammed. This probability is the
probability that an FG will undergo n or more strong interactions from the fluence Hr. Using the
Poisson distribution for this probability gives

Ncounts,n =N, {1 — Poisson (n— LHr OS sat )}a (D6)

where Psson 1S the cumulative Poisson distribution function defined by (E4) in Appendix E.
Substituting (D6) and (D2b) into (D5) gives

N Nmax
N counts = ;otal Z {GCLE (n Ly )_ OCLE ((” -DLr )}{1 — Ppisson (=1L H GS,sat)}-
Sat p=1

A summation analog of an integration by parts, using (D4a) and oc.£(0) = 0, allows this to be
rewritten as

Ncounts — {1 _

Poisson (nmax -1 HT OS sat )}+
Niotal

o HT OS5 5t nmi_l GCLE(”LT)(H I 9S,sat )" . (D7a)

n=1 08, sat n!

It is possible to write (D7a) in a more compact form, but the penalty is to replace a finite
sum with an infinite series. This is done by using
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max -1

n n
-Hro (HT US,sat)
1= ®pisson (Mmax —LHT O-S,sat) =l—¢ 178 z Y
n=0 :

Nmax -1

_ e_HT O sat eHT 08 sat z

n n
(Hr O_S,sat) _ e—HT 05 sat i (Hr GS,sat)

n!

|
n=0 n=n n:

max

where the last equality was obtained by replacing the exponential function in the large
parenthesis by a series expansion. Combining this with (D4b) gives

o0 n
-H o nlL (H o )
1— Pyisoon (nmax _ I,HT O-S,Sat) —e T 05 sat Z CLE( T) T ©8,sat ’
OS sat n!

N=Nmax

so (D7a) can be rewritten as

0 n
N counts _ e_HT OS.sat Z OCLE (n LT) (Hr O-S,sat)
N[Otal 7’121 O-S’Sat n '

or

[0
Ncounts _ e_HT 05 sat Z OCLE (n LT)
H T N total

n—1
(HT US,sat)

n!

(D7b)

n=l1

The right side is a sum of positive terms and is greater than the sum of the first two terms, so

Ncounts > e_HT 0§, sat ‘:O-CLE (LT )+ l(]—IT OS sat )GCLE (ZLT )j| . (D8)
HT Ntotal 2

The required equations have been derived, so we now consider an example to illustrate
how the equations are used to answer the question of whether a given choice of L7 and Hr will
satisfy (D1). The best choice for Lris the LET that produces the largest value for the ratio
ocLe(2L)/ocre(L). Suppose, for this example, that we can find an Lr satisfying

O-CLQLT) >100 (example) . (D9a)
ocre(Lr)

For the example curve labelled “0 krads” in Fig. 3, the condition (D9a) is satisfied for any
LET in the plotted range up to 20 MeV-cm?/mg. We also use the example device represented in
Fig. 3 to provide a value for g4, which is 107! cm?. Finally, there are practical considerations
(beam time) for not wanting to use a fluence larger than 10°/cm?, but we are willing to go that
high with the fluence. Therefore, the remaining inputs for this example are
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oS sat = 10710 sz, Hpr = 10° /em? (example). (D9b)

Substituting (D9) into (D8), we find that Neouns/(HrNiwotat) 18 greater than 5.4oc e(L7) for this
example, which gives

N counts

—ocrg(Ly)>44o0cp(Ly) (example). (D10)
HT Ntotal

Given that the experimental error is small enough so that ocz£(L7) could be measured,
i.e., ocre(L7) is greater than the measurement error, we conclude from (D10) that the left side is
also greater than the measurement error, so the requirement (D1) is satisfied. The example device
is the same device represented in Figs. 1 and 2, and the conclusion given here for this example is
that a fluence of 10°/cm? should be enough to produce an experimentally observable deviation
from SEU-like behavior for any of the tested ions up to an LET of 20 MeV-cm?*/mg. This
deviation is seen in the test data (Fig. 1) only for Ar because that is the only ion tested at such
large fluences, but we can predict that this deviation would also become observable in the Kr
data if larger test fluences were used. This agrees with the model prediction in Fig. 2 (derived
from fits to the Fig. 1 data) showing some curvature in the Kr curve at the larger fluences.
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Appendix E: A Routine for Calculating ACLE) in Space Environments
To calculate P(CLE) in space environments we start with (57) which is repeated below:
o0

P(CLE) = T(AqD>+exp[—H(0)amt [j G <§)p(5+AqD>dcf} [H(0) oy ]"- (ED)
1

We also consider the case in which the Weibull function (47) describes FG-to-FG variations in
the critical charge loss, so

k .
F(x) = Wy (x) = l—exp[—(x//l) ] if x>0 (E2a)
0 if x<0
k-1
k(x k|-
d —| = —(x/A fx>0
PO =W () = ﬂ(ﬂj eXp[ (x/4) ] if x>0 (E2b)
0 if x<0
Properties implied by these equations that will be useful later are
d
FX) =Wk () Ap(Ax) =W (). (E20)

The infinite series in (E1) can be replaced by a finite sum using a conservative
approximation. This is obtained by using (16a) with the fact that p is a normalized density to
conclude that

[y Gn(©p(&+dap)ds < p&+aap)ds=[  p&)dés[]p&)ds=1.

Using this with (E1) gives

P(CLE) < F(Agp)+
N o0
{exp[—H(O)amz]Z ﬂ I, Gn(ap(&mqmdf} [1(0) am]"}+
n=l """

1= Prigoon (N, H(0) 55)} for N =1,2,...., (E3)

where P50 18 the cumulative Poisson distribution function defined by

N an
@oisson(Naﬂ“) =e Z ; (E4)
n=0
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Note that P(CLE) — H(Agp) is less than or equal to the sum of the two curly brackets on
the right side of (E3), but greater than or equal to the first curly bracket. Therefore, the error
produced by using the right side of (E3) as an approximation for the left side, which is a
conservative approximation, is no larger than the second curly bracket. By letting N be large
enough to make the second curly bracket equal to 107!? (for example), the error produced by
using the right side of (E3) as an approximation for the left side is no greater than 107'2,

To shorten the notation, define the c-coefficients by

cn E%[H(O)osa,]n forn=1.2,.... (ES)

They can be calculated from the recurrence formula

c
c1 =H(0)ogy, Chnil :n_—il-l ¢, forn=12,... (E6)

Using this notation, (E3) can be written as
— N o0
P(CLE) < T(AqD) +4e™ Z Cn |:'[0 Gn (":Z)p(g + AQD)d§:| + {1 - q)oisson(Nscl)}' (E7)
n=1

Calculation of Agp via (52) requires the a-parameters to be known. Also, calculation of
the G-functions requires the a-parameters to be known because the recurrence formula (15a)
implicitly contains these parameters via (25b). Replacements for these quantities that can be
calculated when the b-parameters (recall that b1 = Aa1 and b2 = Aaz) are known, instead of the
a-parameters, are Agp’ and the 7-functions defined by

1 OS sat  OW sat
Agn'=—Agp = 7+ 2 D E8a
9p'=~Adp ( by by Jﬂ (E8a)
T,(x)=G,(Ax) forn=1,2,.., (E8Db)

where u is given by (51b). The T-functions are calculated by combining (E8b) with (15a) and
(25b) and changing integration variables to produce the recurrence formula
Ty (x) =T (x)+

J‘x[bl h(by &) 5 sar Lo h(by &) oW sar
0 H(0) Osat H(0) Osat

}Tn(x—f)d(f forn=1,2,... . (E9)

To get the T-function sequence started, we combine (E8a) with (25a) to get
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Ti(x) = H(bl x)GS,sat + H(bz x)GW,Sat (E10)
1 H(O) Osat .

The next step expresses (E7) in terms of Agp”’ and the 7-functions by using (E2c) and (E8)
together with a change of integration variable to get

P(CLE) < W ;x(Aqp') +

N 0 d
ey {cn [, &
n=l1

d(:gm,k(§+AqD')d§:|+1_(Poisson(N:cl)' (Ell)

The infinite upper integration limits on the right side of (E11) can be replaced by finite
limits. One possible approach utilizes the fact that the maximum LET of any ion is less than
some upper bound (the upper bound is slightly greater than 100 MeV-cm?/mg), which implies
that the integral fluence H(L) is zero when L is greater than this finite upper bound. This fact can
be used to conclude that 71(x) given by (E10) is zero when x is greater than some finite upper
bound. Unfortunately, the same upper bound for x to produce a nonzero value does not apply to
T>(x) or T5(x), etc. This can be seen by considering any x satisfying the condition that 77(x) > 0. It
can be shown from (E9) that this implies that 7>(2x) > 0. Therefore, while it is true that for each
n there is a finite domain of x at which 7,(x) > 0, this domain becomes larger with increasing n.
This dependence on 7 is a complication that must be considered when constructing a numerical
routine that takes advantage of the fact that the maximum LET of any ion is less than some upper
bound.

An alternate approach, used here, replaces the infinite upper integration limit on the right
side of (E11) with a finite limit (the same limit for all #) by using a conservative approximation
having the property that an upper bound for the error in this approximation can be predicted and
controlled. Let xmax denote the maximum argument for which 7,(x) will be numerically
evaluated. Note from (16f) and (ES8) that 7(&) < Th(Xmax) when &> xmax. This inequality together
with the fact that the derivative of W/ is positive gives

A6 gwlk@mqo )dé = J‘““T(é) g M€ aapdEs
[T o 1,k<§+AqD')d§sjo“‘a"Tn((f)igwl,k(fmqg')d&
TG d—éwlk(cfmq]; )dé
or

xmax d
N n(«:>d—§w1k<é+AqD = [T () W&+ Mg +

k
T, (xmax)e—(xmax+A‘ID > (E12)
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The conservative approximation that will be used here uses the right side of (E12) as an
approximation for the left side. It is conservative because the right side of (E12) is greater than,
when not equal to, the left side. For the purpose of obtaining a worst-case estimate of the error in
this approximation, we consider another inequality (not intended to provide an accurate
approximation) which is

o d Xmax d
Jo T@ 7 Wha(E +Aqp)dé = [ 1,6 o wix (€ +Aqpr)de =

T ) g™ Wi (6 B

or
o0 d _ nk _ nk
I Tn(g)Emk(gmqD')dgZT,,(xmaX)[e (A4p")" _ o~ (Fmax +A4D") } (E13)

The right side of (E12) exceeds the left side by an amount that is not more than the term on the
far right of (E12). If Th(xmax) = 0, there is no error. If Tu(xmax) > 0, a worst-case estimate of the
relative error, or fractional error, is the term on the far right side of (E12) divided by the right
side of (E13); i.e.,

) e_(xmax +ALID')k
relative error < T = - (E14)
e_(ACID') _ e_(xmax +Aqp")

For example, if xmax 1s selected to satisfy

1/k
Xmax = (AqD')k +9.22 -Agqp' (example) ,
the relative error produced by using the right side of (E12) as an approximation for the left side
will not exceed 0.0001.

The integral on the right side of (E12) must be evaluated numerically and, again, we use a
conservative approximation. The accuracy of the approximation is controlled by the choice of
grid points. Select a set of grid points denoted x1, ..., xa, with M > 2, which satisfy

x1 =0, X\ = Xmax» Xpy—1 <X, foreachm=2,3,..M . (E15)
To shorten the notation, we define

Tym=T,(x,) foreachm=1,.,M andeachn=1,2,..,N. (E16)

The fact that 7}, is a decreasing function and the derivative in (E12) is positive implies
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X, M X,
[o"™ 1@z Wha (G dapyde = X Ix’”lTn(f)iém,k@MqD')dg
m=2 """

< 2 o[, ld—gwlk@mql) )dé

or

IomaxT(f)—(SWlk(f-i-AQD >d§<2 [ Con1+gp")* <Xm+MD'>"] (E17)

Combining this with (E12) gives

00 d M ' B "
IO T’l(é)d_ggm,k(f"‘AQD')d Z e 1[ X1 +Aqp" o~ (om+Adp") ]‘_

nk
T,y e A (E18)

An upper bound for P(CLE), which also serves as an approximation for P(CLE) after the
T,; array has been calculated, is obtained by combining (E18) with (E11) to get

P(CLE)S((/VI k(AQD')"_l_(Pisson(N Cl)"‘

- Z cn{ 2. T [ e +84p") “‘m*AqD')k}Tn,M e—<XM+A‘JD')k}. (E19)

In order to use the right side of (E19) as a conservative estimate of the left side, the
T-array must be calculated. Again, a conservative approximation is used. The fact that 7, is a
decreasing function and the square bracket in (E9) is positive implies

bl é:) 0, sat b2 h(bZ f) OW ,sat
H(O) Osat H(O) Osat

Tt (i) =Ty o) + [ { }Tn(xm—(:)dcf

h(b &) 05 sar bz h(by &) oW sar 3
—Tl(xm)+2 I“{ 0O o TR, o }Tﬂxm £)dé

ST () + ZTn(xm
Jj=2

blf OS.sat by h(bz Cf) OW sat
U { HO) 0w HO) oy }dg’

which applies for eachn =1, 2, ..., Nand each m = 2, 3, ..., M. Changing the integration
variable and using the fact that the differential fluence 4(L) is the negative of the L derivative of
the integral fluence H(L) gives
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HO0) o ) H(0) O sat

X
sat

j-1

[ |:b1h(bl £) O-S,Sat} " Hbyxj )= Hlbi x;) o5 sar

with a similar equation for the integral containing b> so the above recurrence formula for the
T-array becomes

m H\byx ;1 )-H\by x;
Toitm < Tim +J§2Tn (X, —xj){ ( L 1;)(0) ( lxj) UGSS::,U "
H(bz xj_l)—H(bz xj) OW sat

} forn=1,2,..,N-landm=2,3,...M. (E20)
H(0) Csat

Note that (E20) is used only when m > 2, but it is not needed when m = 1 because the
convention of taking xi to be zero and the definition 75,» = Tu(xm) gives T,,1 = T,(0), so (E8b) and
(16b) give

Tp1=1 foreachn=1,2,....N. (E21a)
Another equation that will be useful later is obtained from (E10) and is

o O
_Hlbixy) Ossar  Hby %) OWsar o (E21b)
HO) oy HO) oy

1,m

Now consider the argument to 75, on the right side of (E20), which is x,, —x; with 2 <m <
M and 2 <j < m. The argument is bracketed by 0 < x, —x; < xp — x2 50 X1 <Xm — X7 < X
Therefore, there is a pair of adjacent grid points having the property that the left (smaller) point
is less than or equal to x,» — x; and the right point is greater than x,, — x;. Stated another way, there
is an integer m’ (m, j), a function of m and j, satisfying

Xmi(m,j) S Xm =X j < Xpr(m, j)+1- (E21c)

Because T,(x) is decreasing in x, T,(x» — x;) is less than or equal to the left grid point value. This
gives

Ty G =% ) < Ty )= Ty - (E21d)

It should be noted that the most effective way to improve the accuracy of the calculations
is to use an interpolation, instead of the right side of (E21d), to obtain an estimate of the left side.
However, doing so would invalidate the claim that all approximations are conservative. Readers
that would like to give numerical accuracy a higher priority than guaranteed conservatism can
modify the routine as pointed out later in the discussion under Block 6. Here, we will honor the
claim that all approximations are conservative by using (E21d) with (E20) to get
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m H(b X )—H(bX')
H(py x j—l)_H (b, xj) oW sat

} forn=1,2,..,N-landm=2,3,..,.M. (E2le)
H(0) Osat

A conservative approximation uses the right side of (E21e) as an estimate of the left side.

There still remains the issue of selecting the grid points xi, ..., xa. Flux or fluence data
for typical space environments are such that the greatest resolution is needed at the smaller
LETs, and this can be accomplished by a uniform spacing of the positive grid points (which are
X2, ..., xu) on a logarithmic scale. The smallest positive grid point, x2, should be small enough so
that calculated fluences include all of the particles represented in the flux input files (tabulations
of flux versus LET). The input files will represent heavy ions and possibly protons. For protons
we have the option of including them in a separate dose-like calculation or including them in a
flux input file so they may or may not be included in an input file. It is assumed that electrons
will be included in a separate dose-like calculation and not included in a flux input file. Let Lmin
denote the smallest LET found in the flux input files, unless this value is less than 0.0017
MeV-cm?/mg, in which case we let Lmin = 0.0017 MeV-cm?*/mg. The reason for this cutoff is that
the LET of protons in SiO; is greater than or equal to 0.0017 MeV-cm?/mg for any proton energy
greater than some fraction of a keV, so smaller LETs are irrelevant. Selecting x> in such a way so
that calculations for both strong interactions and weak interactions include all particles with LET
greater than or equal to Lmin can be accomplished by selecting x> to satisty b1x2 < Lmin and boxs <
Lin. This condition will be satisfied, with a little margin, by using

Xy = Limin _
bl +b2

Recall that we also have xi = xmax, SO we must also select a value for xmax. The right side
of (E14) can be made to be equal to about 0.0001 (for example) by using

1/k
Xmax = [(Agp)¥ +9.22| " —Agp' . (E22a)

After selecting an M > 3, a complete set of grid points can be calculated from (E22a) together
with

¥ =0, xy——lmin_ (E22b)
bl +b2
Xpel =7X,, form=23,.,M-1, (E22c¢)

where the ratio 7 is given by
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y= (’CHﬂJM_Z . (E22d)

For the example represented by Table II, we have b1 + b> = 3860 MeV-cm?/mg, k =
7.643, and D =0 (so Agp” = 0 which produces the largest xmax), so (E22a) gives xmax = 1.34. If
protons are included in either one of the input files, we will have Lmin = 0.0017 MeV-cm?/mg and
(22b) gives x2 = 4.40x1077 for this example. The two quantities, x> and Xmax, differ by more than
six orders of magnitude for this example. But if we let M = 250 (for example), there will be more
than thirty grid points per decade. The ratio » of adjacent positive grid points, given by (E22d),
will be about 1.062. This is a fairly fine spacing of grid points on a logarithmic scale, but a finer
spacing, if desired, can be obtained by using a larger value for M.

A routine for calculating P(CLE) in space environments, that runs in the Octave (a GNU
package) platform, is called PCLE in space.m in the textbox below. The steps are
partitioned into blocks that are explained as follows:

Block 1 first sets the ratio 7 between adjacent positive grid points to produce forty grid
points per decade. This can be changed, if desired, by editing the code. Then Block 1 initializes
vectors and matrices to be scalers with a value of zero. This is done because prior executions of
Octave might have created larger vectors or matrices having the same names and only some
matrix elements will be overwritten by the current execution with other obsolete matrix elements
still in memory. The initialization ensures that the dimensions of vectors and matrices will
correspond to the current assignments. Then Block 1 reads input data and files. The files are
assumed to be in the CREME96 format so LET is in the units of MeV-cm?/g and flux is in the
units of 1/m2-s-sr. Immediately after reading a file as a two-column matrix, the columns are
separated into two vectors with units changed so LET is in MeV-cm?/mg and flux is in 1/cm?-
day, and some additional data points are inserted to control the way that an interpolation routine
will extrapolate outside the data range.

Block 2 constructs flux functions representing the input files (with units converted) via
interpolation/extrapolation. Extrapolations below the smallest tabulated LET produce the same
flux assigned to the smallest tabulated LET. Extrapolations above the largest tabulated LET
produce zero flux. Then the flux functions are used to construct a total fluence function of LET.

Block 3 assigns the integer N a value that makes the second curly bracket on the right
side of (E3) less than 107! and constructs the coefficients ci, ..., cn.

Block 4 calculates Agp’, denoted QD in the code, from (E8a) and then calculates xmax
from (E22a).

Block 5 constructs the grid points. It first finds the smallest nonzero LET value listed in
the input files (the LET values in the input files are required to be in increasing order but it is
possible for the first entry to be zero). If the entered number of flares is zero, the minimum LET,
denoted Lmin, 1S reset to be the smallest nonzero value in the GCR file. If the entered number of
days of GCR is zero, the minimum LET is reset to be the smallest nonzero value in the flare file.
Then Lumin is reset again to 0.0017 MeV-cm?/mg if it was less than that. Then x; and x> are
calculated from D(22b). This value of x2 is compared to xmax to ensure that the grid points are in
increasing order. If x; is not less than xmax it is reset to the value xmax/r. The remaining grid points
are calculated from (E22c) with the same steps also assigning a value to M. Since » was selected
to produce a specified grid point spacing instead of selected to satisfy xa = Xmax, X1 Will be
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slightly greater than xmax. The grid point xu is given the role of an updated xmax in later
calculations.

Block 6 constructs the T-array by first constructing H1- and H2-arrays to shorten the
notation in (E21). Then the T-array is constructed from (E21) with (E21e) interpreted as an
equality. Note that mp in the code is the m 7 (m, j) satistying (E21c¢). As pointed out in the
discussion under (E21d), readers that would like to give numerical accuracy a higher priority
than guaranteed conservatism can modify the steps in this block by using an interpolation,
instead of the right side of (E21d), to obtain an estimate of the left side. However, doing so
would invalidate the claim that all approximations are conservative.

Block 7 estimates P(CLE) by treating (E19) as an equality. The inner loop constructs an
inner sum, denoted inSUM in the code, which is the curly bracket on the right side of (E19). The
outer loop constructs an outer sum, denoted out SUM in the code, which is denoted the sum in n
on the right side of (E19). The last step combines all of the terms on the right side of (E19).

PCLE in space.m (Page 1)
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% ****BLOCK 1

r=1070.025;
Datal=0;
Ldatal=0;
fluxdatal=0;
Data2=0;
Ldata2=0;
fluxdataz2=0;
c=0;

x=0;

H1=0;

H2=0;

T=0;

Datal=dlmread ("GCR flux.dat");
Ldatal=[0;Datal(:,1)/10007;
fluxdatal=[108.6*Datal (1,2);108.6*Datal(:,2)];
Ndatal=length (Ldatal);

Ldatal (Ndatal+1l)=Ldatal (Ndatal) ;

fluxdatal (Ndatal+1)=0;

Ldatal (Ndatal+2)=2*Ldatal (Ndatal) ;

fluxdatal (Ndatal+2)=0;

Q

°

Dataz=dlmread("flare flux.dat");
Ldata2=[0;Data2(:,1)/10007;
fluxdata2=[108.6*Data2(1,2);108.6*Data2(:,2)1;
Ndata2=length (LdataZ2) ;

Ldata? (Ndata2+1l)=Ldata2 (Ndata?2) ;

fluxdata2 (Ndata2+1)=0;

Ldata? (Ndata2+2)=2*Ldata2 (Ndata?) ;

fluxdata?2 (Ndata2+2)=0;

o

°

NGCR=input ("Enter number of days of GCR flux ");

Nflare=input ("Enter number of flares ");

bl=input ("Enter bl in MeV-cm2/mg ");

b2=input ("Enter b2 in MeV-cm2/mg ");

sigl=input ("Enter the crosssection for strong interactions in cm2 ");
sig2=input ("Enter the crosssection for weak interactions in cm2 ");
k=input ("Enter the Weibull k parameter (must be > 0) ");

D=input ("Enter additional dose in krads in Si02 (must be >= 0) ");

sig=sigl+sig2;

°

PCLE in space.m (page 2)
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$****BLOCK 2

flux1l=@ (L) interpl (Ldatal, fluxdatal,L, "extrap"):;
flux2=@ (L) interpl (Ldata2, fluxdata2,L, "extrap"):;
H=Q@ (L) NGCR*fluxl (L)+7.5*Nflare*flux2 (L) ;

HO=H (0) ;

Q

o°

$**** BLOCK 3

cl=HO*sig;

N=1;

do
N++;
until ((l-poisscdf (N,cl))<=le-12)
finalN=N

o

c(l)=cl;

for i=1:N-1
c(i+l)=cl*c (1) / (i+1);
end

o
]

g**** BLOCK 4
QD=6.25e7* ((sigl/bl)+(sig2/b2)) *D;
xmax=(9.22+0D"k) "~ (1/k) -QD;

o)

°

g**** BLOCK 5

Lminl=Ldatal (2);

if (Lminl<=0)
Lminl=Ldatal (3);
endif

Lmin2=Ldata2 (2);

if (Lmin2<=0)
Lmin2=Ldata2 (3);
endif

Lmin=Lminl;

if (Lmin>Lmin2)
Lmin=Lmin2;
endif

if (NGCR<=0)
Lmin=Lmin2;
endif

if (Nflare<=0)
Lmin=Lminl;
endif

if (Lmin<0.0017)
Lmin=0.0017;
endif

x(1)=0;

X (2)=Lmin/ (b1l+b2) ;

if (x(2)>=xmax)
X (2)=xmax/r;
endif

o
°

PCLE in space.m (page 3)
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M=2;

do
M++;
X (M)=r*x (M-1) ;
until (x(M)>=xmax)
finalM=M

o°

****BLOCK 6

for m=1:M

H1 (m)=H(bl*x(m))*sigl/cl;
H2 (m)=H (b2*x (m) ) *sig2/cl;
T(1l,m)=H1 (m)+H2 (m) ;

end

[}

for n=1:N
T(n,1)=1;
end

Q

for n=1:N-1
for m=2:M
T(n+l,m)=T(1,m);
for j=2:m
mp=lookup (x,x (m) -x (7)) ;
T (n+1,m) =T (n+1,m)+T (n,mp) * (H1 (3-1) -H1 (§) +H2 (3-1) -H2 (3)) ;
end
end
end

Q

°

$****BLOCK 7
outSUM=0;
for n=1:N
EM=exp (- (x (M) +QD) "k) ;
inSUM=T (n, M) *EM;
for m=2:M
Em=exp (- (x (m-1) +QD) "k) —exp (- (x (m) +QD) *k) ;
inSUM=inSUM+T (n,m-1) *Em;
end
outSUM=outSUM+c (n) *inSUM;
end
PCLE=2-exp (-QD"k) -poisscdf (N,cl) +exp (-cl) *outSUM

Two example input data files are in the text boxes below. These are abbreviations of
CREMED96 output files, abbreviated by including only one out of three data points to reduce the
file length. This abbreviation is not essential and the complete CREME96 output files (but with
headers deleted) can be used if desired. The first file, called GCR_flux.dat, is a table of LET
(first column) versus galactic cosmic ray (GCR) flux (second column). The units are those used
in CREMED96 output files so LET is in MeV-cm?/g (instead of the more customary
MeV-cm?/mg) and flux is in 1/m?-s-sr. This example data file represents the GCR environment
in interplanetary space (no planetary magnetic shielding) during a solar minimum time period
(the worst-case time period for GCR) with 100 mils of aluminum spacecraft shielding. Any
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changes in planetary magnetic shielding and/or spacecraft shielding must be made by using
CREMED96 to create a replacement for this data file. Protons are not included so the smallest
LET listed in the table is 101 MeV-cm?*/g (or 0.101 MeV-cm?/mg). The second file, called
fare flux.dat,isatable of LET versus flux in the same format and in the same units used
for the first file, but the flux now refers to the worst-week solar flare model used in CREME96.
As with the GCR example, this applies to interplanetary space (no planetary magnetic shielding)
at 1 AU distance from the Sun and with 100 mils of aluminum spacecraft shielding. Any changes
in planetary magnetic shielding and/or spacecraft shielding must be made by using CREME96 to
create a replacement for this data file. Protons are not included in this file, so the smallest LET
listed in the table is 101 MeV-cm?/g (or 0.101 MeV-cm?/mg), but solar protons cannot be
ignored and must therefore be included in a dose-like calculation.
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GCR_flux.dat (page 1) GCR_flux.dat (page 2) GCR_flux.dat (page 3)

1.010E+002, 2.047E+001 1.039E+003, 1.594E+000 1.069E+004, 7.204E-003
1.046E+002, 2.011E+001 1.076E+003, 1.532E+000 1.107E+004, 6.608E-003
1.083E+002, 1.827E+001 1.114E+003, 1.480E+000 1.146E+004, 6.043E-003
1.121E+002, 1.685E+001 1.154E+003, 1.331E+000 1.187E+004, 5.480E-003
1.161E+002, 1.588E+001 1.195E+003, 1.117E+000 1.229E+004, 5.007E-003
1.202E+002, 1.511E+001 1.237E+003, 9.923E-001 1.272E+004, 4.574E-003
1.245E+002, 1.446E+001 1.281E+003, 8.961E-001 1.318E+004, 4.155E-003
1.289E+002, 1.389E+001 1.326E+003, 8.174E-001 1.364E+004, 3.787E-003
1.335E+002, 1.339E+001 1.373E+003, 7.381E-001 1.412E+004, 3.423E-003
1.382E+002, 1.290E+001 1.421E+003, 6.746E-001 1.462E+004, 3.095E-003
1.431E+002, 1.247E+001 1.472E+003, 6.198E-001 1.514E+004, 2.821E-003
1.481E+002, 1.209E+001 1.524E+003, 5.710E-001 1.568E+004, 2.567E-003
1.534E+002, 1.173E+001 1.578E+003, 5.271E-001 1.623E+004, 2.328E-003
1.588E+002, 1.141E+001 1.634E+003, 4.883E-001 1.681E+004, 2.101E-003
1.644E+002, 1.111E+001 1.692E+003, 4.528E-001 1.740E+004, 1.897E-003
1.703E+002, 1.056E+001 1.752E+003, 4.198E-001 1.802E+004, 1.706E-003
1.763E+002, 1.014E+001 1.814E+003, 3.895E-001 1.866E+004, 1.528E-003
1.825E+002, 9.789E+000 1.878E+003, 3.616E-001 1.932E+004, 1.360E-003
1.890E+002, 9.486E+000 1.944E+003, 3.359E-001 2.000E+004, 1.202E-003
1.957E+002, 9.213E+000 2.013E+003, 3.121E-001 2.071E+004, 1.053E-003
2.026E+002, 8.948E+000 2.084E+003, 2.896E-001 2.144E+004, 9.061E-004
2.098E+002, 8.661E+000 2.158E+003, 2.693E-001 2.220E+004, 7.836E-004
2.172E+002, 8.425E+000 2.234E+003, 2.500E-001 2.299E+004, 6.659E-004
2.249E+002, 8.213E+000 2.314E+003, 2.322E-001 2.380E+004, 5.482E-004
2.329E+002, 8.019E+000 2.395E+003, 2.157E-001 2.464E+004, 4.430E-004
2.411E+002, 7.744E+000 2.480E+003, 2.004E-001 2.552E+004, 3.438E-004
2.496E+002, 7.197E+000 2.568E+003, 1.861E-001 2.642E+004, 2.450E-004
2.585E+002, 6.873E+000 2.659E+003, 1.728E-001 2.735E+004, 1.467E-004
2.676E+002, 6.611E+000 2.753E+003, 1.603E-001 2.832E+004, 1.432E-005
2.771E+002, 6.385E+000 2.851E+003, 1.488E-001 2.933E+004, 9.475E-006
2.869E+002, 6.130E+000 2.951E+003, 1.381E-001 3.036E+004, 2.330E-006
2.971E+002, 5.905E+000 3.056E+003, 1.280E-001 3.144E+004, 1.200E-006
3.076E+002, 5.717E+000 3.164E+003, 1.187E-001 3.255E+004, 9.016E-007
3.185E+002, 5.548E+000 3.276E+003, 1.102E-001 3.370E+004, 7.442E-007
3.297E+002, 5.282E+000 3.392E+003, 1.021E-001 3.490E+004, 6.317E-007
3.414E+002, 4.891E+000 3.512E+003, 9.463E-002 3.613E+004, 5.555E-007
3.535E+002, 4.640E+000 3.637E+003, 8.766E-002 3.741E+004, 4.876E-007
3.660E+002, 4.437E+000 3.765E+003, 8.126E-002 3.874E+004, 4.346E-007
3.790E+002, 4.254E+000 3.899E+003, 7.520E-002 4.011E+004, 3.854E-007
3.924E+002, 4.086E+000 4.037E+003, 6.957E-002 4.153E+004, 3.415E-007
4.063E+002, 3.940E+000 4.180E+003, 6.446E-002 4.300E+004, 3.037E-007
4.207E+002, 3.807E+000 4.328E+003, 5.957E-002 4.452E+004, 2.704E-007
4.356E+002, 3.644E+000 4.481E+003, 5.515E-002 4.610E+004, 2.416E-007
4.510E+002, 3.496E+000 4.640E+003, 5.094E-002 4.773E+004, 2.158E-007
4.669E+002, 3.375E+000 4.804E+003, 4.704E-002 4.942E+004, 1.917E-007
4.835E+002, 3.265E+000 4.974E+003, 4.347E-002 5.117E+004, 1.689E-007
5.006E+002, 3.151E+000 5.150E+003, 4.002E-002 5.298E+004, 1.486E-007
5.183E+002, 3.054E+000 5.332E+003, 3.696E-002 5.485E+004, 1.298E-007
5.367E+002, 2.966E+000 5.521E+003, 3.415E-002 5.680E+004, 1.122E-007
5.557E+002, 2.861E+000 5.716E+003, 3.151E-002 5.881E+004, 9.607E-008
5.753E+002, 2.772E+000 5.919E+003, 2.908E-002 6.089E+004, 8.199E-008
5.957E+002, 2.693E+000 6.128E+003, 2.679E-002 6.304E+004, 6.845E-008
6.168E+002, 2.607E+000 6.345E+003, 2.468E-002 6.528E+004, 5.825E-008
6.386E+002, 2.529E+000 6.570E+003, 2.278E-002 6.759E+004, 4.901E-008
6.612E+002, 2.462E+000 6.802E+003, 2.097E-002 6.998E+004, 4.050E-008
6.847E+002, 2.359E+000 7.043E+003, 1.931E-002 7.246E+004, 3.291E-008
7.089E+002, 2.273E+000 7.293E+003, 1.761E-002 7.502E+004, 2.610E-008
7.340E+002, 2.203E+000 7.551E+003, 1.627E-002 7.768E+004, 2.039E-008
7.600E+002, 2.133E+000 7.818E+003, 1.503E-002 8.043E+004, 1.516E-008
7.869E+002, 2.073E+000 8.095E+003, 1.390E-002 8.328E+004, 1.034E-008
8.147E+002, 2.019E+000 8.382E+003, 1.283E-002 8.622E+004, 5.631E-009
8.436E+002, 1.939E+000 8.678E+003, 1.185E-002 8.928E+004, 2.475E-009
8.734E+002, 1.881E+000 8.985E+003, 1.094E-002 9.244E+004, 3.964E-010
9.044E+002, 1.822E+000 9.304E+003, 1.007E-002 9.571E+004, 2.650E-010
9.364E+002, 1.767E+000 9.633E+003, 9.251E-003 9.910E+004, 1.604E-010
9.695E+002, 1.721E+000 9.974E+003, 8.520E-003 1.026E+005, 2.339E-011
1.004E+003, 1.646E+000 1.033E+004, 7.838E-003
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flare flux.dat (page 1) flare flux.dat (page 2) flare flux.dat (page 3)

1.010E+002, 1.802E+004 1.039E+003, 2.290E+002 1.069E+004, 2.196E+000
1.046E+002, 1.721E+004 1.076E+003, 2.120E+002 1.107E+004, 2.021E+000
1.083E+002, 1.644E+004 1.114E+003, 1.962E+002 1.146E+004, 1.850E+000
1.121E+002, 1.568E+004 1.154E+003, 1.812E+002 1.187E+004, 1.670E+000
1.161E+002, 1.491E+004 1.195E+003, 1.671E+002 1.229E+004, 1.525E+000
1.202E+002, 1.418E+004 1.237E+003, 1.539E+002 1.272E+004, 1.393E+000
1.245E+002, 1.346E+004 1.281E+003, 1.413E+002 1.318E+004, 1.263E+000
1.289E+002, 1.277E+004 1.326E+003, 1.294E+002 1.364E+004, 1.142E+000
1.335E+002, 1.209E+004 1.373E+003, 1.179E+002 1.412E+004, 1.012E+000
1.382E+002, 1.143E+004 1.421E+003, 1.069E+002 1.462E+004, 9.011E-001
1.431E+002, 1.081E+004 1.472E+003, 9.589E+001 1.514E+004, 8.247E-001
1.481E+002, 1.021E+004 1.524E+003, 8.407E+001 1.568E+004, 7.527E-001
1.534E+002, 9.633E+003 1.578E+003, 6.570E+001 1.623E+004, 6.824E-001
1.588E+002, 9.070E+003 1.634E+003, 6.287E+001 1.681E+004, 6.123E-001
1.644E+002, 8.542E+003 1.692E+003, 6.010E+001 1.740E+004, 5.577E-001
1.703E+002, 8.040E+003 1.752E+003, 5.741E+001 1.802E+004, 5.061E-001
1.763E+002, 7.561E+003 1.814E+003, 5.485E+001 1.866E+004, 4.580E-001
1.825E+002, 7.105E+003 1.878E+003, 5.234E+001 1.932E+004, 4.121E-001
1.890E+002, 6.663E+003 1.944E+003, 4.994E+001 2.000E+004, 3.686E-001
1.957E+002, 6.253E+003 2.013E+003, 4.764E+001 2.071E+004, 3.269E-001
2.026E+002, 5.865E+003 2.084E+003, 4.540E+001 2.144E+004, 2.852E-001
2.098E+002, 5.499E+003 2.158E+003, 4.327E+001 2.220E+004, 2.512E-001
2.172E+002, 5.144E+003 2.234E+003, 4.119E+001 2.299E+004, 2.189E-001
2.249E+002, 4.818E+003 2.314E+003, 3.922E+001 2.380E+004, 1.874E-001
2.329E+002, 4.511E+003 2.395E+003, 3.731E+001 2.464E+004, 1.569E-001
2.411E4+002, 4.215E+003 2.480E+003, 3.547E+001 2.552E+004, 1.263E-001
2.496E+002, 3.944E+003 2.568E+003, 3.374E+001 2.642E+004, 9.471E-002
2.585E+002, 3.689E+003 2.659E+003, 3.204E+001 2.735E+004, 5.912E-002
2.676E+002, 3.444E+003 2.753E+003, 3.044E+001 2.832E+004, 3.901E-003
2.771E+002, 3.220E+003 2.851E+003, 2.889E+001 2.933E+004, 2.120E-003
2.869E+002, 3.010E+003 2.951E+003, 2.742E+001 3.036E+004, 4.108E-004
2.971E+002, 2.808E+003 3.056E+003, 2.602E+001 3.144E+004, 1.624E-004
3.076E+002, 2.625E+003 3.164E+003, 2.466E+001 3.255E+004, 1.039E-004
3.185E+002, 2.452E+003 3.276E+003, 2.338E+001 3.370E+004, 7.796E-005
3.297E+002, 2.288E+003 3.392E+003, 2.213E+001 3.490E+004, 6.081E-005
3.414E+002, 2.139E+003 3.512E+003, 2.096E+001 3.613E+004, 5.054E-005
3.535E+002, 1.994E+003 3.637E+003, 1.983E+001 3.741E+004, 3.986E-005
3.660E+002, 1.865E+003 3.765E+003, 1.875E+001 3.874E+004, 3.356E-005
3.790E+002, 1.738E+003 3.899E+003, 1.773E+001 4.011E+004, 2.732E-005
3.924E+002, 1.626E+003 4.037E+003, 1.673E+001 4.153E+004, 2.320E-005
4.063E+002, 1.516E+003 4.180E+003, 1.581E+001 4.300E+004, 2.001E-005
4.207E+002, 1.416E+003 4.328E+003, 1.489E+001 4.452E+004, 1.748E-005
4.356E+002, 1.323E+003 4.481E+003, 1.403E+001 4.610E+004, 1.556E-005
4.510E+002, 1.234E+003 4.640E+003, 1.318E+001 4.773E+004, 1.386E-005
4.669E+002, 1.154E+003 4.804E+003, 1.236E+001 4.942E+004, 1.227E-005
4.835E+002, 1.077E+003 4.974E+003, 1.157E+001 5.117E+004, 1.077E-005
5.006E+002, 1.005E+003 5.150E+003, 1.074E+001 5.298E+004, 9.346E-006
5.183E+002, 9.379E+002 5.332E+003, 1.009E+001 5.485E+004, 7.943E-006
5.367E+002, 8.775E+002 5.521E+003, 9.465E+000 5.680E+004, 6.542E-006
5.557E+002, 8.200E+002 5.716E+003, 8.859E+000 5.881E+004, 5.210E-006
5.753E+002, 7.655E+002 5.919E+003, 8.278E+000 6.089E+004, 4.187E-006
5.957E+002, 7.147E+002 6.128E+003, 7.703E+000 6.304E+004, 3.447E-006
6.168E+002, 6.673E+002 6.345E+003, 7.159E+000 6.528E+004, 2.986E-006
6.386E+002, 6.231E+002 6.570E+003, 6.661E+000 6.759E+004, 2.596E-006
6.612E+002, 5.819E+002 6.802E+003, 6.162E+000 6.998E+004, 2.259E-006
6.847E+002, 5.431E+002 7.043E+003, 5.661E+000 7.246E+004, 1.930E-006
7.089E+002, 5.054E+002 7.293E+003, 5.037E+000 7.502E+004, 1.626E-006
7.340E+002, 4.714E+002 7.551E+003, 4.686E+000 7.768E+004, 1.350E-006
7.600E+002, 4.399E+002 7.818E+003, 4.378E+000 8.043E+004, 1.082E-006
7.869E+002, 4.095E+002 8.095E+003, 4.087E+000 8.328E+004, 8.085E-007
8.147E+002, 3.822E+002 8.382E+003, 3.806E+000 8.622E+004, 4.945E-007
8.436E+002, 3.555E+002 8.678E+003, 3.542E+000 8.928E+004, 2.471E-007
8.734E+002, 3.309E+002 8.985E+003, 3.287E+000 9.244E+004, 2.000E-008
9.044E+002, 3.080E+002 9.304E+003, 3.035E+000 9.571E+004, 1.082E-008
9.364E+002, 2.864E+002 9.633E+003, 2.776E+000 1.026E+005, 0.000E+000
9.695E+002, 2.659E+002 9.974E+003, 2.573E+000

1.004E+003, 2.468E+002 1.033E+004, 2.380E+000
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Appendix F:  Symbols, Acronyms, and Definitions

Symbols

mostly in order of appearance
(See Acronyms and Definitions for additional explanations)

L,Lr A value of LET. The subscript emphasizes that L7 is the LET used for a heavy-ion
test. Without the subscript, it is more generic and might refer to a natural space
environment.

0q, 00 The upper case is the charge loss from a single ion hit as a statistical random
variable. The lower case is a value of this random variable.

S(L,0q) A set of points associated with a selected FG. It is the set of points in the device
plane having the property that a normal-incident ion hit at any of these points, by
an ion having LET L, produces a charge loss that exceeds dg in the selected FG.
Each FG in a collection of FGs has its own set of these points.

o(L,0q) The area of the set S(L,0q). It is the cross section associated with a selected FG for
a normal-incident ion having LET L to produce a charge loss that exceeds dq in the
selected FG.

Osat Called the saturation cross section, this is the limit of o(L,dq) as dg — 0.

H(L), H(L) is the irradiation fluence consisting of all ions having an LET greater than L,

h(L) while /(L) is the negative of the L derivative of H(L).

Ag, AQ The upper case is the charge loss accumulated over all ion hits as a statistical
random variable. The lower case is a value of this random variable.

P(*), The first function is a generic probability function and its argument is any set of

P(¥|*) outcomes or any designation of a set of outcomes. For example, the probability
that AQ exceeds Ag can be denoted P(AQ > Aq). The second function is a generic
conditional probability function and has two arguments. The first is any set of
outcomes or any designation of a set of outcomes. The second argument is a given
condition. For example, the probability that AQ exceeds Ag, given that there were
n ion hits, can be written as P(AQ > Agq | # hits = n) or more compactly as P(AQ >
Aq | n) when the text explains the meaning of the more compact notation. In
particular, P(CLE) is the probability of a charge-loss event and the goal of this
work is to calculate this probability for a given radiation environment.

1, G1, Gn | These functions are defined by (15) for the general case and by (25) and (15a) for
the FG charge-loss model used here. The only role of the function f'is to construct
the G-functions. The significance of the G-functions is their roles in (36) and (57).

Aqc, AQc | The upper case is the critical charge loss as a statistical random variable. The
lower case is a value of this random variable.

OS.sat, The first two are the normal-incident saturation cross sections for a selected FG for

ow,sat, Osar | Strong interactions and weak interactions, respectively. The sum of these is gya:.

ai, a Defined by the condition that the charge loss from one strong interaction is LET
divided by a1, and the charge loss from one weak interaction is LET divided by ao.

U(x) Unit step function defined by U(x) = 1 when x > 0 and U(x) = 0 when x < 0.

Cun, Unlike the G-functions that can be defined in a more general context, the C-, D-,

Dpn, Emn | and E-functions are definable only in the context of the FG charge-loss model used

here. In this context, they are defined by (27). The only purpose of the C- and D-
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functions is to construct the E-functions. The significance of the E-functions is
their role in (28), which reduces to (34) when the environment is a pure spectrum.

OCLE

Cross section, per FG, for a CLE under SEU-like conditions. It is experimentally
defined for a large collection of FGs exposed to a fluence small enough to produce
SEU-like behavior. The cross section is the number of CLE counts divided by
fluence and then divided again by the number of FGs in the collection.

D, Agp

D is the dose in SiO2 and can be calculated by (46). Agp is the FG charge loss
produced by this dose and can be calculated from (52).

p, F k, A

The first two are the probability density function and cumulative distribution
function, respectively, for the critical charge loss. These functions refer to an
arbitrary distribution in (36) through (45), but refer to the Weibull distribution with
shape parameter k and scale parameter A in (47) and all later equations.

b1, b2

The b-parameters are defined by (49). The physical significance of b; is that it is a
measure of the sensitivity of FGs to CLEs via strong interactions, with a smaller
value of b1 implying greater sensitivity. The parameter b> has the same
interpretation for weak interactions that b has for strong interactions.

Acronyms

in alphabetical order
(See Definitions for additional explanations)

CLE Charge loss event.
FET Field-effect transistor.
FG Floating gate.

LET Linear energy transfer.
SEE Single-event effect.
SEU Single-event upset.
TID Total ionizing dose.
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Definitions

in alphabetical order
(See Acronyms for additional explanations)

Actual charge loss

See “Prompt charge loss.”

Charge loss

See “Prompt charge loss.”

Charge loss event

A user-defined event characterized by the charge stored in an FG
crossing some threshold value via prompt charge loss. A frequently
cited example is the deprogramming of an initially programmed
(charged) FG in a flash memory.

Critical charge loss

The charge loss needed to produce a user-defined charge loss event. A
frequently-cited example is the charge loss needed to deprogram an
initially programmed (charged) FG in a flash memory.

Dose-like

An FG, or a collection of FGs, exhibits dose-like behavior when the
number of ion hits needed to produce a CLE is large enough to be
approximately deterministic, i.e., can be approximated by the statistical
average. This can occur only when the LET is small enough so that a
large number of hits are needed for a CLE. The model prediction
applicable to dose-like behavior is (45). (See, also, “SEU-like.”)

Effective charge
loss

See “Prompt charge loss.”

Prompt charge loss

The loss of FG charge that occurs immediately after a hit from an
ionizing particle. An actual FG charge loss is from a direct hit to the FG
(a strong interaction). An effective charge loss is any combination of
actual charge loss and charge trapping in a nearby oxide (a weak
interaction) that has the same effect on a charge-sensing circuit as an
actual charge loss.

Pure spectrum

An ion radiation environment is a pure spectrum when all ions have the
same LET. This is a typical laboratory environment used for heavy-ion
testing.

SEU-like

A collection of FGs exhibits SEU-like behavior when nearly all FGs
that underwent a CLE received only one ion hit. This can be recognized
in test data by the number of CLE counts being proportional to fluence.
Given that the LET is large enough so that counts can be produced by
single hits, this behavior can still only occur when the fluence is
sufficiently small, so this behavior is also known as “small-fluence”
behavior. The model prediction applicable to SEU-like behavior is (42)
when there is no added dose, and by (62) when there is added dose.
(See, also, “Dose-like.”)

Small fluence

See “SEU-like.”

Strong interaction

Occurs when an ion strikes an FG and the effective charge loss is an
actual FG charge loss.

Weak interaction

Occurs when an ion strikes a nearby oxide resulting in charge trapping
in the oxide that has the same effect on a charge-sensing circuit as an
actual FG charge loss.
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