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Manned missions beyond low Earth orbit will require highly robust, reliable, and 

maintainable life support systems that maximize recycling of water and oxygen. Bosch 

technology is one option to maximize oxygen recovery, in the form of water, from 

metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-

Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using 

two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) 

reactor. Previous development efforts demonstrated the stand-alone performance of a RWGS 

reactor containing Incofoam™ catalyst and designed for robustness against carbon formation, 

two membrane separators intended to maximize single pass conversion of reactants, and a 

batch CF reactor with both transit and surface catalysts. In the past year, Precision 

Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The 

reactor design was based on their patented Microlith® technology and was first evaluated 

under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The Microlith® 

RWGS reactor was recently evaluated at NASA to compare its performance and operating 

conditions with the Incofoam™ RWGS reactor. Separately, in 2015, a fully integrated 

demonstration of an S-Bosch system was conducted. In an effort to mitigate risk, a second 

integrated test was conducted to evaluate the effect of membrane failure on a closed-loop 

Bosch system.  Here, we report and discuss the performance and robustness to carbon 

formation of both RWGS reactors. We report the results of the integrated operation of a 

Series-Bosch system and we discuss the technology readiness level. 
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Nomenclature

CH4 = Methane 

CF = Carbon Formation 

CFR = Carbon Formation Reactor 

CM = Crew Member 

CO = Carbon Monoxide 

CORTS = CO2 Reduction Test Stand 

CO2 = Carbon Dioxide 

GC = Gas Chromatograph 

O2 = Oxygen 

OGA = Oxygen Generation Assembly 

PCI = Precision Combustion, Inc.  

RWGS = Reverse Water-Gas Shift 

S-Bosch = Series-Bosch

I. Introduction and Background 

OR manned missions to Mars, recovery and recycling of life support water and oxygen (O2) will provide 

considerable mass and logistics savings over an open-loop system where these resources are treated as 

consumables. State-of-the-art technology involves the Oxygen Generation Assembly (OGA) to produce O2 for the 

crew via water electrolysis. Hydrogen (H2) produced in the OGA is provided to the Sabatier reactor which converts 

metabolic carbon dioxide (CO2) to methane (CH4) and water as shown in Eq. 1.  

 

Sabatier Reaction                                            CO2 + 4H2  ↔ CH4 + 2H2O                                                                 (1)  

 

The water is recycled back to the OGA after purification in the Water Processing Assembly and the CH4 is vented 

overboard as a waste product. This causes in a net loss of reactant H2 for the Sabatier and results in a maximum 

theoretical O2 recovery from metabolic CO2 of ~54%. Mars missions target >75% O2 recovery from CO2 with a goal 

of >90%.1 Series-Bosch (S-Bosch) technology has a theoretical maximum recovery of 100% and is one approach to 

achieve the goal of >90% recovery.  

 The development progress of an S-Bosch system for long-duration manned missions has been reported 

previously.2,3,4,5,6 Briefly, the S-Bosch system involves two reactors and two membrane systems for gas recycling. The 

first reactor performs the Reverse Water-Gas Shift (RWGS) reaction, as shown in Eq. 2 to covert metabolic CO2 and 

OGA H2 into carbon monoxide (CO) and water. The second reactor performs two carbon formation reactions as shown 

in Eqs. 3 and 4. The net reaction, called the Bosch process, is shown in Eq 5.  

 

RWGS                                                        CO2 + H2 ↔ H2O + CO                                                                            (2) 

CO Hydrogenation                                      CO + H2 ↔ H2O + C(s)                                                                           (3) 

Boudouard                                                         2CO ↔  CO2 + C(s)                                                                           (4) 

Bosch Process                                          CO2 + 2H2 ↔  2H2O + C(s)                                                                        (5) 

The membrane system provides a 

recycling mechanism for unreacted 

CO2 (Polaris Membrane) and H2  

(Proteus Membrane) exiting the 

RWGS reactor. To maximize 

selective permeability of CO2 and 

H2 across the membranes, fresh 

inlet gases are used as sweep 

streams across the membranes and 

the membranes are operated at a 

pressure differential of ~5 psi. This 

increases thermodynamic 

favorability of carbon formation in 

the Carbon Formation Reactor 

(CFR) by concentrating CO and 

ultimately minimizes system gas recycle volume. A basic S-Bosch block diagram is shown in Figure 1.  

F 

 
Figure 1. Series-Bosch block diagram. 
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 Testing in 2014 with an S-Bosch system demonstrated the stand-alone performance of a RWGS reactor, the initial 

performance of a Polaris and a Proteus membrane, and the performance of a batch CFR containing both a transit 

catalyst and a surface catalyst. Efforts in 2015 sought to continue this work. 

 A RWGS reactor containing an Incofoam™ nickel foam catalyst was previously developed and tested at NASA 

Marshall Space Flight Center. Incofoam™ was specifically chosen based on subscale testing demonstrating its 

resistance to carbon fouling via Eqs. 3 and 4 above. Testing of the Incofoam™ reactor in 2014 for the RWGS reaction 

demonstrated performance near thermodynamic equilibrium. However, the Incofoam™ reactor was not tested at the 

full scale for carbon fouling resistance. As an alternative to the Incofoam™, a RWGS reactor based on Microlith® 

technology and developed by Precision Combustion, Inc. (PCI) as part of a Phase I Small Business Innovative 

Research contract was acquired for evaluation in 2015. The Microlith® reactor was known to have considerably 

smaller mass, volume, and power requirements than the Incofoam™ reactor. In 2015, PCI’s Microlith® RWGS reactor 

was delivered to MSFC for performance evaluation and comparison with the Incofoam™ RWGS reactor with the 

intention of down-selecting between the two reactors for the S-Bosch system. Two tests were conducted. The first was 

to compare nominal performance of each reactor for the RWGS reaction under conditions expected in S-Bosch 

operation. The second test was to evaluate the relative resistance to carbon fouling of each catalyst and the long-term 

effects of that fouling. 

 In 2014, initial testing of the Proteus and Polaris membranes was attempted. Unfortunately, tears in the membrane 

material were identified during testing, resulting in only minimal useful data. In 2015, both membranes were returned 

to Membrane Technology Research, Inc., the developers of the membranes, for analysis and repair. It was determined 

that the tears were a result of disassembly of the membrane housings at MSFC and that leakage across the membranes 

was due to an incorrect alignment of the membranes during initial assembly. The membranes were repaired and 

returned to MSFC for additional testing.  

 In an effort to advance the overall technology readiness level of the S-Bosch system, two integrated tests were 

conducted in 2015. The first test was conducted to demonstrate fully integrated, closed-loop operation of an S-Bosch 

including an RWGS reactor, the two separation membranes, and a CFR. Due the previous membrane failure and a 

concern as to the robustness of the membranes for a long duration mission, the second test was conducted as risk 

mitigation to demonstrate the effect of membrane failure in an integrated S-Bosch system.  

 Considerable progress was made in 2015 toward further understanding and operating an S-Bosch system. Here we 

report the results of head-to-head testing of the Incofoam™ and Microlith® RWGS reactors, the results of the Proteus 

and Polaris membrane testing, the results of a closed-loop S-Bosch system demonstration, and the results of testing 

designed to evaluate the effects of membrane failure in a closed-loop S-Bosch system.    

II. Hardware and Test Configuration 

Two RWGS reactors, two separation membranes, and one CFR were evaluated as stand-alone units and/or as 

contributors to an integrated S-Bosch system. Each piece of hardware is described below as well as the test 

configuration for each test. 

A. Reverse Water-Gas Shift Reactors 

1. Microlith® RWGS Reactor 

 The Microlith® RWGS reactor, sized for 4-crew members (CM), was designed and fabricated by PCI. The primary 

objective was to develop a highly compact RWGS reactor operating optimally at very high space velocity and catalyst 

temperature of ~800°C to maximize CO2 conversion. The reactor contains only 89.4 cm3 Microlith® catalyst bed, 

including void space. The reactor is 3.81 cm (1.5 inch) diameter x 38.1 cm (15 inch) in length (including the heater 

section that is outside of the reactor housing). The RWGS reactor comprises an embedded electric heater rod (¾ inch 

diameter and a heated length of ~9 ¾ inch) placed at the center of the reactor, a preheating section (without catalyst) 

and a catalytic Microlith® section where the RWGS reaction will take place at very high space velocity. Cobalt (Co) 

supported on Microlith® was chosen as the catalyst of choice based on the demonstrated high activity toward RWGS 

reaction demonstrated in Phase I SBIR activity.7 The reactor design was optimized to enhance the heat transfer from 

the cartridge heater to the preheating section and the catalytic section at high catalyst temperatures (~800°C).  

2. IncoFoam™ RWGS Reactor 

 The Incofoam™ RWGS reactor was designed at NASA MSFC and sized for 4- CM. The catalyst was chosen based 

on sub-scale testing demonstrating high selectivity for CO and resistance to solid carbon formation at temperatures 

between 500°C and 750°C.3 The details of the design of the reactor were provided previously.5 Briefly, the reactor 

(without any preheating section) is 12.7 cm (5 inch) diameter x 27.6 cm (10.875 inch) in length with a total catalyst 
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volume (including void space) of 2,438 cm3. The remainder of the reactor volume is packed with Fiberfrax 

Durablanket S insulation. The reactor is heated using three 3.81 cm width band heaters from Applied Thermal Systems 

(Brooklyn Park, MN) located on the outer diameter of the reactor.  

B. Carbon Formation Reactor 

The Batch CFR was described in detail previously.6 For the described testing, the CFR was packed with S-660 

Amasteel beads from Irvine Industries, Inc. (Ann Arbor, MI). Due to inadequate preheating of the inlet gas in previous 

testing, the inlet annulus was packed with 1 mm diameter copper beads to improve conduction of the heat from the 

reactor core heater to the inlet gas. This resulted in considerably better heating of the inlet gas and overall heating of 

the reactor. A preheater to the reactor was set to 400°C to mimic regenerative heating.  

C. Membranes 

One Proteus and one Polaris membrane were purchased from Membrane Technology Research (Newark, CA) and 

were described previously.6 The Proteus membrane is designed to selectively separate H2 from a bulk gas when 

operated at 130-145°C. The Polaris membrane is designed to selectively separate CO2 from a bulk gas when operated 

at low temperatures. For all testing involving the membranes, a target temperature of 130°C was selected for the 

Proteus membrane and the Polaris membrane was operated at ambient temperature.  

D. Test Configurations 

Three tests were conducted to further develop and optimize the S-Bosch system. The CO2 Reduction Test Stand 

(CORTS), described previously, was used to facilitate testing. The test configuration and methods of each test are 

provided below.  

1. Stand-Alone Testing of RWGS Reactors 

The purpose of the stand-alone testing was to 

generate the data necessary to down-select 

between the two reactor options. An optimum 

RWGS reactor would have high (near 

thermodynamic equilibrium) single-pass 

conversion of CO2, high selectivity for the 

RWGS reaction over the competing Sabatier 

reaction, and be highly resistant to carbon 

fouling. The standard performance data including 

single-pass conversion and selectivity was 

experimentally taken for the Microlith® reactor to 

compare with data previously taken with the 

Incofoam™ reactor. The resistance to carbon 

formation for the two reactors cannot be currently 

compared, since PCI’s RWGS Co catalyst and 

reactor design were not specifically downselected 

to impede carbon formation. For example, PCI’s 

prior work has demonstrated that Rh has a lower 

carbon formation rate but comparable RWGS activity to Co at temperature of >550°C.7 Reactor design modifications 

along with carbon resistant catalyst like Rh have the potential to achieve the desired performance (high RWGS activity 

and resistance to carbon formation) for the Microlith® reactor.    

  Standard performance data of each reactor was conducted at multiple temperatures, pressures, equivalent crew 

feed rates of CO2, and feed ratios. Table 1 provides the values varied during testing.  The reactor was fed with ultra-

high purity (UHP) H2 and CO2. The effluent composition was evaluated on a dry basis using an Agilent 3000 micro-

gas chromatograph (GC) and vented from the facility.  

  Fouling testing was conducted in two phases after standard performance testing for the Incofoam™ reactor. Phase 

I was conducted to determine the rate of carbon formation, as well as the concentrations of CO at which carbon 

production occurs, by testing under conditions that favor the Boudouard reaction. Table 2 provides the values varied 

during Phase I testing. Phase II testing was conducted to determine the effects of carbon fouling on net reaction rates 

and selectivity. In this case, higher concentrations of CO were used in order to intentionally foul the reactor. The 

performance before and after this treatment was used to determine alterations in activity levels due to carbon formation 

and surface deactivation. Testing of a reference point (a specified set of reactor operating conditions representing 

Table 2. RWGS Standard Performance Testing Variables. 

Parameter Values 

Heater Set Points 600°C, 650°C, 700°C 

CO2 Feed Rates 1.41 SLPM, 2.82 SLPM 

H2:CO2 Ratios 1:1, 2:1, 3:1 

Inlet Pressures 
20.7 kPa (3 psia), 34.5 kPa (5 

psia), 55.1 kPa (8 psia) 

 
Table 1. Fouling Testing Variables. 

Parameter Test Values 

Heater Set Points 600°C, 650°C, 700°C 

CO Feed Rates 0.04 SLPM – 0.57 SLPM 

H2:CO Ratios 100:1, 70:1, 50:1 

Inlet Pressures 34.5 kPa (5 psia), 55.1 kPa (8 psia) 
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midrange points of all variables) occurred after every step in this process. Gas flow rates were kept at a total of 3 

SLPM with 0.15 SLPM (5%) of that being N2. The reference point chosen was 600°C, 8 psia, and 2:1 H2 to CO2 in 

the feed mixture. Duration at each test point was carefully controlled with the intention to ensure that the reactors were 

exposed to identical conditions for carbon formation. Again, the effluent composition was evaluated on a dry basis 

using the Agilent GC and vented from the facility.  

2. Fully Integrated Testing (RWGS + Membranes + CFR)  

 Fully Integrated Testing was conducted using the Incofoam™ RWGS reactor prior to fouling testing. Both 

membranes were integrated, as well as the batch CFR containing the Amasteel steel beads. The system was operated 

as shown in Figure 1. The CORTS provided gas feed and control, fluid vent and recycle, water condensation and 

separation, and gas analysis sub-assemblies.  The pressure differential across the membranes was maintained as close 

to 5 psi as possible. This was accomplished using backpressure regulators and by maintaining the Incofoam™ RWGS 

reactor at ~5 psid below the CFR. Flow rates beginning at CO2 feed equivalent to 1/4-CM and increasing up to 1-CM 

were tested. The Incofoam™ RWGS reactor was operated at 650°C with a 400°C inlet preheat and the CFR core 

heater was operated at 700°C. The coolant water for the condensing heat exchanger was maintained at 4°C. The Polaris 

membrane temperature was not controlled beyond ambient conditions and the Proteus membrane was maintained at 

130°C. At system start-up, fresh feed was provided to the RWGS at a 1:1 H2:CO2 ratio and a CO2 feed rate equivalent 

to 1/4-CM. Once total H2 in the CFR recycle loop was ~13 mol%, the H2 feed rate was increased to achieve a 2:1 

H2:CO2 ratio. Once system steady state was achieved, system gas composition at the Incofoam™ RWGS reactor outlet, 

the inlets and outlets of both sides of each membrane, the CFR inlet, and the CFR outlet was recorded and the total 

flow to the system increased to the next data point, all while maintaining a 2:1 H2:CO2 feed ratio. This was repeated 

until the maximum feed rate was achieved without exceeding ambient pressure anywhere within in the system. It 

should be noted that 13 mol% of H2 in the CFR loop was selected to minimize CH4 in the recycle loop and to maximize 

Boudouard reaction rates. This effectively limited the total pressure in the system by minimizing the quantity of 

unreacting gas circulating in the system. Periodic venting was required to remove N2 from the system.  

3. Membrane Risk Mitigation Testing (RWGS + CFR) 

Within the S-Bosch system, the 

RWGS reactor and the CFR are designed 

to be robust. The highest risk components 

then, are the membrane separators. To 

identify the operational performance of 

the system in the event of membrane 

failure, the Membrane Risk Mitigation 

Testing was conducted. During this 

testing, the system configuration omitted 

the membranes as shown in Figure 2.  The 

fresh gas was fed directly to the 

Incofoam™ RWGS reactor and all 

unreacted gas leaving the CFR was 

recycled back through the condensing 

heat exchanger to the inlet of the CFR. 

The Incofoam™ RWGS reactor was 

operated at 650°C with a 400°C inlet 

preheat and the CFR core heater was operated at 700°C. The coolant water for the condensing heat exchanger was 

maintained at 4°C. 

  At system start-up, fresh feed was provided to the RWGS at a 2:1 H2:CO2 ratio and a CO2 feed rate equivalent to 

1/4-CM. Once steady state was achieved, system gas composition at the Incofoam™ RWGS reactor outlet, the CFR 

inlet, and the CFR outlet was recorded and the total flow to the system increased to the next data point, all while 

maintaining a 2:1 H2:CO2 ratio. This was repeated until the maximum feed rate was achieved without exceeding 

ambient pressure anywhere within the system.  

III. Results and Discussion 

Three tests were conducted to evaluate the S-Bosch system and one risk mitigation scenario. The results of this 

testing and a discussion of the findings are provided below. 

 
Figure 2. S-Bosch Membrane Risk Mitigation Testing 

Configuration. 
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A. Microlith® vs IncoFoam™ RWGS Reactor 

The ultimate goal of the RWGS reactor testing was to down-select either the Microlith® approach or the 

IncoFoam™ approach. Testing was conducted to compare the two reactors. The results of this testing is provided 

below.  

1. Stand-Alone Performance Comparison 

 The Microlith® and IncoFoam™ reactors were tested under the same range of total reactant flow rates and 

temperatures for performance comparison. It should be noted that due to the lower volume of catalyst in the Microlith® 

reactor, this resulted in a higher space velocity for Microlith® RWGS reactor. Identical molar ratios were also targeted. 

However, a software error with the mass flow controllers, resulted in slight differences between the two tests. This 

did not affect the relative quality of the data and conclusions can still be drawn. Secondly, it was determined at the 

conclusion of testing, that the temperature of the Microlith® RWGS catalyst was inadvertantly controlled at the outlet 

of the reactor, rather than the average catalyst bed temperature. The current Microlith® reactor design resulted in a 

significant temperature gradient with a minimum catalyst temperature of ~550°C at the inlet and ~650°C at the outlet. 

The average catalyst bed temperature was ~606°C for the Microlith® reactor compared to ~650°C for the Incofoam™ 

reactor. Reactor design optimization can result in a more uniform catalyst bed temperature distribution for the 

Microlith® reactor which is ideally suited for RWGS reaction, but this was beyond the scope of the current effort. 

Thus, a direct comparison of performance between the Microlith® and Incofoam™ was not possible. Rather, a 

comparison of the observed performance to the thermodynamic equilibrium at the average catalyst operational 

temperature of each reactor was made.  

 Overall, the reactors performed similarly with respect to total CO2 conversion relative to their respective theoretical 

equilibrium performance. Both reactors also demonstrated preferential conversion to CO over CH4, as desired in this 

application. However, there was an observable difference between the two reactors when comparing each to their 

equilibrium selectivity. Selectivity was calculated as shown in Eq. 6.    

 

                                           𝑆𝐶𝑂 =
𝑚𝑜𝑙𝑒𝑠 𝐶𝑂 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑/𝑚𝑖𝑛

𝑚𝑜𝑙𝑒𝑠 𝐶𝐻4 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑/𝑚𝑖𝑛
                                                       (6) 

 

Single-pass conversion 

of both reactors and their 

respective equilibrium 

conversions are shown in 

Figure 3. Both reactors 

effectively achieved 

equilibrium at near a 1:1 

ratio of H2:CO2. 

Conversion deviated 

further from equilibrium as 

the feed to the system was 

progressively more H2 rich. 

A possible reason for this 

observation is the 

marginally lower catalyst 

bed temperature for each 

reactor with increase in 

total feed flow rate (due to 

increase in feed H2 flow 

rate) compared to the 

temperature at which the 

equilibrium is predicted. 

Nevertheless, this data 

suggests that the two 

reactors would be expected 

to achieve nearly identical 

conversions under identical conditions. If the down-select were based solely on base performance, the Microlith® 

would be the clear choice given the significantly smaller size of the Microlith® RWGS reactor (a factor of 27). 

 
Figure 3. Comparative single-pass CO2 conversion performance of Incofoam™ 

and Microlith™ RWGS reactors. IncoFoam™ reactor at 650°C, Microlith® 

reactor at 606°C. Both reactors at 8 psia. 
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However, selectivity of the catalyst for the RWGS reaction over the Sabatier reaction is also of considerable 

importance.  

  Selectivity of both 

reactors and the theoretical 

equilibrium selectivity for 

each reactor are shown in 

Figure 4. Selectivity higher 

than theoretical equilibrium 

indicates that the Sabatier 

reaction is kinetically 

limited compared to the 

RWGS reaction at the given 

conditions. Extremely high 

selectivity is most 

desireable in this 

application. Both reactors 

showed considerably higher 

selectivity for CO over CH4. 

However, the Incofoam™ 

demonstrated selectivity an 

entire order of magnitude 

better than equilibrium 

selectivity predicts. The 

Microlith® selectivity was 

approximately twice the 

equilibrium selectivity. This 

is very important for closed-

loop operation where the RWGS reactor will feed a closed loop carbon formation reactor. From this perspective, the 

IncoFoam® reactor significantly outperformed the Microlith® reactor and lends considerable weight for its selection 

over the Microlith® reactor. However, it is important to note that performance mapping of RWGS reactor conducted 

at PCI demonstrated that CO selectivity is highly dependent upon the space velocity, in addition to temperature. Lower 

space velocity leads to higher CO selectivity.  Further, IncoFoam™ reactor employed an external preheat of ~400°C 

whereas the inlet to PCI’s RWGS reactor was at ambient temperature. PCI’s internal testing demonstrated significant 

ΔT across the catalyst inlet and outlet when operating the reactor at temperature lower than ~800°C. The ΔT (i.e., the 

temperature difference between inlet and outlet of the catalyst bed) at lower operating temperature leads to lower CO 

selectivity. The data shown in Figure 4 do not provide sufficient information to define a relationship between CO 

selectivity and space velocity. However, the generated data may be used to further optimize the Microlith® RWGS 

reactor such that an optimum space velocity and temperature profile is achieved to provide a balance between high 

CO selectivity, high CO2 conversion, and significant reduction in reactor volume and mass (compared to the existing 

IncoFoam™ RWGS reactor). 

 

 

2. Fouling Performance Comparison 

 Within the S-Bosch, the RWGS is not intended to be a replaceable unit. The catalyst within the reactor must be 

robust against carbon fouling for the duration of one or more Mars transit and surface missions. In a closed loop S-

Bosch system, the RWGS reactor will inevitably be exposed to some quantities of CO resulting in possible carbon 

formation. The IncoFoam™ catalyst was specifically selected due to observed carbon formation resistance in previous 

testing. Fouling performance testing was conducted to verify the design resisted carbon formation under various feed 

conditions. The Microlith® reactor was designed purely for the purpose of catalyzing the RWGS reaction with minimal 

consideration given to carbon formation. Despite this, the Microlith® reactor was subjected to identical conditions as 

the IncoFoam™, not to directly compare the reactors, but to provide a baseline assessment of the Microlith® reactor 

and its catalyst under carbon formation conditions.  

 

 
Figure 4. Selectivity of RWGS reactors for CO2 conversion via RWGS reaction 

versus Sabatier reaction. IncoFoam™ reactor at 650°C, Microlith® reactor at 

606°C. Both reactors at 8 psia. 
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Figure 5 shows the 

performance of the 

IncoFoam™ and 

Microlith® reactors at 

multiple H2:CO feed rates. 

As designed, the 

IncoFoam™ reactor 

exhibited very low levels 

of carbon formation at all 

conditions. In a worst case 

condition (assumed to be 

20 mol% CO with a 

balance of H2 at the inlet to 

the reactor), the 

IncoFoam™ reactor 

produced only ~3.5 mg 

C/min. This corresponds to 

<1% conversion of CO to 

solid carbon and matches 

previous results for the 

catalyst. The Microlith® 

reactor demonstrated 

increasing carbon 

formation rates as ratio of 

H2:CO decreased (as more 

CO was available for 

reaction). At the worst case, the Microlith® reactor produced ~41 mgC/min. This corresponds to over 13% conversion 

of CO to solid carbon. This value represents a baseline performance for the Microlith® reactor whereby future 

iterations of the reactor can be compared for performance improvements. The lower catalyst temperature in addition 

to the choice of catalyst for Microlith® reactor (Co catalyst and ~560°C) compared to the IncoFoam™ reactor (Ni 

catalyst and ~600°C) could be attributed to the higher carbon formation rate.7  

 The IncoFoam™ reactor demonstrated low carbon formation rates, as expected given previous testing of the 

IncoFoam™ catalyst. Comparison between the IncoFoam™ and the Microlith® RWGS reactor for resistance to carbon 

formation is currently not possible as the Microlith® RWGS reactor was not designed to impede carbon formation as 

explained earlier. Appropriate design modifications, improved temperature control, and a carbon resistant catalyst 

(such as Rh) could be implemented so that the Microlith® RWGS reactor could be tested to provide a representable 

comparative analysis.  

B. Fully Integrated Testing 

The goal of the Fully Integrated Testing was to demonstrate a closed-loop S-Bosch system including a RWGS 

reactor, the Polaris (CO2 separation) membrane, the Proteus (H2 separation) membrane, and the batch carbon 

formation reactor. The IncoFoam™ RWGS reactor was used in all fully integrated testing as the reactor could be 

exposed to CO and has been tested for resistance to fouling due to carbon formation. In initial testing, start-up was 

performed by feeding a 2:1 H2:CO2 ratio to the system. However, CH4 built up quickly in the carbon formation loop 

despite recycle of CO2 and H2 from the membranes. To eliminate this issue, start-up was modified to include a feed 

of 1:1 H2:CO2 ratio until the effluent of the carbon formation reactor dropped to 13% H2. It was at this point that CH4 

was observed to drop below 5 mol% in the CFR effluent. From that point on, a 2:1 ratio of H2:CO2 was fed to the 

system and CH4 was effectively maintained at very low levels.  

 
Figure 5. Carbon formation rate on RWGS reactors as a function of H2:CO 

feed ratio. IncoFoam™ catalyst at 600°C, Microlith® catalyst at an average of 

560°C. Both reactors at 8 psia.  
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The closed-loop system was successfully operated at 1/4, 1/2, and 3/4-CM scales while maintaining sub-ambient 

pressure. There was no significant change in performance or steady state conditions for any of these data points. 

However, when attempting to increase system feed to a 1-CM equivalent, the pressure in the system exceeded ambient 

and was shutdown. The Incofoam™ reactor has been shown to perform at sub-ambient pressures for up to 4-CM. 

Total flow to the reactor including recycle from the membranes did not even approach this level. Additionally, no 

change in performance of the membranes was observed when increasing the total flow. Ultimately, it appears that the 

CFR limited total processing rate. The CFR was designed to process up to 4-CM of gas flow, including recycle. The 

observed performance was far less than that. Following testing, the CFR was disassembled to explore why this may 

have occurred. Those results 

are discussed in Section D, 

below.  

The membranes both 

showed considerably better 

performance than in previous 

testing where a tear was 

identified in the material. The 

average permeation of each 

gas is shown in Figure 7 for 

the membranes. It should be 

noted that although the CH4 

permeation percentages are 

relatively high, the total gas 

permeating was very low 

given the low quantities in 

the circulating gas. The 

permeation of CO across 

both membranes, while not 

ideal, is still sufficiently low 

such that the feed 

composition to the CFR was 

still ~50% CO for all data 

points (~25% H2 and ~25% 

CO2).  

C. Membrane Risk Mitigation Testing 

To evaluate the effects of the potential risk of losing the separation membranes during the mission, testing was 

conducted in a closed-loop system without the membranes. The system was successfully operated up to 1/2-CM flow 

rates without exceeding ambient pressure. However, the total recycle ratio in the system (ratio of recycled gas to fresh 

feed) was over 20:1, compared to values observed in testing with the membranes of between 3:1 and 7:1. This tells us 

that in the event of a loss of the membranes, the system could continue to be operated. However, it would be at a lower 

total processing rate to account for the loss of recycled gas, or the system would need to operate at higher pressures.  

D. Batch Carbon Formation Reactor Performance 

The BCFR was designed to form carbon at a rate of 1.09 kg carbon/day from CO, or the equivalent of the carbon 

in the CO2 from a crew of 4. Observed performance of the reactor was considerably lower than this despite a superb 

thermal profile in the reactor. At the end of testing, the BCFR was disassembled to evaluate the catalyst. The reactor 

showed considerable carbon formation near the feed annulus outlet, as can be seen in Figure 8. In this image, the 

bottom cap of the feed annulus can be seen in the center. The catalyst beads, covered in carbon are seen surrounding 

the annulus. The outer wall is lined with copper, giving it a pinkish tint. Farther from the annulus outlet, a decrease in 

 
Figure 6. Steady-state permeation of gases across Proteus and Polaris 

membranes during closed-loop S-Bosch testing. 
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carbon was observed, with significantly less at the center 

of the reactor. This carbon deposition path followed a 

linear trajectory, as shown in Figure 9, suggesting an 

unanticipated and undesirable flow distribution. A 

secondary carbon deposition path also emerged around 

15cm (6 inch) from the annulus outlet and was located 

between the reactor core and the primary deposition path, 

as can be seen most clearly in b) and c) below. At the 

distance furthest from the annulus outlet, at the top of the 

reactor, high carbon quantity was again observed. This 

suggests that at least some of the gas flow was reaching the 

top of the reactor, although the pathway is not clear.  

It is clear that even distribution of flow is not occurring 

in the reactor. Further research into the reactor design for 

these types of reactors suggests that the ratio of the outer 

annulus to the inner annulus in the current reactor is too 

large to provide sufficient backpressure for even flow 

distribution.8 For optimum performance, a ratio of 0.21 to 

1.0 is desirable. To do this, the BCFR will be retrofitted 

with a machined and fitted metal tube to simulate this gap. 

If this solves the flow distribution issue, future CFR 

designs will incorporate the smaller annulus ratio.  

 

IV. Future Work 

The results discussed here demonstrate the ongoing development of the S-Bosch system. Experimental data for 

IncoFoam™ and Microlith® reactors suggest similar CO2 conversion performance. Selectivity for CO over CH4 

appears to be higher for the IncoFoam™ catalyst, but modifications to the Microlith® reactor including design changes 

to achieve uniform catalyst bed temperature distribution and marginal decrease in space velocitycould improve 

performance significantly. The IncoFoam™ reactor demonstrated expected robustness against carbon formation and 

a baseline evaluation of  the Microlith® RWGS reactor design was completed. Future work will include a redesign 

with carbon resistant catalyst and improved thermal management followed by a comparative analysis before 

downselection. Both the Proteus and Polaris membranes performed adequately in the closed-loop test. Risk mitigation 

testing demonstrated the ability to continue to process CO2, but at a lower capacity. Future testing will continue to 

include these membranes to maximize system performance. Finally, the Batch CFR was shown to produce 

considerable quantities of carbon, but at rates significantly lower than designed for. Disassembly of the reactor and an 

 
Figure 7. Carbon formation across entire radius 

of reactor, though concentrated near annulus 

outlet at center. 

 

 
Figure 8. Carbon formation distribution in BCFR as a function of distance from the gas feed annulus. 

Image a) was take ~10cm, b) ~15cm, c)~20cm, and d)~25cm from the annulus outlet. 
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evaluation of the catalyst suggests unfavorable flow distributions within the catalyst. This will be addressed with a 

reactor design modification and testing to confirm improved performance.  

. 
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