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ABSTRACT 

 

The need for accurate material models to simulate the deformation, damage and failure 

of polymer matrix composites under impact conditions is becoming critical as these 

materials are gaining increased usage in the aerospace and automotive communities.  

In order to address a series of issues identified by the aerospace community as being 

desirable to include in a next generation composite impact model, an orthotropic, 

macroscopic constitutive model incorporating both plasticity and damage suitable for 

implementation within the commercial LS-DYNA computer code is being developed.  

The plasticity model is based on extending the Tsai-Wu composite failure model into a 

strain hardening-based orthotropic plasticity model with a non-associative flow rule.  

The evolution of the yield surface is determined based on tabulated stress-strain curves 

in the various normal and shear directions and is tracked using the effective plastic 

strain.  To compute the evolution of damage, a strain equivalent semi-coupled 

formulation is used in which a load in one direction results in a stiffness reduction in 

multiple material coordinate directions.  A detailed analysis is carried out to ensure that 

the strain equivalence assumption is appropriate for the derived plasticity and damage 

formulations that are employed in the current model.  Procedures to develop the 

appropriate input curves for the damage model are presented and the process required 

to develop an appropriate characterization test matrix is discussed. 
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INTRODUCTION 
 

As composite materials are gaining increased use in aircraft components where impact 

resistance under high energy impact conditions is important (such as the turbine engine 

fan case), the need for accurate material models to simulate the deformation, damage 

and failure response of polymer matrix composites under impact conditions is 

becoming more critical.  Within commercially available transient dynamic finite 

element codes such as LS-DYNA (Hallquist, 2013), there are several material models 

currently available for application to the analysis of composites.  The available models 

include relatively simple equations where criteria related to ratios of stresses to failure 

strengths are used to signify failure. More sophisticated sets of material models, based 

on continuum damage mechanics approaches (such as Matzenmiller et al (1995) ), are 

also available  where the initiation and accumulation of damage is assumed to be the 

primary driver of any nonlinearity in the composite response.  While these material 

models have been utilized with some level of success in modeling the nonlinear and 

impact response of polymer composites, there are some areas where the predictive 

capability can be improved.  Most importantly, the existing models often require 

correlation based on structural level impact tests, which significantly limits the use of 

these methods as predictive tools.  Furthermore, the current models generally assume 

that the nonlinear response of the composite can be modeled either by using a 

deformation based plasticity approach (such as in Sun and Chen (1989)) or by a 

continuum damage mechanics approach (such as in Matzenmiller et al (1995)). By 

using a plasticity based model, the nonlinear unloading and strain softening observed 

in actual composites (Barbero, 2013) cannot be simulated.  However, by using a 

continuum damage mechanics based model, the rate dependence in the material 

response, which is often observed in composites under high strain rate conditions (Gilat 

et al 2002), is difficult to incorporate in a theoretically consistent manner.  Furthermore, 

a continuum damage mechanics approach cannot fully account for the significant 

nonlinearity that is observed in the shear stress-strain response (Daniel and Ishai, 

2006).  Therefore, a modeling approach in which a plasticity based deformation model 

is combined with a damage model (specifically designed to account for the nonlinear 

unloading and strain softening observed after the peak stress) can provide some 

advantages.  The input to current material models currently generally consists of point-

wise properties (such as a specified failure stress or failure strain) that lead to curve fit 

approximations to the material stress-strain curves.  This type of approach leads either 

to models with only a few parameters, which provide a crude approximation at best to 

the actual stress-strain curve, or to models with many parameters which require a large 

number of complex tests to characterize.  An improved approach would be to use 

tabulated data, in which the material stress-strain curves are explicitly entered into the 

model in a discretized form.  The discretized data, obtained from a well-defined 

straightforward set of experiments, would allow the complete stress-strain response of 

the material to be accurately defined.  In addition, while many of the existing models 

are designed to be used with two-dimensional shell elements, to properly capture the 

through-thickness response of the material, which may be significant in impact 

applications, a fully three-dimensional formulation suitable for use with solid elements 

would be desirable. 
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To begin to address these needs, a new composite material model is being developed 

and implemented for use within LS-DYNA.  The material model is meant to be a fully 

generalized model suitable for use with any composite architecture (unidirectional, 

laminated or textile).  For the deformation model, the commonly used Tsai-Wu 

composite failure criteria (Daniel and Ishai, 2006) has been generalized and extended 

to a strain-hardening plasticity model with a quadratic yield function and a non-

associative flow rule.  For the damage model, a strain equivalent formulation has been 

developed, which allows the plasticity and damage calculations to be uncoupled, and 

thus allows the plasticity calculations to take place in the effective (undamaged) stress 

space. In traditional damage mechanics models such as the one developed by 

Matzenmiller et al (1995), a load in a particular coordinate direction is assumed to 

result in a stiffness reduction only in the direction of the applied load.  However, as 

will be described in more detail later in this paper, in the current model a semi-coupled 

formulation is developed in which a load in one direction results in a stiffness reduction 

in all of the coordinate directions. 

 

In the following sections of this paper, a summary of the rate-independent deformation 

model is presented.  Next, the strain equivalent semi-coupled damage model is 

discussed, along with the procedures that need to be used to properly characterize the 

damage model.  Finally, a detailed discussion of the suitability of the strain equivalence 

assumption for the damage model is presented.    

 

DEFORMATION MODEL 

 

A quadratic three-dimensional orthotropic yield function based on the Tsai-Wu failure 

model is specified as follows, where 1, 2, and 3 refer to the principal material 

directions: 
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In the yield function, σij represents the stresses and Fij and Fk are coefficients that vary 

based on the current values of the yield stresses in the various coordinate directions.  

By allowing the coefficients to vary, the yield surface evolution and hardening in each 
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of the material directions can be precisely defined.  The values of the normal and shear 

coefficients can be determined by simplifying the yield function for the case of 

unidirectional tensile and compressive loading in each of the coordinate directions 

along with shear tests in each of the shear directions, with results as shown below: 
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In the above equation, the stresses are the current value of the yield stresses in the 

normal and shear directions (determined using procedures to be discussed below), 

where the superscript T indicates the tensile yield stress, and the superscript C indicates 

the absolute value of the compressive yield stress. To determine the values of the off-

axis coefficients (which are required to capture the stress interaction effects), the results 

from 45° off-axis tests in the various coordinate directions can be used.  An important 

point to note is that due to experimental or numerical variability, or alternatively just 

due to the fundamental behavior of the material, computing the off-diagonal terms of 

the yield function in this manner may result in a yield function that is not convex (which 

is a requirement for plasticity theory (Khan and Huang, 1995)).  As a result, to satisfy 

the requirements of the chosen yield function, the off-diagonal terms may need to be 

adjusted based on the values of the other coefficients in the yield function in order to 

ensure convexity of the yield surface. 

 

A non-associative flow rule is used to compute the evolution of the components of 

plastic strain.  The plastic potential for the flow rule is shown below: 
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Th               (3) 

 

where σ is a vector containing the current values of the stresses and the H matrix is 

composed of a set of independent coefficients, assumed to remain constant, written as 

follows: 
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The values of the coefficients are computed based on average plastic Poisson’s ratios 

(Goldberg et al, 2014). The plastic potential function in Equation (3) is used in a flow 

law to compute the components of the plastic strain rate, where the usual normality 

hypothesis from classical plasticity (Khan and Huang, 1995) is assumed to apply and 

the variable,  ,  is a scalar plastic multiplier: 

 

σ
ε






hp                        (5) 

 

Given the flow law, the principal of the equivalence of plastic work (Khan and Huang, 

1995) can be used to determine expressions for the effective stress and effective plastic 

strain.  By following this procedure, one can conclude that the plastic potential function 

h can be defined as the effective stress and the plastic multiplier can be defined as the 

effective plastic strain rate.  As will be discussed below, the evolution of the effective 

plastic strain rate ( ) is computed in the material model, and is used in combination 

with the derivative of the plastic potential function to compute the components of the 

plastic strain rate tensor. 

   

To compute the current value of the yield stresses needed for the yield function, the 

common practice in plasticity constitutive equations is to use analytical functions to 

define the evolution of the stresses as a function of the components of plastic strain (or 

the effective plastic strain).  Alternatively, in the developed model tabulated stress-

strain curves are used to track the yield stress evolution.  The user is required to input 

twelve stress versus plastic strain curves in a tabulated, discretized form.  Specifically, 

the required curves include uniaxial tension curves in each of the normal directions 

(1,2,3), uniaxial compression curves in each of the normal directions (1,2,3), shear 

stress-strain curves in each of the shear directions (1-2, 2-3 and 3-1), and 45 degree 

off-axis tension curves in each of the 1-2, 2-3 and 3-1 planes.  The 45 degree curves 

are required in order to properly capture the stress interaction effects.  By utilizing 

tabulated stress-strain curves to track the evolution of the deformation response, the 

experimental stress-strain response of the material can be captured to a much higher 

degree of accuracy than would be possible by using an analytical function and the 

relevant failure stresses (and strains) to approximate the stress-strain curves.  While 

some slight interpolation is still required between the discretized points, by assuming 

a sufficient level of discretization, the actual stress-strain response can be approximated 

to a much finer level of accuracy.  The required stress-strain data can be obtained either 

from actual experimental test results, or by appropriate numerical experiments utilizing 

stand-alone codes.  Currently, only static test data is considered.  Future efforts will 

involve adding strain rate and temperature dependent effects to the computations.  To 

track the evolution of the deformation response along each of the stress-strain curves, 

the effective plastic strain is chosen to be the tracking parameter.  Using a numerical 

procedure based on the radial return method (Khan and Huang, 1995) in combination 

with an iterative approach, the effective plastic strain is computed for each time/load 

step.  The stresses for each of the tabulated input curves corresponding to the current 

value of the effective plastic strain are then used to compute the yield function 

coefficients. 
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DAMAGE MODEL OVERVIEW 
 

The deformation portion of the material model provides the majority of the capability 

of the model to simulate the nonlinear stress-strain response of the composite.  

However, in order to capture the nonlinear unloading and local softening of the stress-

strain response often observed in composites (Barbero, 2013), a complementary 

damage law is required.  In the damage law formulation, strain equivalence is assumed, 

in which for every time step the total, elastic and plastic strains in the actual and 

effective stress spaces are the same (Lemaitre and Desmorat, 2005).   The utilization 

of strain equivalence permits the plasticity and damage calculations to be uncoupled, 

as all of the plasticity computations can take place in the effective (undamaged) space. 

   

In the damage model, the actual stresses are related to the effective (undamaged) 

stresses by use of a damage tensor M: 

 

effMσσ             (6) 

 

The effective stress rate tensor can be related to the total and plastic strain rate tensors 

by use of the standard elasto-plastic constitutive equation: 

 

 p

eff εεCσ             (7) 

 

where C is the standard elastic stiffness matrix and the actual total and plastic strain 

rate tensors are used due to the strain equivalence assumption. 

 

DEFINITION AND CHARACTERIZATION OF DAMAGE TENSOR 
 

As specified in Equation (6), the effective and actual stresses are related through a 

damage tensor.  Given the usual assumption that the actual stress tensor and the 

effective stress tensor are symmetric, Equation (6) can be rewritten in the following 

form, where the damage tensor M is assumed to have a maximum of 36 independent 

components: 
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In many damage mechanics models for composites, for example the models discussed 

in Barbero (2013) and Matzenmiller et al (1995), the damage tensor is assumed to be 

diagonal or manipulated to be a diagonal tensor, leading to the following form: 
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The implication of a diagonal damage tensor is that loading the composite in a 

particular coordinate direction only leads to a stiffness reduction in the direction of the 

load due to the formation of matrix cracks perpendicular to the direction of the load.  

However, several recent experimental studies (Ogasawara et al, 2005, Salavatian and 

Smith, 2014, Salem and Wilmoth, unpublished data, 2015) have shown that in actual 

composites, particularly those with complex fiber architectures, a load in one 

coordinate direction can lead to stiffness reductions in multiple coordinate directions. 

 

One approach to incorporating the coupling of damage modes would be to use a non-

diagonal damage tensor, such as the one shown below for the case of plane stress: 
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However, while this formulation would allow for directional coupling, it would have 

the side effect of a unidirectional load in the actual stress space resulting in a multiaxial 

load in the effective undamaged space.  For the strain equivalent combined plasticity 

damage formulation envisioned for this model, this would be an undesirable side effect 

as the plasticity calculations could be adversely affected due to the introduction of 

nonphysical stresses. 

 

To avoid the undesired stress coupling, a diagonal damage tensor is required.  However, 

to account for the damage interaction in at least a semi-coupled sense, each term in the 

diagonal damage matrix should be a function of the plastic strains in each of the normal 

and shear coordinate directions, as follows for the example of the M11 term for the 

plane stress case: 

 

 pppMM 1222111111 ,,                (11) 

 

Note that plastic strains are chosen as the “tracking parameter” due to the fact that, 

within the context of the developed formulation, the material nonlinearity during 

loading is simulated by use of a plasticity based model.  The plastic strains therefore 

track the current state of load and deformation in the material. 
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To explain this concept of damage coupling further, assume a load is applied in the 1 

direction to an undamaged specimen, with an original area 11A  perpendicular to the 1 

axis and an original area
22A  perpendicular to the 2 axis.  The undamaged modulus in 

the 1 direction is 11E  and the undamaged modulus in the 2 direction is
22E .  The stress-

strain response of the material is assumed to become nonlinear (represented in the 

current model by the accumulation of plastic strain) and damage is assumed to occur.  

The original specimen is unloaded and reloaded elastically in the 1 direction.  Due to 

the damage, the reloaded specimen has a reduced area in the 1 direction of 11

11

dA  due to 

the fact that the composite damage reduces the effective area of the composite that can 

carry load, and a reduced modulus in the 1 direction of 11

11

dE .  The reduced area and 

modulus are a function of the damage induced by the loading and resulting nonlinear 

deformation in the 1 direction (reflected as plastic strain) as follows: 
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where 11

11d  is the damage in the 1 direction due to a load in the 1 direction.   

Alternatively, if the damaged specimen was reloaded elastically in the 2 direction, due 

to the assumed damage coupling resulting from the load in the 1 direction, the reloaded 

specimen would have a reduced area in the 2 direction of 11

22

dA  and a reduced modulus 

in the 2 direction of 11

22

dE .  The reduced area and modulus are again functions of the 

damage induced by the load and resulting nonlinear deformation in the 1 direction as 

follows: 
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where 22

11d  is the damage in the 2 direction due to a load in the 1 direction.  Similar 

arguments can be made and equations developed for the situation where the original 

specimen is loaded in the 2 direction. 

 

For the case of multiaxial loading, the semi-coupled formulation needs to account for 

the fact that as the load is applied in a particular coordinate direction, the loads are 

acting on damaged areas due to the loads in the other coordinate directions, and the 

load in a particular direction is just adding to the damaged area.  For example, if one 

loaded the material in the 2 direction first, the reduced area in the 1 direction would be 

equal to 22

11

dA  and the reduced modulus in the 1 direction would be equal to 22

11

dE .  If 

one would then subsequently load the material in the 1 direction, the baseline area in 

the 1 direction would not equal the original area 11A , but the reduced area 22

11

dA .  

Likewise, the baseline modulus in the 1 direction would not be equal to the original 

modulus 11E , but instead the reduced modulus 22

11

dE .  Therefore, the loading in the 1 
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direction would result in the following further reduction in the area and modulus in the 

1 direction: 
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These results suggest that the relation between the actual stress and the effective stress 

should be based on a multiplicative combination of the damage terms as opposed to an 

additive combination of the damage terms.  For example, for the case of plane stress, 

the relation between the actual and effective stresses could be expressed as follows: 
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where for each of the damage terms the subscript indicates the direction of the load 

which initiates the particular increment of damage and the superscript indicates the 

direction in which the damage takes place.  Note that for the full three-dimensional 

case the stress in a particular coordinate direction is a function of the damage due to 

loading in all of the coordinate directions (1, 2, 3, 12, 31 and 23).  By using a 

polynomial to describe the damage, the coupled terms represent the reduction to the 

degree of damage resulting from the fact that in a multiaxial loading case the area 

reductions are combined. 

 

There are two primary items needed for model characterization and input for the 

damage portion of the material model.  First, the values of the various damage 

parameter terms 
kl

ijd need to be defined in a tabulated manner as a function of the 

effective plastic strain.  Similar to the deformation model, the values of the damage 

parameters are defined in a tabulated, discretized form in order to reflect the actual 

material behavior in the most accurate manner possible.  The values are tabulated as a 

function of the effective plastic strain in order to provide a unified framework to 

simultaneously track the evolution of multiple damage parameters under multiaxial 

loading conditions.  As mentioned above, since in the context of the current model the 

plastic strains are used to represent the nonlinear deformation of the material, using the 

effective plastic strain as an equivalent parameter to track the damage parameter 

evolution should be reasonable.  Note that for the case of uniaxial loading the effective 

plastic strain equals the uniaxial plastic strain, which maintains consistency with the 

formulation described above.  In addition to characterizing the damage parameters, the 

various input stress-strain curves need to be converted into plots of effective 

(undamaged) stress versus effective plastic strain in order to carry out the calculations 

required by the deformation (plasticity) model.  As an example of how this process 

could be carried out, assume that a material is loaded unidirectionally in the 1 direction.  

At multiple points, once the actual stress-strain curve has become nonlinear, the total 

strain ( 11 ), actual stress (σ11), and average local, damaged modulus 11

11

dE  can be 
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measured.  Assuming that the original, undamaged modulus 11E  is known, since the 

damage in the 1 direction is assumed to be only due to load in the 1 direction (due to 

the uniaxial load), the damage parameters and effective stress in the 1 direction can be 

computed at a particular point along the stress-strain curve as follows: 
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These values need to be determined at multiple points, representing different values of 

plastic strain, in order to fully characterize the evolution of damage as the plastic strain 

increases. 

 

An example of this process is shown in Figure 1.  Assume the material is loaded in the 

1 direction.  As shown in the figure, as the material is loaded the stress-strain response 

becomes nonlinear.  To characterize the damage parameters, at points 1, 3 and 2i-1 

(representing different values of plastic strain) the material is unloaded to zero stress. 

The average unloading modulus is then determined at points 2, 4 and 2i.  These values 

are used in the calculations specified in Equation (16).   

 

With this information, an effective stress versus plastic strain  p

11  plot can be 

generated.  From this plot, the effective plastic strain corresponding to the plastic strain 

in the 1 direction at any particular point can be determined by using the equations 

shown below, which are based on applying the principal of the equivalence of plastic 

work (Khan and Huang, 1995) in combination with Equation (3), simplifying the 

expressions for the case of unidirectional loading in the 1 direction (Goldberg et al, 

2014): 
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where p

e  is the effective plastic strain and pd 11  is the increment of plastic strain in the 

1 direction.  From this data, plots of the effective stress in the 1 direction versus the 

effective plastic strain as well as plots of the damage parameter 11

11d  as a function of 

the effective plastic strain can be generated.  By measuring the damaged modulus in 

the other coordinate directions at each of the measured values of plastic strain in the 1 
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direction, the value of the damage parameters 33

11

12

11

22

11 ,, ddd , etc. can be determined as 

a function of the plastic strain in the 1 direction, and thus as a function of the effective 

plastic strain.  An example of this process is shown in Figure 2.  In this example, assume 

that at point 2 in Figure 1 the material is then reloaded in the elastic range in the 2 

direction.  The resulting stress-strain curve is shown in Figure 2.   The modulus 11

22

dE  

can then be determined, which can be used to determine the value of 22

11d  for the 

particular value of plastic strain in the 1 direction.  A similar process would need to be 

carried out by loading the material elastically in the other coordinate directions at point 

2 in Figure 1, and by repeating the entire process at the various points where the 

material is unloaded (such as points 4 and 2i in Figure 1).  To determine the remaining 

required damage terms, the process shown in Figure 1 and Figure 2 would need to be 

repeated by the loading the material in the other coordinate directions. 

 

To convert the 45º off-axis stress-strain curves into plots of the effective (undamaged) 

stress versus effective plastic strain, the total and plastic strain (permanent strain after 

unload) in the structural axis x direction needs to be measured at multiple points along 

the stress-strain curve.  Given the undamaged modulus Exx, and utilizing the strain 

equivalence hypothesis, the effective stress in the structural axis system x direction can 

be computed as follows: 
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Given the effective stress in the structural axis system, the effective stresses in the 

material axis system can be generated by use of stress transformation equations. Using 

the material axis system stresses, the plastic potential function and effective plastic 

strain corresponding to each value of plastic strain can be determined using the standard 

stress transformation equations for the case of 45º off-axis loading and the principal of 

the equivalence of plastic work in combination with Equation (3) as shown below 

(Goldberg et al, 2014): 
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Ongoing efforts will involve developing and carrying out an appropriate experimental 

test matrix to characterize and validate the model for a series of representative 

composite materials. 
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VALIDATION OF STRAIN EQUIVALENCE ASSUMPTION 

 

As discussed in previous sections of this paper, employing the strain equivalence 

assumption specifies that the effective stresses result in the same deformations in the 

effective, undamaged material as would be caused by applying the actual stresses on 

the damaged material.  In this way, the yield function, flow rule and constitutive 

equation, specified in Equations (1), (5) and (7), respectively, can be written in terms 

of the effective stresses and applied in effective stress space.  The use of effective 

stresses allows the plasticity calculations to be uncoupled from the damage law. 

 

For the strain equivalence formulation to be valid, one requirement is that the derivative 

of the plastic potential function (written in terms of the effective stresses) with respect 

to the effective stresses must equal the derivative of a damaged plastic potential 

(written in terms of the actual stresses) with respect to the actual stresses.  This concept 

is expressed mathematically below: 
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                  (20) 

 

Therefore, for the strain equivalence assumption to be valid, an essential requirement 

involves identifying an appropriate damaged version of the plastic potential function 

(in terms of the actual stresses as opposed to the effective stresses) such that the same 

strain state results whether the material is loaded in the actual or effective stress space.  

In a similar vein, damaged versions of the stiffness matrix and yield function, in terms 

of the actual stresses and utilized in the damaged space, also need to be identified. 

 

To develop the damaged elastic stiffness matrix, Equation (7) is substituted into the 

time derivative of Equation (6), leading to the following expressions: 
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For the case of elastic only loading the plastic strain rate and the time derivative of the 

damage tensor are both set equal to zero, leading to the following relation between the 

actual stress rate and the total strain rate: 
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For the case of elastic only loading, Equation (7) can be simplified, leading to the 

following relation between the effective stress rate and the total strain rate: 
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For the strain equivalence assumption to be valid, the elastic strains resulting from 

loading in the damaged configuration must be identical to the elastic strains resulting 

from loading in the effective (undamaged) configuration.  Therefore, by comparing 

Equation (22) to Equation (23), the damaged elastic stiffness matrix, Cd, can be defined 

as follows: 

 

MCCd                      (24) 

 

To develop the damaged version of the yield function, the yield function shown in 

Equation (1) can be written in a quadratic form in terms of the effective stresses and 

converted to be in terms of the actual stresses (using Equation (6)).  From there, a 

damaged yield function, fd, in terms of the actual stresses can be defined as shown 

below: 
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where the vector f and the matrix F are defined as follows: 
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To determine the damaged form of the plastic potential function, first the definition of 

the plastic potential function given in Equation (2) is written in terms of effective 

stresses and differentiated with respect to the effective stresses, resulting in the 

following expression: 
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where the effective stresses have been converted back into the actual stresses and the  

H matrix is as defined earlier in Equation (4). 
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By applying the results of Equation (27) in Equation (5), the plastic strain rate tensor 

in the damaged state can be defined and a damaged version of the H matrix defined in 

Equation (4) can be specified: 
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For the strain equivalence assumption to be valid for the given plastic potential 

function, based on the expression shown in Equation (20) a damaged version of the 

plastic potential function hd needs to be defined such that the following expression is 

true: 
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One possible form for the plastic potential function in terms of the actual stresses is 

defined as follows.  By taking the derivative of the proposed function with respect to 

the actual stresses, the required expression (shown in Equation (29)) is obtained:, and 

thus the strain equivalence assumption can be employed: 
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This result demonstrates that an appropriate damaged plastic potential function can be 

derived. Since an appropriate damaged stiffness matrix, yield function and plastic 

potential function can be defined in the actual (damaged) stress space, the requirements 

for the strain equivalence assumption to be valid are therefore established. 

 

Given the identification of an appropriate elastic stiffness matrix, yield function and 

plastic potential function in both the effective and damaged configurations, the full 

elasto-plastic deformation law for the undamaged state can be specified: 
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where the q vector is the vector of the yield stresses in the various coordinate directions 

in the undamaged (effective) configuration and all of the other terms are as identified 

earlier.  Likewise, the elasto-plastic law in the damaged configuration can also be 

defined: 
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where   is the effective plastic strain rate in the damaged configuration and all of the 

other terms are as defined earlier.  To demonstrate that the strain equivalence 

assumption is valid for the current model, the effective plastic strain rate   in the 

damaged configuration must be shown to be equal to the effective plastic strain rate   

in the undamaged state. 

 

To carry out this proof, first the consistency condition from classical plasticity theory 

(Khan and Huang, 1995) is applied in combination with Equation (31) in the 

undamaged effective state as follows: 

 

 

 
0

0

0

































































q

qσ

σ
εC

σ

q

q
εεC

σ

q
q

σ
σ







fhf

ff

ff
f

eff

eff

eff

p

eff

eff

eff

                (33) 

 



Rev. 05/2015 for Earth & Space Conf. 

In the damaged configuration, the damage matrix can be assumed to be a function of 

the effective plastic strain rate.  With this assumption, and by combining several of the 

expressions in Equation (32), the stress rate expression in the damaged configuration 

can be rewritten as follows: 
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By applying the plastic consistency condition to the damaged yield function, 

substituting in the stress rate expression shown in Equation (34), applying the relations 

defined in Equation (32), and simplifying, the following expressions can be 

determined: 
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By comparing the last expression in Equation (35) to the last expression in Equation 

(33), applying the relation between the actual and effective stress defined in Equation 

(6) and considering the relations between the derivatives of the plastic potential 

function defined in Equation (20), the conclusion can be made that the effective plastic 

strain rates in the damaged and undamaged configurations must be equal.  Therefore, 

the final conclusion can be reached that for the plasticity and damage model developed 

for this work the strain equivalence assumption is not only appropriate but is required. 

 

CONCLUSIONS 
 

A generalized composite model suitable for use in polymer composite impact 

simulations has been developed.  The model utilizes a plasticity based deformation 

model based on generalizing the Tsai-Wu failure criteria.  A strain equivalent damage 

model has also been developed in which loading the material in a particular coordinate 

direction can lead to damage in multiple coordinate directions.  A detailed examination 

of the damage model has demonstrated that the strain equivalence formulation is 

appropriate for the developed damage model.  Procedures have also been developed to 

appropriately characterize the damage model. 
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Ongoing efforts will include developing the detailed numerical algorithms to 

implement the developed deformation and damage model into the LS-DYNA computer 

code.  Methods to model failure and element removal will also be developed and 

implemented into LS-DYNA.  An extensive set of verification and validation studies 

will be undertaken in order to fully exercise the developed model.   
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Figure 1: Load-Unload-Reload tests required  

 

 
 

Figure 2: Elastic Reload Test 
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