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ABSTRACT 

Hydroxyl tagging velocimetry (HTV) is a molecular tagging velocimetry (MTV) technique that relies on the photo-

dissociation of water vapor into OH radicals and their subsequent tracking using laser-induced fluorescence. At 

ambient temperature in air, the OH species lifetime is about 50 µs. The feasibility of using HTV for probing low-

speed flows (a few m/s) is investigated by using an inert, heated gas as a means to increase the OH species 

lifetime. Unlike particle-based techniques, MTV does not suffer from tracer settling, which is particularly problematic 

at low speeds. Furthermore, the flow needs to be seeded with only a small mole fraction of water vapor, making it 

safer for both the user and facilities than other MTV techniques based on corrosive or toxic chemical tracers. 

HTV is demonstrated on a steam-seeded nitrogen jet at approximately 75 °C in the laminar (Umean=3.31 m/s, 

Re=1,540), transitional (Umean=4.48 m/s, Re=2,039), and turbulent (Umean=6.91 m/s, Re=3,016) regimes at 

atmospheric pressure. The measured velocity profiles are compared with particle image velocimetry (PIV) 

measurements performed simultaneously with a second imager. Seeding for the PIV is achieved by introducing 

micron-sized water droplets into the flow with the steam; the same laser sheet is used for PIV and HTV to guarantee 

spatial and temporal overlap of the data. Optimizing each of these methods, however, requires conflicting operating 

conditions: higher temperatures benefit the HTV signals but reduce the available seed density for the PIV through 

evaporation. Nevertheless, data are found to agree within 10% for the instantaneous velocity profiles and within 5% 

for the mean profiles and demonstrate the feasibility of HTV for low-speed flows at moderate to high temperatures. 

 

 

1. Introduction 

 

Molecular tagging velocimetry (MTV) [Tropea, 2007] is an alternative measurement technique to 

the well-established, non-intrusive flow diagnostic that is particle image velocimetry (PIV) 

[Adrian, 2005]. Both MTV and PIV are time-of-flight measurement techniques used to obtain 

velocity; however, rather than using discrete particles like PIV, the tracers used in MTV are 

molecular or atomic species. MTV has been applied in both gaseous and liquid flows [Tropea, 

2007]. It is therefore important to understand the precision and accuracy of this technique. While 
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such an understanding is achievable through direct comparison to PIV, a simultaneous 

measurement has not been reported to date.  Herein, PIV and MTV are acquired simultaneously 

in a gas-phase jet to provide a direct comparison between the two methods.  In these preliminary 

studies, both laminar and turbulent jets have been tested with a focus on characterizing 

uncertainties in the MTV measurements for low-speed flows. 

In a particle-free gas phase, several techniques exist to “tag,” or mark, a species of 

interest. The most common measurement scheme involves the creation or excitation of a radical 

chemical species and subsequently tracking its motion with planar laser-induced fluorescence 

(PLIF).  Molecular tracers have the advantage of no settling or slip velocity, which allows them to 

accurately follow quiescent and hypersonic flows alike [Danehy, 2003]. Furthermore, these 

tracers can also be created in gas flows that are typically challenging to seed for PIV, such as 

high-temperature or reacting flows, and in environments where particles are undesirable.  

As motivation for these studies, MTV is being adapted for resolving velocity in a simulator 

of a high-temperature gas-cooled nuclear reactor [André, 2015].  In this application, it is 

necessary to measure long-duration flow transients encountered in simulated accident 

conditions, where temperature and flow rates vary slowly (on the order to minutes to hours). In 

addition to these slow phenomena, for some events (such as flow reversal) the mean velocity 

can be very small (on the order of 1 m/s or less). Moreover, solid particles, which are negatively 

buoyant, will likely settle, resulting in loss of signal and also will contaminate the facility and 

negatively influence radiative heat transfer.  For this application, MTV could prove to be a viable 

alternative to particle-based methods. Some of the drawbacks of MTV include lower spatial 

resolution due to diffusion of tracers, limited tracer lifetime, and a more complicated setup 

compared to PIV. Also MTV measurements are usually made at a point, along a line, or on a 

coarse grid of lines whereas PIV can be performed in planes or even volumes. 

To date, low speed flows (~2 m/s) have been successfully probed using ozone tagging 

velocimetry (OTV); however, these tracers are not suited for high temperature flows due to 

reduced species lifetime and O3 peak concentration [Pitz, 2000], and O2 will oxidize structural 

materials in the facility. As an alternative to OTV, the present study instead utilizes hydroxyl 

tagging velocimetry (HTV). HTV makes use of hydroxyl radicals (OH) created from water vapor. 

The advantages of this tracer species include non-toxicity, ease of adding the tracer (water 

vapor) to the test gas, and relatively long tracer lifetime at high temperatures [Ribarov, 2002]. 

H2O is also present at high temperature in most combustion products, which makes HTV a very 

convenient technique for probing such flows [Ribarov, 2004]. OH radicals are typically created 

with an argon-fluoride excimer laser (output at 193 nm) through a photo-dissociation process 
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whose efficiency is temperature-dependent. The dissociation fraction increases by an order of 

magnitude between ambient temperature and flame temperature [Ribarov, 2004]. OH offers 

several vibrational transitions in the ultraviolet (UV) portion of the spectrum, all from the A2Σ+-X2Π 

electronic transition, as shown in the spectrum of Fig. 1 obtained with LIFBASE [Luque, 1999], 

that can be excited with PLIF. It should be noted that when exciting the (0,0) band around 308 

nm, the resulting fluorescence occurs in the same spectral region and prevents the use of a filter 

to remove scattered laser light. Therefore, although the fluorescent emission is stronger when 

exciting that band, the acquired images are more likely to be contaminated by scattered laser 

light from particles and nearby surfaces. Thus, the signal-to-noise ratio (SNR) was found to be 

higher for excitation of the (1,0) band combined with spectral filtering of the signal. 

 

 

Fig. 1 LIFBASE computed fluorescence excitation spectrum of A2Σ+-X2Π electronic transition of OH in air at 300 K 

and 1 atm. The first four vibrational transitions all originating from the ground vibrational state are shown here 

 

2. Experimentation and Test Procedure 

 a. HTV diagnostics 

 

The HTV system is composed of an excimer laser (write pulse) and a dual-pulse, tunable dye 

laser (read pulses), which are mounted on a cart to allow for transportation to experimental 

facilities. A diagram of this laser system is shown in Fig. 2. The excimer laser (GAM EX5A) 

outputs a 10 mJ/pulse beam at 193 nm to photo-dissociate H2O into OH. This beam is focused in 

the measurement region using a 300 mm focal length spherical lens, resulting in a 0.7 mm wide 

tag line. The output of two frequency-doubled Nd:YAG lasers (10 Hz, 0.5 J/pulse, 532 nm, 

Spectra Physics Quanta Ray Lab 170) are combined to pump a tunable dye laser (Sirah Cobra-

Stretch). A 15 mm wide by 3 mm thick sheet, overlapping with the excimer beam, is formed in the 

measurement region using a 200 mm focal length cylindrical lens. The dual-pulse configuration, 

combined with double-framed imaging, allows the data to be corrected for potential wandering of 
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the write laser beam caused by beam pointing or vibration and hence leads to improved 

measurement precision in comparison to using only a single read pulse. 

 

 

Fig. 2 Setup of the lasers used for “write” and “read” pulses. Wavelengths are given in nm. 

 

The present work focuses on exciting the (1,0) vibrational transition of OH.  Fine-tuning of the 

PLIF excitation wavelength maximizes the fluorescence signal. Use of the Q1(1) absorption line 

in the (1,0) band at 281.905 nm allowed the use of long-pass filters (Schott WG 295 and WG 

305) to filter out the Mie scattering from the PIV tracers and increase the SNR of the PLIF signal.  

The fluorescence signal from the read pulses is recorded with a time-gated ICCD (PCO 

DiCam Pro, 6.7 micron square pixels) set at 75% of maximum gain. A UV-transmitting Nikon 105 

mm f/4.5 lens is mounted on the image intensifier with a 15 mm extension tube and provided a 

resolution of 35.5 pixels/mm. The gate time of the intensifier is set at 1 µs and temporally 

centered on the PLIF signal to minimize background noise. This gate duration was chosen 

because it was expected to be much longer than the OH fluorescence lifetime, estimated to be a 

few ns.  So-called “background” images were acquired after HTV data was acquired by blocking 

the excimer laser pulses.  These were subtracted from the raw data images in post-processing. 

 

 b. Simultaneous PIV diagnostics 

 

PIV is performed simultaneously with the dye laser pulses using a second intensified camera to 

record Mie scattering from PIV tracers (micron-sized droplets) that are injected in the flow. A 

50/50 UV beam splitter plate directs the Mie scattered light and fluorescence to both cameras, 

which are oriented normal to each other as shown in Fig. 3. The PIV camera is an image 

intensifier (LaVision IRO25) lens-coupled to a 12-bit CCD camera (QImaging QIClick).  The 

intensifier is necessary to convert the UV signal from the Mie scattering to a wavelength the 
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camera can record because the CCD sensor does not respond below 300 nm.  The gate time is 

set at 300 ns to minimize the collection of background light and is temporally centered on the dye 

laser pulses.  An identical lens as was used with the HTV camera was used with a 25 mm 

extension ring, leading to a resolution of 40.8 pixels/mm. No spectral filtering is required because 

the scattered PIV signal is orders of magnitude stronger than the fluorescence signal, and 

requires a gain of only 44% of maximum to be properly imaged. All HTV and PIV instruments are 

synchronized using a pulse generator (Berkeley Nucleonics 575) with an accuracy of 250 ps and 

are monitored with a high-speed, digital oscilloscope (Agilent MSOX-3054A).  

Note that at elevated temperatures, the PIV seeding is limited due to the evaporation of droplets. 

However, higher temperature conditions improve the quality of the HTV data because of the 

higher H2O (vapor) content and superior OH production efficiency [Pitz, 2000]. 

 

 

Fig. 3 PIV/HTV imaging setup. The prism shown here is replaced with a 50/50 UV beam-splitter plate when 

simultaneous PIV/HTV data are recorded 

 

 c. Test flow 

 

The data are acquired at ambient pressure and with temperature in the range of 344 to 363 K. 

Compressed nitrogen is pressure-regulated, bubbled through water in a TSI 6-jet atomizer, and 

exits a 9.02 mm inner diameter vertical pipe with a straight entry length of 40 diameters.  The 

atomizer enables both seeding of the jet with both PIV tracers (water droplets) and water vapor 

for the HTV excitation.  The jet is enclosed in a chamber with two UV-grade sapphire viewports 

mounted perpendicularly to the jet axis (see Fig. 4).  The lasers enter one window and the 



18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics・LISBON | PORTUGAL ・JULY  4 – 7, 2016 

 

cameras viewed the laser sheet from a perpendicular view via the other window. To increase the 

temperature of the flow, heating tape is wrapped around the body of the flow chamber and inlet 

tube and is controlled by a digital controller to adjust the test conditions.  A thermocouple affixed 

near the tube exit measures the flow temperature.  The flow rate is precisely controlled with a 

Brooks Instrument thermal mass flow controller (Accuracy: 0.5% of reading + 0.1% full scale).  

The mass flow rate is varied between 0.5 ± 0.03 and 1.8 ± 0.04 kg/h, which corresponds to a 

range of Reynolds number based on mean velocity and the tube inner diameter of 1,000-4,000.  

The chamber top is open to the atmosphere guaranteeing ambient pressure in the chamber.  

 

 

Fig. 4 Test chamber containing the vertical jet. Laser port on the left and camera port on the right  

 

3. Results 

 

To demonstrate and validate the HTV technique over a range of test conditions, laminar and 

turbulent jet data are investigated. Table 1 summarizes the test flow conditions. Umean is the jet 

mean velocity calculated using a mass flow-meter upstream of the nozzle. Mean and 

instantaneous stream-wise velocity profiles recorded 3 mm downstream of the nozzle are 

presented here.  

Q (kg/h) P (atm) T (K) dt (µs) Umean (m/s) Re 

0.75 1 344 250 3.31 1,540 

1 1 347 250 4.48 2,039 

1.5 1 363 250 6.91 3,016 

Table 1 Test matrix 

 



18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics・LISBON | PORTUGAL ・JULY  4 – 7, 2016 

 

 a. HTV data 

 

HTV data are recorded with a time separation of 250 µs between read pulses in all cases. The 

first read pulse is emitted about 5 µs after the write pulse.  Figure 5, top, shows one such mean 

PLIF image, where the tagged line is very close to a straight line due to the small delay between 

write and read pulse. Both laser beams enter the field of view on the left, and are visibly 

attenuated along their paths. The attenuation is mostly due to scattering from the water droplets 

used for PIV. Attenuation of the excimer beam by photo-dissociation (conversion of H2O vapor to 

OH) is only a few percent over the field of view and thus comprises a small fraction of the 

observed decrease in signal. The line is relatively wide (~25 pixels, or 0.7 mm) by MTV 

standards but could be decreased by using a shorter focal distance lens for focusing the excimer 

beam. The three subsequent images of Fig. 5 show the mean PLIF image of the line 250 µs later 

for different Reynolds numbers. OH tracers have been advected by the flow in addition to 

molecular diffusion.  

For Re=1,540, the jet is laminar and the profile appears nearly parabolic. At Re=3,016, the jet is 

turbulent and the profile has a flatter top associated with turbulent flow. Re=2,039 is in the 

transitional regime and exhibits a slight asymmetry that can be explained by the boundary layer 

transitioning to turbulent at different location around the pipe upstream of the nozzle.  

Figure 5 (e) presents an instantaneous PLIF image for Re=3,016 which shows the low SNR of 

these images. 360 pairs of such instantaneous image are processed individually for each case. 

Velocity is obtained by measuring the line displacement between image pairs via curve-fitting the 

stream-wise intensity profile. Due to the noisy nature of the data, images are horizontally binned 

over 20 pixels. Outliers are then filtered based on the difference with the neighboring points. The 

velocity profile is then averaged. A second processing pass uses this averaged profile to refine 

the region to look for the HTV signal and to further eliminate outliers that arise from bright spots 

away from the line such as at the top right of Fig. 5 (e).  

Instantaneous and averaged profiles are presented in the next section. 

 

 

 

 

(a) 
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Fig. 5 PLIF images. Intensity is scaled to the min-max of each image. Mean PLIF line 5 µs after write pulse for 

Re=1,540 (a), mean PLIF line 250 µs after first read pulse for Re=1,540 (b), Re=2,039 (c), and Re=3,016 (d), single-

shot image of PLIF line at dt=250 µs for Re=3,016 (e). 

 

b. PIV data 

  

PIV data recorded at the same time as the HTV data are processed with LaVision Davis 8.3 

software using a multi-pass cross-correlation scheme with constant size interrogation window (96 

pixels with a 4:1 vertical elliptical weighting) with a 75% overlap, resulting in a vector spacing of 

24 pixels. As for the HTV processing, a preliminary mean velocity field is computed and used as 

an initial guess for the cross correlation algorithm. To directly compare HTV with PIV, the PIV 

data are linearly interpolated at the location of the HTV datapoints. Stream-wise velocity profiles 

are extracted at the location corresponding to the HTV region. The RMS deviation from the mean 

is also computed for PIV. 

 

c. PIV/HTV instantaneous profiles comparison 

(b) 

(c) 

(d) 

(e) 
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For each flow regime, 200 instantaneous velocity profiles are compared. The agreement is 

quantified using the RMS (root mean square) of the difference (or error) between the two 

techniques for the velocity along the profile: 𝜀𝑅𝑀𝑆 =
1

𝑈𝑚𝑒𝑎𝑛
√∑

(𝑢𝑃𝐼𝑉−𝑢𝐻𝑇𝑉)2

𝑛𝑝𝑜𝑖𝑛𝑡𝑠
, where npoints is the 

number of datapoint per profile. Results are normalized by the respective mean velocity obtained 

from the flowmeter, and expressed in percent. The distribution of the RMS error for 200 samples 

is presented in the normalized histograms shown in Fig. 6. 

 

 

Fig. 6 Normalized histograms showing the distribution of RMS error between PIV and HTV for the three regimes 

 

The median RMS error is 13.5%, 9.1%, and 10.3% for the Re=1,540, Re=2,039, and Re=3,016 

conditions, and the lowest is 6.9%, 4.5%, and 4.1% in the same order. The higher observed error 

at Re=1,540 is caused by difficulties in properly seeding the flow with PIV tracers since the 

amount of droplets generated in the atomizer depends on pressure and flow rate. The lowest 

median error is obtained for the Re=2,039 case. At Re=3,016, the error increases as a results of 

the turbulent flow leading more diffuse tag lines in the HTV images. 

 

Figure 7 shows comparisons of single-shot HTV/PIV velocity profiles for each case. The left 

column shows a ‘typical’ instantaneous profile for which the RMS error is equal to the median, 

while the right column shows the best instantaneous profile (lowest RMS error). As seen in Fig. 
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5, the single-shot HTV signal is relatively weak, which results in noisy instantaneous velocity 

profiles. Furthermore, the PIV data also suffer from low seeding density. Nevertheless, on most 

profiles, the general shape of the profile is still captured to some degree by both methods.  

 

  

  

  

Fig. 7 Instantaneous velocity profiles from HTV (blue) and PIV (red) for the three flow regimes. Typical case (RMS 

error equal to the median) is shown on the left, and best case (minimum RMS error) is shown on the right. 

 

d. PIV/HTV mean profiles comparison 
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Mean profiles for the three cases presented in table 1 are plotted in Fig. 8. The RMS error is 

equal to 2.7%, 2.3%, and 4.7% for Re=1,540, Re=2,039, and Re=3,016. The asymmetry in the 

profile at Re=2,039 is well captured by both techniques. The measured RMS velocity, which 

correlates strongly with the measurement precision, is lower (better) for PIV than for HTV. 

Outside the jet, the observed RMS fluctuations were nearly zero in the PIV data, but were, in 

contrast, up to 0.3 m/s in the HTV data. Note that in more favorable experimental conditions 

(higher temperature), precision down to 0.1 m/s was obtained on averaged profiles with this 

technique using the same experimental apparatus [André, 2016]. For Re=3,016, the presence of 

turbulence increases the RMS velocity fluctuations, particularly in the shear layers of the jet; this 

feature is captured by both methods.  

 

 

Fig. 8 Comparison of mean (left) and RMS (right) of velocity profiles from PIV and HTV at several Re  

Because of the more substantial velocity fluctuations in these regions, a larger error is present in 

the mean velocity profiles than at the lower Re conditions. Furthermore, the horizontal binning of 
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the HTV data as well as the relatively large size of the PIV interrogation windows make it difficult 

to accurately resolve this region of large horizontal velocity gradient. 

 

4. Conclusions 

 

Velocity profiles in a heated N2 jet were measured with PIV and HTV to assess the performance 

of HTV in low-speed flow conditions in comparison to an accepted technique.  Simultaneous data 

were recorded by using a single illumination source and splitting the scattered light and 

fluorescence for independent imaging of the respective signals.  Instantaneous and mean 

profiles for laminar and turbulent jet (Re = 1540, 2039, and 3016) were found to compare 

favorably. Median RMS errors between 9 and 14 percent were observed in the instantaneously 

velocity profiles, while those of the mean profiles were 2.7, 2.3, and 4.7 percent for the lowest 

through highest Re conditions. The laminar case provides an estimation of the precision and 

shows that PIV is more precise than HTV for the conditions examined in this study. The PIV data 

quality was found to vary inversely with that of the HTV. In order to obtain a better signal in both 

cases, solid particles such as TiO2, which survive at higher temperatures, could be used. 

Furthermore, because of the large difference in signal intensities in the HTV and PIV, the use of 

a dichroic or more restrictive broadband beam-splitter (80/20 or 90/10 with the bulk of the light 

going to the HTV) would also improve the magnitudes of the observed signals for both the HTV 

and PIV. 
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