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ABSTRACT

Large space telescope missions have always been limited by their launch vehicle’s mass and volume capacities. The
Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space
Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes.
NASA’s "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor
mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA’s “From Cosmic Birth to Living Earth”
report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries.
NASA’s “Planning for the 2020 Decadal Survey” calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as
well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a
significant engineering complexity challenge that drives cost and risk. NASA’s planned Space Launch System (SLS),
with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates
this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass
and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space
telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis
telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.
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1. INTRODUCTION

The astrophysics science community desires larger more capable space telescopes to answer some of humanity’s most
compelling questions. The 2010 New Worlds, New Horizons Decadal Report' recommended as its highest priority
medium-scale activity a New Worlds Technology Development (NWTD) Program to “lay the technical and scientific
foundations for a future space imaging and spectroscopy mission”. NASA’s Enduring Quests Daring Visions? called for
an 8- to 16-meter Large UV-Optical-IR (LUVOIR) Surveyor mission to “enable ultra-high-contrast spectroscopic
studies to directly measure oxygen, water vapor and other molecules in the atmospheres of exoEarths”; and, “decode the
galaxy assembly histories through detailed archeology of their present structure.” And, AURA’s From Cosmic Birth to
Living Earths® details the potential revolutionary science that could be accomplished with a 12-m class space telescope:
from “directly finding habitable planets showing signs of life” to “producing transformational scientific advances in
every area of astronomy and astrophysics from black hole physics to galaxy formation, from star and planet formation
to the solar system.” The proposed High-Definition Space Telescope (HDST) concept would achieve unprecedented
angular and spectral resolution from the UV to Near-IR. The baseline concept is a 12-m serviceable observatory,
diffraction limited at 500 nm, operating at Sun-Earth-Lagrange-2 (SE-L2) with a versatile instrument package to
optimize its scientific yield. In response, NASA’s “Planning for the 2020 Decadal Survey” calls for consideration of a
Habitable Exoplanet Imaging Mission (HabEx) and a Large UV/Optical/IR Surveyor (LUVOIR) as well as Far-IR and
X-Ray Surveyor missions. A detailed discussion of the long term desire for larger space telescope missions can be
found in Thronson et al®.

There are many potential mission concepts to provide larger more capable space telescopes to the astrophysics science
community®® including three proposed by the 2008 ATLAST study™ and another three proposed by the 2015 ATLAST
study™. Unfortunately, packaging larger space telescopes into existing launch vehicles is a complex engineering
challenge that drives cost and risk. Any telescope mission placed in space on a single launch has been fundamentally
constrained by that launch vehicle’s mass and volume capacities. This was true for Hubble, Chandra and the James
Webb Space Telescope (JWST) and will be true for any potential LUVOIR or HabEx. The Hubble Space Telescope
(HST) and Chandra X-ray telescope were specifically designed to match the Space Shuttle’s payload volume and mass
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capacities, Table 1. (Note: Hubble was actually sized based on maximum abort landing mass.) And the James Webb
Space Telescope (JWST) is designed to match the capacities of an Ariane 5, Table 2.

Table 1. Space Shuttle Launch Capabilities vs Science Missions Requirements

Payload Mass

Payload Volume

(and Inertial Upper Stage)

Space Shuttle Capabilities | 25,061 kg (max at 185 km) | 4.6 mx 18.3m
16,000 kg (max at 590 km)

Hubble Space Telescope 11,110 kg (at 590 km) 43mx13.2m

Chandra X-Ray Telescope | 22,800 kg (at 185 km) 43mx17.4m

Table 2. Ariane 5 Launch Capabilities vs JWST Science Missions Requirements

Payload Mass

Payload Volume

Ariane 5

6600 kg (at SE L2)

45mx155m

James Webb Space Telescope

6530 kg (at SE L2)

447 mx10.66 m

This paper asserts that the mass and volume capacities of NASA’s planned Space Launch System (SLS) mitigates
engineering complexity by enabling simpler, more robust mission architectures with enhanced performance and reduced
cost and risk, than can be accomplished on a launch vehicle with less volume and mass capacity. This paper reviews the
SLS’s planned mass and volume capacities, discusses the implications of these capacities for designing large space
telescope missions, and gives three specific mission concept implementation examples: a 4-meter monolithic off-axis
telescope, an 8-meter monolithic on-axis telescope and a 12-meter segmented on-axis telescope.

2. POTENTIAL SPACE LAUNCH SYSTEM CAPABILITIES AND CAPACITIES

As described in the SLS Mission Planner Guide®, the SLS program is conducting a phased development effort
frequently referred to as Block-1, 1B, and 2 (Figure 1). It should be noted that these configuration descriptors apply
only to the launch vehicle and not to the fairing. Block-1 uses shuttle derived liquid engines and solid rocket boosters.
It also uses an interim, commercially derived, upper stage propulsion system that can only be used with a 5-meter
fairing and limits the payload mass to 70+ mt to LEO. Block-1 is available no earlier than 2018. The Block-1B
replaces the interim upper stage with a new Exploration Upper Stage (EUS). The EUS is designed for an 8.4 meter
fairing and enables 105+ mt to LEO. Block-1B is available no earlier than 2021. Block-2 replaces the Block-1’s solid
rocket boosters with new advanced boosters that enable payload mass of 130+ mt to LEO. These more powerful
boosters also allow for longer 8.4m and 10m diameter payload fairings. Block-2 is available no earlier than 2028.

SLS Block 1
70t+ to LEO
(No Eariier than 2018)

SLS Block 1B
105t+ to LEO
(No Earlier than 2021)

SLS Block 2
130t+to LEO
(No Earlier than 2028)
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Figure 1: SLS Block Development Plan
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Figure 2 shows the planned payload fairing options. The 5-m fairing is a commercial fairing and is planned for Block-
1. The 8.4-m ‘short’ and long fairings are for Block-1B and Block-2. They are available no earlier than 2022. The
only difference between a short and long fairing is the addition of a cylindrical ‘barrel’ section. The 10-m fairings is
exclusively available for Block-2 and available no earlier than 2028. All SLS versions will be compatible with the
Orion crewed human spacecraft (not shown). For Block-1B and Block-2, the conical Universal Stage Adapter (USA)
that connects the EUS to the Orion is hollow and can accommodate a 7.5 to 4.5-m diameter (conical) by 8.4-m tall ‘co-
manifested’ payload. For the Block-1B, the projected mass goal of this payload is 10 mt; and, for the Block-2 the
projected mass goal is 20-mt.

e |®

o ®
1
5m Class | 8.4m Short | 8.4mLong ‘ 10m

17-19m (long) 19.1x84m 27.4x84m 31.1x10m
Overal Length X |\ cco o) (e2rx27)  (0x278)  (102x33)

Diameter
4.6m 7.5m 7.5m 9.1m
Useable diameter (15) (24.6') (24.6') (29.9)

250m3 620m3 985 m3 1651m3
Useable volume | (g 828 3) (21,880ft3) 34,800 7t3 58,300 ft3

Figure 2: SLS Payload Fairing VVolume Options

Figure 3 summarizes the SLS’s projected mass capacity. Block-1 is projected to have the ability to launch a 25 mt
payload into a Sun-Earth Lagrange point (SE-L2) transfer orbit (with a C3 = -0.7 km%s?). Block-1B, with its 8.4-m
‘short’ fairing (7.5-m by 16.5-m dynamic envelope), will be able to launch 35 to 40 mt to SE-L2. Block-2, with its 8.4-
m ‘long’ fairing (7.5-m by 24.8-m dynamic envelope), will be able to launch ~50 mt to SE-L2. Finally, Block-2, with
its 10-m fairing (9.1-m by 24.8-m dynamic envelope), will be able to launch ~ 45 mt to SE-L2.
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Figure 3: Planned SLS Mass to Orbit Capacities

Additionally, the SLS Mission Planner Guide™® contains extensive details regarding payload interfaces and the SLS’s
launch environment, including: thermal, vibration, shock and acoustic.
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3. MISSION IMPLICATIONS OF SLS CAPACITIES: DESIGN FOR AFFORADABILITY
3.1 Design for Affordability

There are many different potential architectures for a large space telescope. But all potential architectures are
constrained by launch vehicle mass and volume capacities, and by the authorized budget. It is the fundamental premise
of NASA’s Marshall Space Flight Center (MSFC) that complexity drives cost. MSFC believes that an important way to
reduce complexity and lower mission cost is to use a launch vehicle with a large payload mass and volume capacity.
Having a large volume capacity can be important in simplifying packaging inside the fairing, i.e. minimizing
deployments. Having a large mass capacity allows for design approaches and margins which might make ground
handling and launch survival easier. Having more mass to orbit and volume can also provide options for designing a
stiff and stable telescope.

MSFC’s commitment to simplicity is based on the work of David Bearden***. He has shown that there is a direct

correlation between mission payload complexity and total mission cost; between complexity and cost, and schedule
growth; and that the greatest predictor of mission success is technology maturity. The reason for these relationships is
because the only way to achieve increasingly demanding performance requirements in a mass and volume constrained
launch vehicle is to design increasingly complex mission payload architectures. JWST is actually a case study example
of Bearden’s methodology. Consider how JWST’s cost was driven by the complexity of a deployment architecture
needed to package a 6.5 meter telescope inside a 4.5 meter fairing and the light-weighting need to fit within a 6500 kg
mass capacity. The JWST Independent Comprehensive Review Panel found that JWST is “one of the most complex
science missions carried out to date and therefore falls at the high end of the range, greater than 90%, on the complexity
index. JWST is consistent with being “in family” for a

Life Cycle Cost around $6 billion-$7 billion”*® (Figure [ ey =
4). It should be noted that originally, JWST was even
more complex. The initial primary mirror design called
for 36 segments in 3 rings. But, based on complexity
arguments (with its associated cost and risk) it was
decided to change to a 2-ring 18-segment design. The cost
versus complexity relationship is also evident in the Mo
NASA Advanced Mission Cost Model'® (Figure 5). o L
While many assert that this model says that mass is the 0% 20% 40% 60% 80% 100%
dominant mission cost driver, a closer look at the model | Figure 4: JWST on the Aerospace Complexity Index™
indicates that cost grows more with increasing Difficulty
Level (DL) than with increasing mass. Mass is only the dominant effect in the model if difficulty is constant. Cost can
be reduced more by decreasing difficulty than by reducing mass. It is interesting to observe where HST and JWST fall
on the NASA model. According to the model, at ~6500kg JWST is nearly half HST’s 11,110kg mass. Thus, if JWST
and HST were equally difficult, then JWST should be 70% the cost of HST. But, JWST’s ~$6.5B Phase A-D total
mission cost is over 2X the ~$3B cost of HST.
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Given the available mass and volume capacity of the SLS, some subsystems may be able to use simpler, more mature
(and more massive) technologies or higher design rule margins to eliminate complexity, lower risk and lower cost.
According to the Air Force, the biggest drivers for reducing cost are reuse of heritage components and having a high
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mass margin.'” Another Air Force study found that inserting new technology into a program versus using heritage
technology can double total system cost, while reusing existing design and technology can reduce cost at least 50%.®
Technology reuse saves money on sub-system acquisition as well as engineering labor and management overhead.
Because of program overhead, a savings of $500M in component cost might reduce total program cost by $1B to $2B."
Evidence of cost saving associated with high mass margin is shown in Figure 6. On average, free-flying telescopes
have the lowest design margins and highest cost per unit mass. The Shuttle attached telescopes and SOFIA are
designed to entirely different margin rules and have lower costs. And, ground telescopes have the most robust design
margins and lowest cost density.’® For completeness, the biggest drivers for increasing cost are tight thermal stability
requirements, design complexity, inadequate requirement definition and number of unique oversight organizations.
This last point is reinforced by the fact that for all Air Force space projects, program management and systems
engineering is the single largest cost element.’

4. SLS MASS ENABLED DESIGN RULES

In developing a new mission concept, the most important question is: ‘Is there a concept that fits within the mass and
volume capacities of the launch vehicle?” For example, the JWST design was driven by the capacity limits of the
Ariane 5. While, as demonstrated on JWST, volume constraints can be overcome by clever (complex) engineering, it is
much more difficult to overcome the mass constraint. Having a larger mass capacity launch vehicle provides designers
with more options. This Section describes one approach for how launch vehicle mass capacity can be flowed down
from the payload to the observatory and finally to the primary mirror assembly.

4.1 Payload Mass

Per Section 2, the SLS Block-1B is expected to have an up-mass to SE-L2 of 35 to 40 mt; Block-2 is expected to have
an up-mass of ~50 mt for the 8.4-m fairing and ~45 mt for the 10-m fairing. Unfortunately, mission designers are not
allowed to utilize the total expected mass capacity. NASA MSFC routinely uses a 30% margin; and, for the HabEx
study, the Exoplanet Exploration Program Office required a 43% mass margin. Table 3 summarizes the total mass
available to mission developers based on launch vehicle and design margin. As a point of reference, JWST’s design
mass constraint was 6500 kg and HST’s mass was 11,000 kg.

Table 3: Available Payload Mass after Margin
SLS Block-1B min | Block-1B max | Block-2 (10m) | Block-2 (8.4m)
Projected Mass to SE-L2 35,000 kg 40,000 kg 45,000 kg 50,000 kg
Max Payload with 30% Margin 26,900 kg 30,800 kg 34,600 kg 38,500 kg
Max Payload with 43% Margin 24,500 kg 28,000 kg 31,500 kg 35,000 kg

4.2 Observatory and Spacecraft Mass

The next step is to flow payload mass into an allocation for the observatory and spacecraft - where observatory is
defined to include the telescope assembly and science instruments; and, the spacecraft is defined to include propulsion,
avionics, power, and propellant. Historically, because of launch vehicle mass capacity, mission concept designers must
minimize mission mass and thus the mass of every subsystem. But, in our study, we explored a different question.
How might we allocate the maximum mass allowed by the SLS? And how might that mass impact performance?

Systems engineering analysis indicates that to achieve the most challenging science measurement goal of detecting and
characterizing the atmosphere of an exoEarth-like planet in the Habitable Zone requires a telescope with ultra-stable
wavefront error on the order of 10 picometers per 10 minutes®. While not designed to meet the requirements of a
UV/Optical/IR Surveyor (UVOIR) exoplanet science mission, JWST is an example of what is possible. The predicted
response of JWST is <13 nm rms for temporal frequencies up to 70 Hz?”. The JWST structure has an ~40 nm rms ‘wing
flap’ mode at ~20 Hz and the individual Primary Mirror Segment Assemblies have a ~20 nm rms ‘rocking’ mode at ~40
Hz. To meet the exoplanet stability requirement, these amplitudes need to be reduced by 1000x. JWST engineers
estimate that JWST could achieve this level of performance by a combination of methods: an ambient telescope will
have 10x more damping, the structure can be made stiffer, and active vibration isolation can be added. JWST has ~90
dB of isolation and to achieve UVOIR performance requires ~140 dB of isolation.

One approach to achieve such a demanding level of isolation is the Lockheed Martin (LM) Disturbance Free Payload
(DFP) technology?. The DFP approach achieves a high level of payload vibration isolation with a non-contact electro-
magnetic interface that effectively “floats” the payload separate from the spacecraft. At the request of NASA MSFC,
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the LM Advanced Technology Center studied the sensitivity of DFP isolation performance to: (a) payload mass fraction
(that is, the fraction of total system mass that is associated with the payload); and (b) the total system mass (that is, the
sum of payload and spacecraft mass). The vibration isolation performance metric is expressed as a payload-to-
spacecraft transmissibility, which is defined as the ratio of Payload angular motion to the Spacecraft angular motion,
due to a common disturbance force and/or torque located on the Spacecraft. The transmissibility is dependent on
disturbance frequency, and its maximum value for all frequencies greater than 10 Hz is plotted in Figure 7 versus
payload mass fraction, for three different total observatory masses

(6, 20 and 30 metric tons). The sensitivity analysis was performed yag o et ALETP PUSC Yommeaity (7 1y to Pt Mass Trocten,
by holding all system parameters (such as payload-to-spacecraft 1?97\—\
cable stiffness, electromagnetic actuator residual coupling) constant ] _ _
and scaling both Spacecraft and Payload mass and inertia linearly?*. [

20mT system
0T System
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From Figure 7, two observations can be made. First, for a given
total system mass, the transmissibility improves (i.e., the ratio of
payload to spacecraft angular motion decreases) as the Payload
mass fraction increases. Second, as the total system mass increases,
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the transmissibility improves, as indicated by the family of curves \_\
shifting to more negative dB as shown in Figure 7. It is noted that ™ i |
while isolation performance improves with increasing system mass o

Payload Mass Fraction

and increasing payload mass fraction, other system design and
launch vehicle considerations will largely dictate these quantities. It
should also be noted that payload mass fraction does not affect the
payload pointing accuracy or pointing stability. The payload points
itself relative to inertial space by commanding the non-contact interface actuators and using its own knowledge of
pointing error directly sensed on the payload (by means of a fine guidance camera, or a suite of inertial attitude sensors).
The spacecraft controls its attitude via reaction wheels to ensure the non-contact of the DFP interface.

Figure 7: Role of Mass and Mass Distribution in
performance of Lockheed Disturbance Free
Payload isolators.?*

4.3 Primary Mirror Mass and Areal Density

For any potential large space telescope, the primary mirror assembly will be the single most important design element
and its mass will be central to the design. Based on Section 4.2, to maximize vibration isolation via a DFP interface, we
choose to allocate 80% of the payload mass to the observatory. And, we choose to allocate ~50% of the observatory
(40% of total mission) mass to the primary mirror assembly. While this may seem simplistic, it is a matter of
engineering necessity. There is a limit to how light-weighted, or low-stiffness, mirror can actually be fabricated. And,
there is great benefit to having as stiff a mirror as possible. Mirror stiffness minimizes G-release uncertainty and on-
orbit dynamic motion. Thus, larger aperture telescopes will require a larger portion of the total mission mass. For
reference, HST’s 2.4-m PMA was about 17% of total mission mass and JWST’s 6.5-m PMA is about 28%. As shown
in Table 4, these simple mass assumptions can provide first order system design insight as to the maximum areal density
allowed for each size telescope.

Table 4: Flowdown from allowable Payload Mass to Primary Mirror Areal Density

SLS Block-1B | Block-2 min | Block-2 max
Max Payload Mass with 43% Margin 24,500 kg | 31,500 kg 38,500 kg
Spacecraft Allocation (20% of Payload) 5,000 kg 6,250 kg 7,500 kg
Observatory Allocation (80% of Payload) 20,00 kg 25,000 kg 30,000 kg

Science Instruments (10% of Observatory) 2,000 kg 2,500 kg 3,000 kg
Telescope (PMA, SMA, and Structure) (90%) | 18,000 kg | 22,500 kg 27,000 kg

SMA and Structure 8,000 kg 10,000 kg 12,000 kg
Primary Mirror Assembly Allocation 10,00 kg 12,500 kg 15,000 kg
Primary Mirror Assembly Areal Mass [kg/m?] [kg/m?] [kg/m?]
4 meter diameter (12.5 m?) 800 1000 1200
8 meter diameter (50 m°) 200 250 300
12 meter diameter (100 m?) 100 125 150
16 meter diameter (200 m?) 50 62.5 75
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To help assess feasibility of these areal density limits relative to the state of art, Hubble’s primary mirror assembly
(primary mirror and structure) weighed ~1860 kg for an areal density of 460 kg/m? and its primary mirror weighed
~740 kg for an areal density of 180 kg/m?. The JWST Primary Mirror with Back Plane Support Structure has an areal
density of ~70 kg/m% and its primary mirror segment assemblies have an areal density of ~30 kg/m% Additionally, an
Arizona 8.4-meter ‘cast’ mirror substrate has an areal density of ~300 kg/m? and the Thirty Meter Mirror Telescope
mirror segments have an areal density of ~150 kg/m?. Finally, the Advanced Mirror Technology Development program
has demonstrated a sub-scale mirror that is ‘traceable’ to a 4-meter diameter x 40 cm thick monolithic mirror with an
areal density of 60 kg/m? (without support structure)®. It is reasonable to extrapolate from these examples that a
primary mirror assembly with an areal density of >100 kg/m? is within the state of the art. Further, as part of the three
design concept discussed below, we have determined that mirrors of this areal density can be manufactured and tested to
UVOIR specifications; and, that support systems can be designed to keep their maximum stress during launch well
below accepted limits. And, the higher its areal density, the lower its fabrication cost and risk.

5. THREE EXAMPLE SLS ENABLED MISSIONS CONCEPTS

Since 2007, the NASA MSFC Optics Office and Advanced Concepts Office (ACO) has developed multiple large
telescope mission concepts using a heavy lift launch vehicle. This Section summarizes three separate concepts in the
order of their development: ATLAST-8, ATLAST-12 and HabEx-4. Each concept has two goals: 1) provide mission
performance capabilities that meet science requirements® 2’ (summarized in Table 5) to enable the potential LUVOIR
or HabEx mission as defined by NASA’s Enduring Quests Daring Visions® report or enable the HDST mission as
defined in AURA’s Cosmic Birth to Living Earth® report; and, 2) fully utilize the mass and volume capacities of the
SLS for placing a mission into a Sun-Earth Lagrange 2 halo orbit. Each concept was developed and documented in a
standard ACO report. The following information illustrates each concept and touch on some of the more interesting
engineering features. Complete cost estimates were generated for each concept but are considered NASA proprietary.

Table 5 Science requirements flow-down to the ATLAST telescope.?’

Parameter Requirement Stretch Goal' Traceability
Resolution, Sensitivity,
Exoplanet Yield
Thermal Stability,

Integration & Test,

Primary Mirror Aperture > 8.0 meters > 12.0 meters

Telescope Temperature 273 K-293 K - L
Contamination,
IR Sensitivity
uv 100 nm — 300 nm 90 nm — 300 nm -
Wavelength Visible 300 nm — 950 nm - -
Coverage NIR 950 nm — 1.8 pm 950 nm — 2.5 pym -
MIR Sensitivity to 8.0 um* - Transit Spectroscopy
Image uv < 0.20 arcsec at 150 nm - -
Quality Vis/NIR/MIR | Diffraction-limited at 500 nm - -
Strav Lidht Zodi-limited between Zodi-limited between | Exoplanet Imaging &
yHg 400 nm—1.8 um 200 nm—2.5 ym Spectroscopy SNR
~ 10 pm RMS uncorrected Starlight Suppression
Wavefront Error Stability system WFE per - via Internal
wavefront control step Coronagraph

Spacecraft

Pointing Coronagraph

< 1 milli-arcsec
< 0.4 milli-arcsec

TStretch goals are identified where mission enhancing capabilities could be realized. *No requirements are to be levied
on the telescope beyond those that would enable the NIR capabilities. IR = Infrared, UV = Ultraviolet, NIR = Near-IR,
MIR = Mid-IR, SNR = Signal-to-Noise Ratio, RMS = Root-Mean-Square, WFE = Wavefront Error
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5.1  Origin of ATLAST

The path to an ‘ATLAST’ launched via a heavy lift rocket started when this paper’s lead author attended the November
28-30, 2006, “Astrophysics enabled by the return to the Moon” workshop at Space Telescope Science Institute.
Because of his role leading the effort to develop mirrors to enable JWST?*?° he knew firsthand the limitations
associated with reducing mirror areal density to meet a required primary mirror mass allocation. And, because of his
role as a co-author of the NASA 2005 ‘Advanced Telescopes and Observatory’ Capability Roadmap®>" he knew that
reducing mass had been identified as a critical technology required to enable the agencies highest priority future
astrophysics missions. As Dr. Harley Thronson presented a briefing on the Constellation project and capabilities of the
planned Ares V, it was instantly obvious that this was a disruptive technology which solved many problems facing
potential future astrophysics missions. With a phone call to Dr. Matt Mountain, Director of the Space Telescope Science
Institute, ATLAST was initiated.*> Dr. Mountain assigned Dr. Marc Postman to develop the science case; and, it was
Dr. Postman who coined the ATLAST acronym. The first STScI/MSFC concept was a 6-meter monolithic Ares-V
launched telescope™®. In 2008, NASA awarded the Space Telescope Science Institute and its NASA Center Partners
(GSFC, JPL and MSFC) an Astrophysics Mission Concept Study called Advanced Technology Large-Aperture Space
Telescope (ATLAST). The ATLAST final report™ documents three potential mission concepts: ATLAST-8m (MSFC)
440 ATLAST-9.2m (GSFC)**2 and ATLAST-16m (Northrop). The MSFC ATLAST-8 Team included members
from GSFC, Ball Aerospace Technology Corporation, and Northrop Grumman. Since 2014, NASA GSFC refined their
ATLAST-9 concept and developed a new ATLAST-11 concept™. In 2015, NASA MFSC performed new studies for a
12.7-meter on-axis segmented telescope (ATLAST-12), a 4-meter off-axis telescope (HabEx-4) and refreshed the
ATLAST-8 concept.

5.2  ATLAST-8: 8-meter on-axis monolithic aperture concept for LUVOIR

ATLAST-8 (Figure 8) is an 8-meter monolithic aperture UVOIR space
observatory in a cold-biased heated Kepler style scarfed straylight tube with a
dual foci optical design. It is designed for a 30 year operational life at SE-L2
enabled by servicing. While which instruments go at each focus will be
determined by the science community, the baseline plan is a coronagraph and
UV spectrometer at the narrow FOV Cassegrain focus, and an imager and
multi-object spectrograph at the wide FOV foci. The revised ATLAST-8
concept retains much from the 2009 Mission Concept Study which performed
detailed studies on: optical design; structural design/analysis including
primary mirror support structure, sun shade and secondary mirror support
structure; thermal analysis; spacecraft conceptual design including structure,
propulsion, GN&C, avionics, thermal and power systems; mass and power Figure 8: ATLAST-8 with scarfed

budgets; and system cost™. In 2015, MSFC updated the study for differences | Kepler style light baffle and deployable
between the Ares V and SLS. Finally, ATLAST-12 and HabEx-4 share many solar panels for momentum control.

of ATLAST-8’s elements, including the optical design, the heated scarfed
straylight baffle, the momentum management subsystem and the spacecraft design.

5.2.1 Optical Design and Science Instrument Accommodation

The Optical Telescope Assembly (OTA) has a dual-field design with three foci: a 1 arc-minute Cassegrain focus and
two 8 x 23 arc-minute Three-Mirror Anastigmatic (TMA) foci (Figure 9) *%’. All three are diffraction limited at 500
nm. The main telescope is a two-mirror system which forms the narrow-field-of-view (NFOV) Cassegrain image
(Figure 10). The Cassegrain focus provides a high quality NFOV focus for exo-planet characterization science and a
high-throughput two-bounce path for UV spectroscopy science. The wide field of view (WFOV) imager, multi-object
spectrograph and IFU spectrograph are divided between the two TMA foci. Separating the two WFOV instruments
allows flexibility in packaging as well as future servicing.
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Figure 9: Optical Layout of 8-m OTA showing 2 TMA foci and Cass focus (at red dot)
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Figure 10: Cassegrain and TMA Foci Instrument Allocations.

Additionally, each focus has wavefront sensors and each TMA focus has two Fine Guidance Sensors (FGS). The FGS
system has four modules, two in each WFOV TMA focus (one active and one backup). ATLAST-8m controls pointing
using guide stars in two FGS modules separated on the sky by 0.5 degree. This separation provides roll control about
the boresight at a lower bandwidth and with much better stability than the 0.2 mas rms requirement.

All three foci are directly accessible to a 4.0 m diameter by 4.5 m deep instrument bay centered on-axis behind the
primary mirror. The spacecraft envelope surrounds the instrument bay, which is isolated from both the primary mirror
support structure and the instrument bay. The Instrument Command and Data Handling unit (IC&DH) provides
centralized OTA electronics for control of telescope mechanisms and heaters, wavefront sensing (WFS) processors, and
science instruments. Each instrument module is a self-contained On-orbit Replaceable Unit using HST-style mounting
rails accessible from the back of the instrument bay to facilitate servicing missions. The instrument bay provides all
required mechanical, electrical, data and thermal interface connections for the science modules using standard HST-
style ‘blind-mate’ connectors.

The primary and secondary mirrors’ optical coatings are identical to what was used by HST: aluminum with MgF2
overcoat to provide good spectral transmission from 110 nm to 2400 nm. These coatings are important to the UV
science instruments at the Cassegrain focus. Two pick-off fold mirrors, on either side of the Cassegrain focus, direct
off-axis portions of the Cassegrain image plane to two tertiary-mirror aft-optics assemblies, which form two WFOV 8 x
22 arc-min TMA images. The TMA provides a 13 milli-arc-second plate scale. The aft optics are coated with Kepler
protected silver for enhanced visible/near-1R spectral transmission.

5.2.2 Structure

Structure is critical to ATLAST-8’s ability to provide the wavefront stability required for exoplanet science. Taking
advantage of the SLS’s mass and volume capacity, a very deep, very stiff, and massive structure was designed. The
design philosophies are simplicity, modularity, and redundancy. To mitigate assembly risk, the structure is designed
using a bolt-together truss structure of repeated components. Each component is fabricated with a conservative design
margin and tested individually. The structure is designed to safely launch an 8-meter primary mirror (PM) and maintain
the on-orbit optical alignment necessary to achieve a 500 nm diffraction limited telescope. Using fault-tolerant design
principles, the PM support structure provides a 10X margin of safety during launch by distributing the forces between
66 axial and lateral support points to keep the primary mirror max stress loads at least an order of magnitude below its
design limit. For more information, the reader is referred to Arnold et. al. (2009).
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The ATLAST-8 structure contains several major elements (Figure 11): primary mirror support structure, metering truss,
instrument bay, secondary mirror spiders, aft optics structure and payload adapter fixture (PAF)*®. The back structure
supports the primary mirror during launch. The forward structure, which is attached to the back structure as are the
spacecraft and the science instruments, supports the secondary mirror assembly and straylight baffle. A key design
element is that all observatory mass (telescope, instruments and spacecraft) is carried via a separate skeletal load-path
through the back support structure to an interface ring which attaches via the PAF to the launch vehicle. This allows the
use of a completely conventional spacecraft; i.e. it does not need extra mass because it does not provide the interface
between the observatory and the launch vehicle. During launch, the spacecraft is attached to the rear of the telescope
structure, and does not support the observatory nor transfer launch loads to the launch vehicle. Structural elements were
sized for 5g axial and 2g lateral sustained loads, with a yield and ultimate factors of safety of 1.25 and 1.4, respectively.

Metering Truss z
: Aft optics

Primary
mirror

Payload
adapter

Spacecraft

Instrument envelope
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Biy \// nstrumen

\ volume
Payload Adaptor Fixture

Figure 11: ATLAST-8 Observatory Structural Layout
5.2.3 Spacecraft and Momentum Management

The spacecraft provides all pointing, power, communication, data handling, station keeping, momentum unloading, and
thermal control for the ATLAST-8m telescope and its science instruments, and provides the propulsive maneuvers for
midcourse corrections*®. Key requirements include enabling the observatory to slew 60 degrees in 90 minutes (required)
or 40 minutes (desired); ensuring a coarse pointing stability of 1.6 mas; enabling the observatory to roll about the
telescope’s line of sight by = 30 degrees in 30 to 60 minutes, and provide a minimum of 4500 minutes continuous
observing time before momentum unloading is required.

ATLAST-8 uses employs HST style body pointing. The reason is UV science. To maximize UV throughput, telescope
pointing places the science object of interest directly onto the UV spectrograph entrance slit. Star Trackers command
the OTA boresight pointed to within a few arc-sec of the desired target using the RWA/CMG. The active vibration
isolation (AVI) system then engages using FGS feedback to minimize the apparent motion of the guide star centroid for
the duration of that science exposure. During a science observation, sensors continuously monitor the travel of the AVI
actuators. This information is used by the ACS software to command the reaction wheels, changing the orientation of
the spacecraft so as to maintain the AVI actuators at or near their center of travel. The reaction wheels provide 698 N-
m-s of momentum storage capability for a minimum of 4500 minutes continuous observation time. ATLAST-8 uses
two solar panels on 10 m deployable booms to balance solar radiation pressure exerted on its sunshade tube. As the
observatory slews relative to the sun, the solar panel booms extend to keep the center of pressure as close as possible to
the center of mass as seen in Figure 12. Additionally, the booms have gimbal joints that articulate during observatory
roll and pitch maneuvers to keep the solar panels perpendicular to the sun. Analysis shows that, with a few 10 meter
booms extended from the spacecraft midpoint, only 35 N-m-s momentum is required for 6.25 days of continuous high-
precision pointing observation. And, by making slight adjustments in boom length, indefinite observation times can
theoretically be achieved.
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Figure 12: Solar Torque / Momentum Build-Up Mitigation Scheme for ATLAST-8m
5.2.4 SLS Accommodation

The 2009 ATLAST-8 mission concept was specifically designed to
accommodate the mass and volume capacities of the Ares V “***,
Because of the Ares V 10-m fairing’s total height, the PAF was
integrated into the structure such that the payload could be placed as
low in the payload volume as possible. But because this did not
provide enough vertical capacity, a partial truss structure with four
spider legs designed to fit inside the tapered section was also used,
see Figure 13. Finally, the forward scarf was deployed on-orbit.
Because of the mass capacity, a massive, thin-meniscus, solid
monolithic primary mirror**3 was base-lined. Now, with the SLS
10-meter ‘long’ fairing being 6-meters longer than the Ares V,
ATLAST-8 could be packaged above the PAF, and the secondary
support structure could be made longer for greater stability. But,
because the SLS has less mass capacity, it is necessary to change the @ (b) ©
primary mirror from a 20 mt solid to 8.5 mt (170 kg/m? areal density)
lightweight.  Fortunately as discussed in Section 4.3, this areal
density is within the existing state of the art. The Advanced Mirror
Technology Development program has designed an 8-meter class

SLS Block 11-B

AresV

Figure 13: (a) ATLAST-8 Concept in Ares V;
(b) SLS 10-m fairing is longer than Ares V 10-m
fairing; (c) ATLAST-8 in SLS Block 1IB.

mirror using its demonstrated deep core technology® **°.

5.3  ATLAST-12: 12.7-meter off-axis segmented aperture
concept for LUVOIR

ATLAST-12 is a 12.7-meter segmented aperture UVOIR space
observatory with a dual foci optical design. It is designed for a
30 year operational life at SE-L2 enabled by servicing. The
most significant differences between ATLAST-8 and ATLAST-

mom =o.

12 are the primary mirror, forward baffle tube, and sizing of the PSF Dimensions is /D
momentum management system to accommodate a larger solar o | e ;
radiation pressure load on the forward baffle tube. ® A TT ;i ‘
| ! | ’ﬁ.:. | |1 And
5.3.1 Segmented Primary Mirror Assembly W A R

The enabling element of ATLAST-12 is the primary mirror = =

assembly. A goal of ATLAST-12 was to determine the largest e B 52
primary mirror that could be packaged inside the SLS Block I1B Figure 14: Different segmented aperture symmetries
fairing using a center core surrounded by a single ring of petal produce different PSF patterns which have
segments architecture. This architecture was selected for five compatibility benefits for specific coronagraphs.
reasons: 1) It provides a potentially more coronagraph-friendly

point spread function (PSF) than a hexagonal segmented aperture (Figure 14)*’. 2) The wavefront stability requirement

[
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is potentially more relaxed for an architecture with a central large segment surrounded by a single ring of small petals,
than for a hexagonal segmentation architecture with multiple rings of equal size segments*®. 3) Unless there is an
existing manufacturing facility to mass produce hexagonal segments (i.e. for TMT)), it is potentially more cost effective
to manufacture multiple copies of a single petal than 3 or more different hexagonal prescription. 4) Having the large
central core provides a simple descope path. And 5) other members of the ATLAST team were investigating hexagonal
segmentation™’. Additionally, the ATLAST-12 design was constrained to segments which could be fabricated from
commercially available 2.4 m or 4 m mirror blanks. Because segment radial height depends on blank diameter and
segment aspect ratio, the maximum diameter primary mirror that can be fabricated using this architecture depends on
the number of segments which are placed around the center core and the size of the central core (Table 6). For
ATLAST-12 a 12.7 m diameter primary mirror architecture composed of an 8-m center core surrounded by twelve 2.35
m tall by 3.3 m arc length segments was selected (Figure 15). To fit inside the 9.1 m dynamic envelope of the SLS
Block 1B fairing, a fold-forward/fold-aft deployment was selected.

Table 6: Potential Primary Mirror Diameter using Petal Architecture
Center Core Diameter 6m 8m

12 Segments from 4-m Blanks 12m 13m

18 Segments from 4-m Blanks 13m 145m

24 Segments from 2.4-m Blanks 10m 12m

Figure 15: 12.7-m 12-fold-forward/ fold-aft petal segments around an 8-m central core on a 20 Hz structure.

The structure under the mirror center has two functions: support the 8500 kg mirror during launch and provide ultra-
stable on-orbit optical performance. Given that exoplanet science is a primary mission of this telescope, it is necessary
for the telescope’s on-orbit wavefront to be stable on the order of 10 picometers per 10 minutes*”*®. Since the JWST
structure has a 13 Hz first mode and because preliminary analysis indicates that it might be possible to achieve the
required wavefront stability using an enhanced JWST structure and an active isolation system?2* the ATLAST-12
primary mirror structure was designed for a 20 Hz first mode. Achieving this goal required a 4036 kg 4-meter deep
structure (Figure 16a). To survive launch (according to NASA Standard 5001A and anticipated SLS launch loads), the
structure was designed to support 5g axial and 2g lateral loads with a 1.4 ultimate safety factor (Figure 16b). The
structure is constrained at the bottom by the PAF which connects the payload to the SLS. Interestingly, the 4036 kg
mass of the primary mirror structure is driven by the 20 Hz requirement and not launch survival.

mm,l 5g Axial

:::::

el 2g Lateral |:> @

zzzzz

zzzzz

Deployed 1° Natural Frequency (20.2 Hz)

Figure 16: (a) Primary Mirror Support Structure was designed to provide a 20 Hz first mode for an 8500 kg mirror. To
achieve this specification required a 4 meter deep and 4036 kg structure. (b) Designed 20 Hz structure survives 5g
Axial and 2g Lateral launch loads.
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5.3.2 Actively Thermal Controlled Forward Baffle

ATLAST-12 has a scarfed Kepler style forward
baffle tube (Figure 17). For packaging reasons, the
scarf is 60 degrees and deploys on orbit. The
deployment system’s mass and power were
estimated using 40 ATK booms which have already &
successfully flown on NuSTAR. The tube has
sufficient insulation for the telescope to passively
reach 200K for infrared operation. For UV/Optical
operation, zonal heaters in the baffle tube and
around the primary mirror and secondary mirrors 3 :
heat the optical surfaces to 280K to prevent ice or e s x * i

frost. The primary mirror assembly requires an R-6 | Figure 17: ATLAST-12 has a heated scarfed forward baffle
heater system to compensate for sky view factor | tube for straylight control and thermally stable wavefront.
induced power and lateral solar load. Finally, active
thermal sense and control keeps the telescope at a constant temperature regardless of where it points on the sky. As the
observatory slews or rolls, sensors monitor the change in solar thermal load and adjust the zonal heaters to compensate.

.-

5.3.3 Spacecraft: Pointing Control and Momentum Management

Because of the size of ATLAST-12, the most important technical challenge for the spacecraft is pointing and
momentum management. The science derived requirement is to point the observatory with a stability of < 1 mas for a
period of up to 3000 minutes without interruption. Pointing stability enables exoplanet and UV science. Exoplanet
science requires stability to minimize contrast leakage. UV science requires stable body pointing to maximize
throughput by placing the science object directly onto the entrance slit of the UV spectrograph without the need of a
fine steering mirror. Pointing duration is essential for both exoplanet and faint object science.

The spacecraft is designed to provide 1 arc-second pitch/yaw/roll accuracy and, with the active isolation system, 1.0
mas stability. Two sets of 6 reaction wheels, arranged in hexagonal pyramids, provide redundancy and pointing
authority/control to 1 arcsec. Additionally, the reaction wheels are sized to slew the observatory 60 degrees in 180
minutes and roll the observatory around its line of sight +/- 30 degrees in 30 minutes. The active isolation system then
engages using feedback to minimize the apparent motion of the guide star centroid for the duration of that science
exposure. The AVI system eliminates jitter to achieve < 1 mas pointing stability. There are two potential approaches for
the active vibration isolation system, Lockheed’s DFP? and Northrop’s active strut technologies. During a science
observation, sensors continuously monitor the active isolation system and command the reaction wheels, changing the
orientation of the spacecraft to keep the AVI actuators at or near their center of travel.

To achieve up to 3000 minutes of continuous observation the reaction wheels must be sized to provide the necessary
momentum storage capability, with thrusters providing the means to unload momentum periodically. The problem is
that ATLAST-12 is very large and solar pressure on the baffle tube during observation could quickly saturate the
reaction wheels. To compensate, ATLAST-12 uses two solar panels, each with a solar pressure kite, on 10 m
deployable booms to balance solar pressure exerted on the tube. As the observatory slews relative to the sun, the solar
panel booms extend and rotate to keep the center of pressure as close as possible to the center of mass (Figures 9). The
required area of the solar pressure kites depends on the length of the boom from the center of mass and the desired

continuous observing time (Figure 18).
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Figure 18: Maximum continuous observing time depends on size of the solar pressure kites and boom offset.
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5.3.4 Spacecraft Lifetime: Delta-V and Power

ATLAST-12 is envisioned as a 30 year (or longer) lifetime observatory at SE-L2. A JWST orbit and transfer trajectory
are assumed because it does not require a halo orbit insertion maneuver. Once at SE-L2 the spacecraft only has to begin
station keeping. Lifetime can be achieved either by redundancy or servicing via modular on-orbit replaceable units.
Because of the SLS’s mass capacity, the observatory can carry sufficient propellant to either stay at SE-L2 for 30 years,
or to bring itself back to EM-L2 for servicing and refueling. An average servicing interval of 5 years and a maximum
servicing interval of 10 years is assumed (Table 7). Analysis indicates that only 7 m/s delta-v is needed per year for
station keeping and 1.2 m/s for momentum unloading. Given the 6-month period of the halo orbit and the 45-degree
keep-out angle between the telescope’s line of sight and the sun, the telescope can see the entire sky in approximately
six months. Finally, the total end of life power budget was estimated to 13kW.

Table 7: Delta-V (dV) Budget

dv

No Servicing, 5 Year Per Year at

30-year Servicing SEL2, no
Manuever mission (@wEML1/L2) servicing
Launch Correction 52.0m/s 52.0m/s -
Mid-Course Correction 10.0 m/s 10.0 m/s -
Station Keeping (SEL2) 208.8 m/s 34.8 m/s 7.0 m/s
Station Keeping (EML2, ~6 months) - 52.8 m/s -
Momentum Unloading 35.4m/s 5.9m/s 1.2m/s
Transfer from SE L2 - 50.0 m/s -
Transfer to SE L2 - 50.0 m/s -
Margin -6.2 m/s 44.5 m/s
Margin (%) 2% 15%
Total 300.0 m/s 300.0 m/s 8.14 m/s

5.4  HabEx-4: 4-meter off-axis monolithic aperture concept for HabEx

HabEx-4 is a 4-meter monolithic aperture UVOIR space observatory. It is specifically designed for the SLS Block IB
mass and volume capacities, and launch environment. Consistent with Table 3, its ‘working’ mass was constrained to
18 mt. And, as shown in Table 8, its ‘design’ mass is less than 11 mt (without margin). The structure is sized for a 3.59
axial and 1.5g lateral launch load. A ground rule given to the MSFC Advanced Concept Office for the HabEx-4 study
was that every proposed system, subsystem or component of the spacecraft (including: propulsion; attitude control;
power; avionics; communication; command and data handling; etc.) should be at TRL-9 except for the primary mirror
assembly, actively heater controlled straylight baffle, and science instruments. HabEx-4 is designed for a 15 year
operational life at SE-L2 with no servicing. Its propellant load is sized with a 25% reserve against this 15 year
operational life requirement.

5.4.1 HabEx-4 Optical Design and SLS Packaging

HabEx-4 is a 4-meter scale-up of the Exo-C 1.3-meter Mission Concept®, with a few modifications. Exo-C has many
important design features which were retained for HabEx-4, including: an off-axis primary mirror to provide the
coronagraph with an unobscured aperture; and, science instruments on the side of the telescope to both isolate them
mechanically from the spacecraft and provide better thermal isolation (Figure 19). For the primary mirror, HabEx-4
uses a 200 Hz first mode, 4-meter diameter, 400 mm thick, stacked-core ULE mirror designed by the Advanced Mirror
Technology Demonstrator (AMDT) project. AMTD has already demonstrated the ability of this technology to produce
a 400 mm thick mirror® and is currently demonstrating a 1/3™ scale model of a 4-meter mirror**®. Because of the
SLS’s volume and mass capacity, it is possible for HabEx-4 to support multiple science instruments using the ATLAST
dual foci optical design (Figure 20). To minimize polarization anisotropy, the Exo-C primary mirror focal length was
F/2.5. Retaining this feature makes HabEx-4 significantly longer than the ATLAST concepts (which have an F/1.5
primary mirror), but the volume capacity of the SLS allows for both a longer telescope and a 45 degree scarfed
straylight baffle without the need for any physical deployments (Figure 21). Making the scarf 60 degrees, i.e. same as
ATLAST-8 and ATLAST-12, could make the total system length shorter by 1.6 meters.
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Coronagraph -
Wide FOV Spectrograph (TMA) Figure 21: HabEx-4, even with an F/2.5 primary

Figure 20: HabEx-4 has a dual foci optical design mirror and 45 degree scarfed baffle easily fits inside
for multinle science instriiments the SLS Block IB dynamic envelope.

5.4.2 HabEx-4 Actively Controlled Thermal Environment

Because wavefront stability is critical to exoplanet science, Exo-C paid particular attention to producing a stable thermal
design. HabEx-4 replicates many of these features. The observatory is operated at fixed orientations relative to the sun,
the solar panels provide thermal isolation, and the science instruments are placed opposite to the sun for more isolation.
Additionally, to minimize mechanical disturbances, the solar panels are fixed to the spacecraft and isolated from the
observatory. Going beyond Exo-C, HabEx-4 has a cold-biased actively-controlled thermal baffle (similar to ATLAST-
8 and ATLAST-12). This keeps the HabEXx-4 telescope in a constant thermal environment independent of where it
points®. If the observatory slews or rolls relative to the sun, thermal sensors (or a calibrated look up table) measure the
change in solar thermal load, with sub-mK sensitivity, and adjust the baffle tube heaters to compensate. Additionally,
because the system is cold-biased, the telescope can be operated at temperatures ranging from 250K to 300K. Total
power required for this capability is 1.5 kW.

5.4.3 HabEx-4 Momentum Management

Again, because wavefront stability is critical to exoplanet science, the solar panels are fixed to the spacecraft to
minimize mechanical disturbances. Thus, HabEx-4 cannot use the ATLAST momentum balancing method to achieve
the required 3000 minute minimum continuous observing time. Instead, it uses the more conventional brute force
method. The reaction wheel system was designed to use reaction wheels with sufficient momentum storage capacity to
provide at least 3000 minutes of continuous observing time — even after the loss of two reaction wheels (Figure 22).

Science Time vs Sun Angl
Reaction Wheel Configurations

SunIncidencs Angle (deg)

Figure 22: HabEx-4 reaction wheel configuration is designed and sized to provide at least 3000 minutes of continuous
observing time, even with the loss of two reaction wheels.
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5.5  Mass Budget

For each mission concept, Master Equipment Lists (MELS) were generated for every subsystem and component of the
telescope, instruments and spacecraft. These MELs were used to estimate the mass of the payload and to size the power
system. Table 8 shows the mass budget for the three concepts. It should be noted that the mass for ATLAST-8 and
ATLAST-12 are identical. This is deliberate. The only difference between these two concepts is the size of the
telescope. And, obviously then, the areal density of the primary mirror (Table 4). Everything else is identical. And to
make these systems as stiff as possible, in order to make the design margins as high as possible, and to reduce cost and
risk as much as possible, a ‘design to mass’ philosophy was followed. ATLAST-8 and ATLAST-12 were designing to
be 33.3 mt (less than the 35 mt mid-range SLS Block-Il with 43% mass margin shown in Table 3). HabEx-4 has a
different mass budget because it is a smaller system. The primary mirror assembly mass is based on a design produced
by the Advanced Mirror Technology Development project. It should be noted that the HabEx-4 payload mass is well
below the 43% margin capacity of even the smallest SLS Block IB (Table 3). Finally, regarding propellant, the
ATLAST propellant mass is sized to provide for 30 to 50 years of continuous operation; and, the HabEx-4 propellant
mass is sized for a 15 year mission.

Table 8: Mass Budget for HabEx-4, ATLAST-8 and ATLAST-12

HabEx-4 | ATLAST-8 | ATLAST-12

Mass [kg] | Mass [kg] | Mass [kg]
TOTAL PAYLOAD WET MASS 10,300 33,300 33,300
TOTAL PAYLOAD DRY MASS 9,300 28,800 28,800
Observatory 5,300 23,600 23,600
Telescope 4,600 21,800 21,800
Primary Mirror Assembly 1,600 12,750 12,750
Primary Mirror 1,000 8,500 8,500
Primary Mirror Support Sturcture 500 4,000 4,000
Mechanisms 100 250 250
Secondary Mirror Assembly 100 550 550
Optical Bench Structure 500 5,000 5,000
Auxillary Optic Assembly 200 1,500 1,500
Thermal & Straylight Control 2,200 2,000 2,000
Science Instruments 700 1,800 1,800
Spacecraft 3,000 4,200 4,200
Structure 1,000 1,500 1,500
Propulsion 200 400 400
Attitude Control System 500 500 500
Command and Data Handeling 300 300 300
Communications 300 300 300
Power 500 1,000 1,000
Thermal 200 200 200
Propellant 1,000 4,500 4,500
Payload Adapter Fixture 1,000 1,000 1,000

6. CONCLUSION

Space telescope missions have always been limited by their launch vehicle’s mass and volume capacities. As discussed
in Section 1.0, The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James
Webb Space Telescope is specifically designed to fit inside an Ariane 5. But, astrophysicists desire even larger space
telescopes. Unfortunately, packaging larger space telescopes into existing launch vehicles is a significant engineering
challenge whose complexity, as discussed in Section 3, drives cost and risk. And, while it is impossible to eliminate all
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complexity, NASA’s planned Space Launch System (SLS), with its 8.4 or 10-m diameter fairings and ability to deliver
35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this engineering complexity by allowing simpler design
solutions. Cost and risk can be reduced by using the volume capacity to minimizing deployments and mechanisms. It
can be reduced by using the mass and volume capacities to design stiffer systems with higher mass margins. It can be
reduced by not being forced to select new immature technology to save mass. And, it can be reduced by using mass
capacity to increase redundancy. In many space systems, much engineering effort is spent designing new low TRL
systems with reduced mass that also meet the minimum margins. Designing to higher margins should save effort.
Section 2 summarized the mass and volume capacities of various SLS options. And, Section 4 provided some high
level design rules for creating a mass flow down budget from the launch vehicle to payload (with margin); and from the
telescope to the primary mirror itself. It is important to note that the SLS enables telescopes up to about 16-meters to be
fabricated using existing technology. Finally, Section 5 summarized three large aperture UVOIR space telescopes to be
operated in orbit around the Sun-Earth Lagrange 2 point which are specifically designed to take advantage of the SLS
mass and volume capacities: ATLAST-8 (an 8-meter on-axis monolithic aperture telescope), ATLAST-12 (a 12.7-
meter on-axis segmented aperture telescope), and HabEx-4 (a 4-meter, off-axis monolithic aperture telescope).
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